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Abstract

Hypertension is a hemodynamic disorder and one of the most important and well-estab-

lished risk factors for vascular diseases such as stroke. Blood vessels exposed to chronic

shear stress develop structural changes and remodeling of the vascular wall through many

complex mechanisms. However, the molecular mechanisms involved are not fully under-

stood. Hypertension-susceptible genes may provide a novel insight into potential molecular

mechanisms of hypertension and secondary complications associated with hypertension.

The aim of this exploratory study was to identify gene expression differences in the middle

cerebral arteries between 12-week-old male spontaneously hypertensive rats and their nor-

motensive Wistar-Kyoto rats using an Affymetrix whole-transcriptome expression profiling.

Quantitative PCR and western blotting were used to verify genes of interest. 169 genes

were differentially expressed in the middle cerebral arteries from hypertensive compared to

normotensive rats. The gene expression of 72 genes was decreased and the gene expres-

sion of 97 genes was increased. The following genes with a fold difference�1.40 were veri-

fied by quantitative PCR; Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1, Mmp11, Cd34,

Ptgs1 and Ptgs2. The gene expression of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Ser-

pine1 and the protein expression of LOX1 (also known as OLR1) were significantly

increased in the middle cerebral arteries from spontaneously hypertensive rats compared to

Wistar-Kyoto rats. In conclusion, the identified genes in the middle cerebral arteries from

spontaneously hypertensive rats could be possible mediators of the vascular changes and

secondary complications associated with hypertension. This study supports the selection of

key genes to investigate in the future research of hypertension-induced end-organ damage.

Introduction

Hypertension is a hemodynamic disorder and one of the most important and well-established

risk factors for cardiovascular diseases and stroke. Essential hypertension is defined as blood

pressure of 140/90 mmHg or above of unknown cause [1]. The blood pressure is not controlled

in nearly 50% of hypertensive patients due to no obvious symptoms of essential hypertension

[2,3]. The consequence is a large group of patients in high risk of secondary complications.
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During essential hypertension, the blood vessels are exposed to chronic shear stress which

leads to structural changes and remodeling of the vascular wall. Hypertension causes vascular

remodeling through many different and complex mechanisms [4,5], but the underlying gene

expressions are not fully understood. To gain a better understanding of these mechanisms, this

exploratory study is to our knowledge the first to identify gene expression differences in the

middle cerebral arteries (MCAs) between spontaneously hypertensive rats (SHRs) and their

normotensive Wistar-Kyoto rats (WKY rats) using an Affymetrix whole-transcriptome expres-

sion profiling (termed whole-genome microarray gene-expression profiling). A whole-genome

microarray gene-expression profiling is a useful tool to permit an unbiased selection of genetic

targets of hypertension and potential secondary complications associated with hypertension.

Our unique focus on the MCAs is important, since hypertension is a vascular disease and a

risk factor of other cerebrovascular diseases such as stroke. It also contributes to elevated

vascular resistance by changes in the vascular wall, and pial arteries such as the MCAs contrib-

ute to the cerebrovascular resistance [6]. Especially the regions of arterial branching are more

susceptible to altered shear stress due to the greater effect of hemodynamic forces such as

mechanical stretch [7].

Hypertension induces excessive stress on the vascular wall over time, causing alterations in

the wall thickness and composition. Implicated alterations are growth and migration of

smooth muscle cells (SMCs), endothelial dysfunction, inflammation, cell death and synthesis

and degradation of the extracellular matrix (ECM). These alterations as well as humoral factors

modify the mechanical and hemodynamic properties of the arteries [5]. It is acknowledged,

that the alterations for example enhance the wall thickness, reduce the lumen of the artery or

lead to arterial stiffening [8]. As a consequence of all these hypertension-induced changes in

the vascular wall, the genes and their transcriptomic products are up- or downregulated.

The aim of this exploratory study was to investigate genes involved in the vascular changes

associated with hypertension. This study contributes to the current knowledge of the molecu-

lar mechanisms that are involved in hypertension and in the potential secondary complica-

tions associated with hypertension.

Materials and methods

Ethics

All experiments were carried out in strict accordance with the guidelines from the European

Community Council directive (2010/63/EU) for Protection of Vertebrate Animals Used

for Experimental and other Scientific Purposes and were approved by the Danish Animal

Experiments Inspectorate (Permit Number: 2014-15-0201-00042). The study complies with

the ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments). All surgeries

were performed under isoflurane anesthesia, and all efforts were made to minimize

suffering.

Animals

12-week-old male SHRs (257-311g) and their normotensive control WKY male rats (299-

340g) were obtained from Charles River (Charles River laboratories, Sulzfeld, Germany). The

SHR is an animal model of essential hypertension [9] and develops hypertension at 4 weeks of

age [10] why this animal model can provide useful information and implications of pathophys-

iological processes in humans. The rats were housed with a 12 hours light/dark cycle and pro-

vided with standard rat chow and tap water ad libitum.

Gene expression in the middle cerebral arteries from hypertensive rats
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Blood pressure measurement and harvest of arteries

The rats were anaesthetized with 2.5% isoflurane in N2O/O2 (70:30) followed by cannulation

of the tail artery to record the MABP for five minutes. This is a direct measurement of the

blood pressure [11]. The rats were sacrificed by decapitation, and the MCAs were carefully dis-

sected from the brain and stripped of connective tissue and blood in ice-cold sodium Krebs

buffer (NaCl 119mM, NaHCO3 15mM, KCl 4.6mM, MgCl2 1.2mM, NaH2PO4 1.2mM, CaCl2

1.5mM and glucose 5.5mM) oxygenated with 5% CO2 in O2. The tissue was snap frozen on

dry ice and kept at -80˚C until the preparation of RNA extraction.

RNA preparation

Total RNA extraction was prepared in the same way for the whole-genome microarray gene-

expression profiling and quantitative PCR (qPCR). Tissue from one MCA was homogenized

on dry ice 3x20sec in lysis buffer (ML buffer) from the NucleoSpin miRNA isolation kit

(Macherey-Nagel, Germany) using a FastPrep-24™ 5G instrument (MP Biomedicals, USA).

Lysing matrix D tubes containing 1.4mm ceramic spheres (MP Biomedicals, USA) were

used for tissue homogenization. Total RNA extraction was carried out using the NucleoSpin

miRNA isolation kit according to the manufacturers’ protocol. The RNA was eluted in 30μl

RNAse free water. Total RNA concentration was measured using the NanoDrop 2000 UV-Vis

spectrophotometer (ThermoFisher Scientific, MA, USA), whereupon a ratio of sample absor-

bance at 260nm and 280nm in the range of 1.7 to 2.1 was acceptable. The integrity of the RNA

was measured using the Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA), where the

acceptable RNA integrity number was�7.

Whole-genome microarray gene-expression profiling

Affymetrix whole-transcriptome expression profiling was processed by Swegene centre for

integrative biology (SCIBLU) genomics, Affymetrix unit at Lund University, Sweden.

A total of 100ng RNA was primed with primers containing a T7 promoter sequence to

synthesize first-strand cDNA. The single-stranded cDNA was then converted to a double-

stranded cDNA and used as a template for the in vitro transcription (IVT) to synthesize anti-

sense RNA (also called complimentary RNA or cRNA) using a T7 RNA polymerase. This

procedure is known as the Eberwine or RT-IVT method [12]. The cRNA was purified by

removing enzymes, salts, inorganic phosphates and unincorporated nucleotides and quantified

for the 2nd-cycle single-stranded cDNA synthesis, from where sense-strand cDNA (ss-cDNA)

was synthesized. RNase H was used to hydrolyze the cRNA template leaving ss-cDNA. After

hydrolysis, the ss-cDNA was purified to remove enzymes, salts and unincorporated dNTPs

tfor fragmentation and labelling. ss-cDNA was fragmented by uracil-DNA glycosylase and

apurinic/apyrimidinic endonuclease-1 at the unnatural dUTP residues that breaks the DNA

strand. The fragmented ss-cDNA was labelled by terminal deoxynucleotidyl transferase using

the Affymetrix proprietary DNA Labelling Reagent that is covalently linked to biotin allona-

mide triphosphate. The fragmented and biotin-labelled ss-cDNA was added to a hybridization

cocktail onto the Affymetrix GeneChip rat gene 2.0 ST arrays followed by hybridization for 16

hours at 45˚C in an Affymetrix Gene Chip Hybridization 645 oven. The array was washed and

stained on the GeneChip Fluidics Station 450 using the appropriate fluidics script before being

inserted onto an Affymetrix autoloader carousel and scanned using the Affymetrix GeneChip

scanner 3000 7G.
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cDNA synthesis and qPCR

66ng RNA was synthesized to cDNA using the RT2 First Strand Kit (Qiagen, USA) according

to the manufacturer’s protocol. qPCR was performed in a 10μl reaction volume containing

TaqMan 2x universal PCR master mix (ThermoFisher Scientific, MA, USA), 20x TaqMan

gene expression assay, RNAse free water and 2μl cDNA using the QuantStudio 12K Flex real-

time PCR system (ThermoFisher Scientific, MA, USA) with ROX as a passive reference. A no-

template control with RNAse free water instead of cDNA was used as negative control for all

TaqMan gene expression assays. An inter-plate control for all TaqMan gene expression assays

was used to control the thermal cycling between plates. All TaqMan gene expression assays

were pipetted in triplicates for each sample. Taqman gene expression assays, for the following

genes, were purchased from ThermoFisher Scientific, MA, USA: periostin, osteoblast specific

factor (Postn) (Rn01494627_m1), oxidized low density lipoprotein (lectin-like) receptor 1

(Olr1) (Rn00591116_m1), fas, TNF receptor superfamily member 6 (Fas) (Rn00685720_m1),

very low density lipoprotein receptor (Vldlr) (Rn01498167_m1), matrix metallopeptidase 2

(Mmp2) (Rn01538170_m1), tissue inhibitor of metallopeptidase 1 (Timp1) (Rn00587558_m1),

serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1, member 1

(Serpine1) (Rn01481341_m1), cd34 molecule (Cd34) (Rn_03416140_m1), prostaglandin-

endoperoxide synthase 1 (Ptgs1) (Rn00566881_m1), Ptgs2 (Rn01483828_m1), Mmp11
(LOC103694874), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) (Rn01749022_g1),

actin beta (Actb) (Rn00667869_m1). Gapdh and Actb were used as reference genes to normal-

ize the mRNA levels. The thermal cycling condition included an initial denaturation step at

50˚C for 2min and 95˚C for 10min followed by 45 PCR cycles at 95˚C for 15sec and 60˚C for

1min.

Western blotting

Cerebral arteries from two rats were pooled and sonicated 3x20 pulses (output 30) on ice

in RIPA buffer containing phosphatase inhibitor (Sigma-Aldrich) and protease inhibitor

(Sigma-Aldrich). For further denaturation the samples were kept at -80˚C for 30 min and

then centrifuged at 14.000rpm for 10min at 4˚C. The protein concentration in the superna-

tant was determined using the DC protein assay kit II (Bio-Rad) with a protein standard II

(Bio-Rad) of bovine serum albumin as a standard curve. The samples were measured on the

Infinite M200 (Tecan) with a wavelength of 750nm. 14μg protein was calculated according to

the protein concentration, and LDS buffer (Expedeon), DTT (Expedeon) and milliQ water

were added before the samples were boiled at 95˚C for 5 min. The samples were loaded on a

4–20% SDS precast gel (Expedeon) and run at 180V for 70 min. The proteins were trans-

ferred to a nitrocellulose membrane (GE Healthcare, Amersham 0.2 NC) at 150V and

350mAmp for 70 min, whereupon the membrane was blocked for unspecific binding for one

hour at room temperature in TBS-T buffer (TBS + 1% Tween 20) containing 2% ECL prime

blocking agent (GE Healthcare, Amersham). The membrane was incubated over night at 4˚C

with rabbit polyclonal anti-lectin-like oxidized low density lipoprotein receptor 1 (LOX1)

antibody (Abcam, ab60178, Lot number GR159762-5, synthetic peptide near the N-terminus

of human Lox-1, AB_943982) diluted 4:1000 (LOX1 is also known as OLR1). Jurkat cells

(gift from senior researcher Birgitte Rahbek Kornum, Department of Clinical Biochemical,

Glostrup Research Institute, Rigshospitalet Glostrup) were used as a running control, and

monoclonal anti-β-Actin-Peroxidase produced in mouse (Sigma A3854, batch number

026M4820V, N-terminal sequence: Ac-Asp-Asp-Asp-Ile-Ala-Ala-Leu-Val-Ile-Asp-Asn-Gly-

Ser-Gly-Lys conjugated to KLH, AB_262011) diluted 1:50.000 was used as a reference

antibody.
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The following day the membrane was incubated with a horseradish peroxidase (HRP)

conjugated secondary antibody for one hour at room temperature; anti-rabbit IgG HRP (Cell

Signaling #7074) diluted 1:2000. The membrane was stripped (ReBlot Plus Strong from Milli-

pore) for 8min at room temperature, blocked and incubated one hour at 4˚C with the β-

ACTIN antibody. This antibody was developed with no secondary antibody, since it already

contains HRP.

All antibodies were diluted in TBS-T buffer containing 2% ECL prime blocking agent.

Proteins were detected using the ECL select western blotting detection reagent (GE Health-

care, Amersham) and visualized in a Fujifilm LAS-4000 Luminiscent Image Analyser.

Statistical methods

Blood pressure and body weight. In total 35 rats (WKY, n = 17 and SHR, n = 18) were

used for the whole-genome microarray gene-expression profiling, qPCR and western blotting.

No power calculation was used to determine sample size. A two-tailed Mann-Whitney test was

used for the statistical analysis of MABP and body weight using GraphPad Prism 5. Data is

expressed as median ± interquartile range (IQR). P-value <0.05 is considered statistical

significant.

Whole-genome microarray gene-expression profiling. In total 10 rats (WKY rat, n = 5

and SHR, n = 5) were used for the whole-genome microarray gene-expression profiling. Basic

Affymetrix GeneChip and experimental quality analyses were performed using the Expression

Console Software v1.1.2, and the Robust Multi-array analysis method was used for probe sum-

marization and data normalization (quantile normalization and log transformation) using

v1.4.1.46. Data filtration was done for probe sets having a value less than the median values of

the negative control in 80% of total samples. Significance analysis of microarrays (SAM) was

performed using the TMEV v4.0 software to identify significantly differentially expressed

genes between groups (q = 0, termed differentially expressed genes) [13]. The q-values repre-

sent False Discovery Rate (FDR) adjusted p-values, for which q = 0 denotes the statistical sig-

nificant level. The fold difference (FD) is a measure describing how much a quantity changes

going from an initial to a final value. If the FC is positive, the gene expression is increased in

the MCAs from SHRs compared to WKY rats, and if it is negative, the gene expression is

decreased in the MCAs from SHRs compared to WKY rats.

Gene ontology (GO) overrepresentation analysis. All differentially expressed genes

(q = 0) in the MCAs from SHRs compared to WKY rats were included in the GO overrepre-

sentation analysis. Information of genes annotated to the ontologies was extracted from the

GO database using BiomaRt v2.26.1 [14,15]. GO terms with�5 annotated genes were

excluded from the analysis. P-values for each GO term were calculated by a right-tailed Fisher’s

exact tests for count data and adjusted for multiple testing. GO terms with FDR-adjusted

p-values <0.05 are considered statistical significant.

qPCR. In total 13 rats (WKY rat, n = 6 and SHR, n = 7) were used for the qPCR experi-

ments. These rats were not the same rats used in the whole-genome microarray gene-expres-

sion profiling. The threshold cycle (Ct) values refer to the number of PCR cycles, where the

hydrolysis probe begins to fluoresce. Ct values were determined using the QuantStudio 12K

Flex software (ThermoFischer Scientific, MCA, USA), and the technical triplicates were

averaged. Automatic background fluorescence, thresholds of the samples, no-template con-

trol and inter-plate control were checked. Adjustment of the averaged Ct values of each Taq-

Man gene expression assays were adjusted relative to its inter-plate control. ΔCt (Ct, sample −
Ct, average of references) values are plotted on the y-axe in the graphs by a logarithmic scale. The

figures are presented as a scatter plot expressed as median ± IQR, and n represents to the
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number of rats. A two-tailed Mann-Whitney test was used for the statistical analysis using

GrapPad Prism 5. P-value <0.05 is considered statistical significant.

Western blotting. In total 12 rats were used for the western blotting experiments. The

cerebral arteries from two rats were pooled into one sample (WKY rat, n = 3 and SHR, n = 3).

The samples were run twice at different days and normalized to Jurkat cells and β-ACTIN. A

two-tailed Mann-Whitney test was used for the statistical analysis using GraphPad Prism 5.

Data is expressed as median ± IQR, and n represents the number of rats. P-value <0.05 is con-

sidered statistical significant.

Results

Blood pressure and body weight

MABP was significantly higher in 12-week-old SHRs (155 (147–164) mmHg) compared to

the age-matched WKY rats (108 (103–114) mmHg) (P<0.0001), and the body weight was

significantly lower in SHRs (279 (263–292) g) compared to WKY rats (312 (309–332) g)

(P<0.0001).

Whole-genome microarray gene-expression profiling

In total 14,150 probe-set IDs with a gene accession number were detected, and 169 genes were

differentially expressed (q = 0) in MCAs from SHRs compared to WKY rats (S1 Table). Out

of 169 genes, the expression of 72 genes was decreased and the expression of 97 genes was

increased in MCAs from SHRs compared to WKY rats. Using the GO overrepresentation anal-

ysis, all the differentially expressed genes (169 genes) were classified into two GO ontologies

named biological process and cellular component. Biological process was further subdivided

into one GO term named positive regulation of gene expression, and cellular component was

further subdivided into three GO terms named extracellular region, extracellular matrix and

extracellular space (Fig 1).

We decided to proceed with the genes from the GO ontology named cellular component

with a FC�1.40 (16 individual genes) (Table 1), since they are related to the extracellular part

of the MCAs and might be implicated in the vascular changes associated with hypertension.

More specific, we selected Fas and Cd34 from the GO term named extracellular region and

Mmp2, Serpine1, Timp1 and Postn from the GO term named extracellular matrix and Vldlr
from the GO term named extracellular space. Mmp2, Timp1 and Postn were also expressed in

the GO term named extracellular space and Serpine1 in the GO term named extracellular

region. This is another reason, why we proceeded with the GO ontology named cellular

component.

Additional to the GO overrepresentation analysis, the putative function of the genes with

a FC�1.40 (90 genes) from the whole-genome microarray gene-expression profiling was

investigated by a literature search using PubMed. Apart from Mmp11 which is a matrix metal-

loproteinases as Mmp2 we selected Ptgs1, Ptgs2 and Olr1 due to their possible relation to the

vascular changes associated with hypertension.

The eleven genes verified by qPCR are illustrated in a volcano plot in Fig 2 and in a heat

map in Fig 3.

qPCR. We examined the gene expression of Gapdh and Actb to verify, that the reference

genes were stable between groups. The Ct values between SHRs and WKY rats for both genes

were not statistical significant (Gapdh: SHRs, 25.8 (25.7–26.0); WKY rats 25.9 (25.7–26.0),

P = 0.2662. Actb: SHRs, 23.6 (23.1–23.8); WKY rats 23.5 (23.1–23.8), P = 0.6109).

We decided to verify differentially expressed genes with a FC�1.40 in MCAs from SHRs

compared to WKY rats due to a low template concentration, and to be sure to detect the gene
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expression above the detection limit (Ct value >35). The following eleven genes were chosen

for verification with qPCR: Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1, Mmp11, Cd34,

Ptgs1 and Ptgs2 (S2 Table). The verification was done on different RNA preparations than

used in the whole-genome microarray gene-expression profiling to verify the technical process

and the biological variation. The ΔCt values of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Ser-
pine1 were significantly increased in MCAs from SHRs compared to WKY rats (S1 Fig,

Table 2). There was no change in the ΔCt values of Cd34, Ptgs2 and Mmp11 between the MCAs

from SHRs and WKY rats (S2 Fig, Table 2). A reason for this could be the big variation

between the samples in both the WKY and SHR group.

The Ptgs1 gene was not expressed above the detection limit, and it was not possible

to increase the template concentration (data not shown). Of the eleven genes verified by

qPCR, seven genes (Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Serpine 1) had similar gene

expression pattern as in the whole-genome microarray gene-expression profiling. These

genes will be discussed according to their relation to the vascular changes associated with

hypertension.

Fig 1. GO overrepresentation analysis network. Network of the differentially expressed genes (q = 0) in the MCAs

from SHRs (n = 5) compared to WKY rats (n = 5).

https://doi.org/10.1371/journal.pone.0184233.g001
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Western blotting

Since Olr1 is an important scavenger receptor with a functional role in hypertension and

stroke, the protein level was examined. In addition, it was one of the genes verified by qPCR

with the lowest p-value (P-value = 0.0079) between the MCAs from SHRs and WKY rats. The

result revealed, that LOX1 protein level was significantly increased in cerebral arteries from

SHRs (1.8 (1.4–4.1)) compared to WKY rats (1.2 (1.1–1.6)) (Fig 4, S3 Fig).

Discussion

In this study, we used a broader approach to understand the molecular mechanisms of the vas-

cular changes in the MCAs due to hypertension by the whole-genome microarray gene-

expression profiling. We demonstrated an increased gene expression of Postn, Fas, Vldlr,
Mmp2, Timp1, Serpine1 and Olr1 as well as an increased LOX1 protein expression in the

MCAs from hypertensive rats (hypertensive cerebral arteries) compared to normotensive rats

(normotensive cerebral arteries). Vascular morphology of the cerebral arteries is already

altered in the early stage of hypertension [16]. According to the GO overrepresentation analy-

sis Postn, Fas, Vldlr, Mmp2, Timp1 and Serpine1 are related to the extracellular part of the

hypertensive cerebral arteries. Changes in the ECM components of the vascular wall have

Table 1. Differentially expressed genes from the GO ontology named cellular component with a fold difference�1.40.

GO name

(GO id)

Adjusted P-value

(FDR)

Gene Description FD

Extracellular matrix

(GO:0031012)

Postn Periostin, osteoblast specific factor 2.634

Cilp Cartilage intermediate layer protein, nucleotide pyrophosphohydrolase 2.215

0.0017 Serpine1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 1.835

Timp1 TIMP metallopeptidase inhibitor 1 1.588

Pcsk6 Proprotein convertase subtilisin/kexin type 6 1.533

Serpine2 Serpin peptidase inhibitor, clade E, member 2 1.482

Mmp2 Matrix metallopeptidase 2 1.465

Extracellular region

(GO:0005576)

Penk Proenkephalin 2.155

Serpine1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 1.835

0.0244 Fgf7 Fibroblast growth factor 7 1.780

Cd34 Cd34 molecule 1.658

Fas Fas (TNF receptor superfamily, member 6) 1.550

Serpine2 Serpin peptidase inhibitor, clade E, member 2 1.482

Prrg4 Proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 1.430

Extracellular space

(GO:0005615)

Postn Periostin, osteoblast specific factor 2.634

Cilp Cartilage intermediate layer protein, nucleotide pyrophosphohydrolase 2.215

Fap Fibroblast activation protein, alpha 1.956

Serpine1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 1.835

0.0488 Serpind1 Serpin peptidase inhibitor, clade D (heparin cofactor), member 1 1.772

Timp1 TIMP metallopeptidase inhibitor 1 1.588

Mrpl18 Mitochondrial ribosomal protein L18 1.536

Pcsk6 Proprotein convertase subtilisin/kexin type 6 1.533

Serpine2 Serpin peptidase inhibitor, clade E, member 2 1.482

Mmp2 Matrix metallopeptidase 2 1.465

Vldlr Very low density lipoprotein receptor 1.440

GO, gene ontology; FDR, false discovery rate; FD, fold difference.

https://doi.org/10.1371/journal.pone.0184233.t001
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previously been demonstrated in hypertension, since the cells synthesize the ECM to provide

structural support to the artery [17]. An excess of ECM products have also been shown in

other vascular diseases such as stroke [18]. Olr1 was also found to be related to the vascular

changes associated with hypertension. In the cerebral arteries, a correlation between the fol-

lowing genes and the vascular changes besides the secondary complications associated with

hypertension is therefore suggested.

We demonstrated an increased gene and protein expression of the scavenger receptor Olr1

(also known as the lectin-like oxidized low density lipoprotein receptor 1 (Lox1)) in the hyper-

tensive cerebral arteries which correlates with previous findings [19,20]. The basal expression

of Olr1 in the vascular wall is usually very low, but it can be induced by pro-inflammatory and

mechanical stimuli such as hypertension [21]. The same is suggested by our results due to the

basal Olr1 expression in normotensive cerebral arteries and the increased expression in hyper-

tensive cerebral arteries. The receptor is primarily found to bind, internalize and degrade oxi-

dized LDL (oxLDL) which is a mechanism linked to an inflammatory response [21].

Hypertension and stroke are both associated with increased levels of inflammatory markers

reflecting the inflammatory process in both pathologies [22,23]. Polymorphism of the Olr1

gene has also been associated with the risk of developing left ventricular hypertrophy in

patients with essential hypertension, and hypertrophic remodeling of the vascular wall is a

Fig 2. Volcano plot. Red and blue dots are differentially expressed genes (q = 0) in the MCAs from SHRs (n = 5) compared to WKY rats (n = 5). Red

dots are genes verified by qPCR.

https://doi.org/10.1371/journal.pone.0184233.g002
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characteristic for hypertension [24]. The increased Olr1 expression in hypertensive cerebral

arteries might indicate vascular remodeling and inflammation which also suggest a link

between hypertension and the risk of developing secondary complications such as stroke. This

is supported by clinical data, since Olr1 was found in early atherosclerotic plaque from ische-

mic patients [25] and correlated to the risk of having a stroke using a meta-analysis [26].

Fig 3. Heat map of genes verified by qPCR. Box color and color key show the expression level differences between WKY rats (n = 5) and

SHRs (n = 5), reported as the Z score, which is the scaled gene expression measurement (scaled row-wise, mean = 0, SD = 1). As expected,

WKY rats and SHRs are grouped separately due to distinct expression patterns between groups. The numbers in the boxes represent

normalized expression values of each gene for each rat.

https://doi.org/10.1371/journal.pone.0184233.g003

Table 2. Expression levels of genes verified by qPCR.

Gene WKY rats SHRs P-value

Median (IQR) Median (IQR)

Postn 7.5 (7.3–8.2) 6.1 (5.8–6.8) 0.0159

Olr1 10 (9.8–10.3) 7.5 (6.4–7.7) 0.0079

Fas 5.7 (5.6–6.0) 5.2 (5.1–5.4) 0.0079

Vldlr 6.0 (5.7–6.4) 4.9 (4.6–5.3) 0.0079

Mmp2 6.4 (6.3–6.6) 5.8 (5.7–6.3) 0.0247

Timp1 5.7 (5.6–6.0) 5.1 (5.0–5.2) 0.0022

Serpine1 5.2 (5.1–5.4) 3.6 (3.5–3.8) 0.0079

Cd34 4.9 (4.4–5.2) 4.9 (4.5–5.3) 1.0000

Ptgs2 6.2 (5.9–6.7) 5.6 (5.5–6.2) 0.3095

Mmp11 8.2 (8.0–8.3) 8.1 (7.8–8.7) 0.8726

IQR, interquartile range.

https://doi.org/10.1371/journal.pone.0184233.t002
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Interestingly, Olr1 has been suggested to increase Mmp2 expression in human umbilical

vein endothelial cells [27] indicating a connection between their increased gene expression in

hypertensive cerebral arteries.

The occurrence of Postn in the ECM, by the GO overrepresentation analysis, can be

explained by its role as a soluble ECM protein. It mediates proliferation and migration of

SMCs, and Postn expression has previously been correlated with the proliferative state of

neointimal SMCs in the balloon-injured vascular wall [28]. The gene is also interesting in a

clinically perspective, since Postn expression was increased in lung tissue from patients with

pulmonary arterial hypertension [29]. These data combined suggests that the increased Postn
expression in hypertensive cerebral arteries indicates SMC proliferation and thereby vascular

changes in response to hypertension.

Increased Mmp2 expression in hypertensive cerebral arteries may induce vascular changes

by degrading proteins of the ECM [4]. A connection between increased Mmp2 expression and

vascular remodeling of the aorta has previously been suggested in hypertensive rats [30].

Mmp2 is secreted constitutively from vascular SMCs [31] which explains the basal gene

expression in normotensive cerebral arteries. The increased gene expression in hypertensive

cerebral arteries is supported by an increased expression and activation of Mmp2 by mechani-

cal stretch such as hypertension in human aortic SMCs [32]. However, the plasma level of

Mmp2 from hypertensive patients has been demonstrated to be both increased and decreased

[33,34], why its specific role in hypertension is yet to be elucidated.

On the other hand, remodeling of ECM by Mmps affects the migration and proliferation of

SMCs and thereby the formation of a neointima [31,35] that ultimately occlude the affected

Fig 4. LOX1 protein level. LOX1 (also known as OLR1) expression in the cerebral arteries from SHRs

compared to WKY rats and representative blot of LOX1 and β-ACTIN. Data is normalized to Jurkat cells and

β-ACTIN. Data is expressed as median ± interquartile range, and n represents the number of rats. P-value

<0.05 is considered statistical significant.

https://doi.org/10.1371/journal.pone.0184233.g004
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arteries. Mmp2 expression has also been confirmed in ischemic brain tissue [36]. These data

suggests a link between changes in the ECM and SMCs in response to hypertension and the

susceptibility to secondary complications.

Mmp2 secretion was reported to be induced by increased Postn expression [37] which

could be a connection between the increased expression of both genes in hypertensive cerebral

arteries. Their role in the ECM modulation and SMC migration and proliferation may indicate

vascular remodeling in response to hypertension that entails end-organ damage.

The increased Timp1 expression in hypertensive cerebral arteries could be a mechanism to

counterbalance the increased Mmp2 expression, due to its role as Mmp inhibitor [38]. Timps

do not have a high specificity for any particular Mmps, but it is suggested that Timp2 preferen-

tial binds Mmp2, and Timp1 binds Mmp9 [39]. This might explain why the gene expression of

Mmp9 is not increased in hypertensive cerebral arteries. However, in both hypertensive and

normotensive cerebral arteries the Timp1 expression (SHRs, 5.1 (5.0–5.2); WKY rats 5.7 (5.6–

6.0)) was significantly increased compared to the Mmp2 expression (SHRs, 5.8 (5.7–6.3),

P = 0.0022; WKY rats 6.4 (6.3–6.6), P = 0.0087) suggesting that Timp1 might suppress the

Mmp2 activity. The correlation between Timp1 and Mmp2 expression could also be a reason

for the discrepancy between the measured plasma levels of Mmp2 from hypertensive patients.

On the other hand, Mmp2 is a member of the gelatinases which digest collagen in the sub-

endothelial basement membrane [4]. Suppressed Mmp2 expression by Timp1 could lead to

increased collagen accumulation and thereby vascular remodeling of the hypertensive cerebral

arteries. In a systematic review and meta-analysis, only Timp1 levels were greater in hyperten-

sive than normotensive patients, whereas both Timp1 and Mmp2 levels were greater in hyper-

tensive patients with heart failure than hypertensive patients without heart failure. It was

therefore suggested, that both Timp1 and Mmp2 were potential plasma biomarkers of cardio-

vascular remodeling in response to hypertension [38].

The increased Serpine1 expression in hypertensive cerebral arteries might be a protecting

mechanism against ECM proteolysis, since Serpine1 (also known as plasminogen activating

inhibitor type 1) inhibits plasminogen activators such as urokinase-type plasminogen activator

(uPA). The plasminogen activators converts plasminogen to plasmin which is essential for

ECM degradation and activation of the fibrinolysis [40]. Consequently, Serpine1 plays a role

in maintaining the fibrin blood clot and the risk of having a stroke [41,42]. In relation to its

role in hypertension and ECM degradation, Serpine1 augmented intima-media thickness con-

tributing to endothelial dysfunction in carotid arteries from hypertensive patients [43]. This

could also be a reason for the increased Serpine1 expression in hypertensive cerebral arteries.

Vldlr was previously found to play a role in intimal thickening [44] and to regulate uPA-

Serpine1 complexes [45], which could be a connection between the increased expression of

both genes in the hypertensive cerebral arteries.

Fas is a cell surface death receptor, that induces SMCs apoptosis [46]. Fas is therefore sug-

gested to be an apoptotic marker in the hypertensive cerebral arteries. Apoptosis is implicated

in different vascular pathologies such as hypertension [47,48], and has been associated with

vascular remodeling of mesenteric arteries from hypertensive rats with the same age as the rats

in our study [49]. This study is to our knowledge the first to demonstrate increased Fas expres-

sion in hypertensive cerebral arteries, but it has also been demonstrated in brain tissue after

ischemic stroke [50,51]. Altogether, Fas might be an indicator of hypertension-induced end-

organ damage.

Interestingly, a connection between Fas and Olr1 has been suggested, since Olr1 was shown

to facilitate an oxLDL-induced augmentation of Fas-mediated apoptosis [52]. This correlates

with the increased expression of the genes in the hypertensive cerebral arteries.
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Conclusions

This exploratory study is the first to reveal that Postn, Fas, Vldlr, Mmp2, Timp1, Serpine1
and Olr1 could be possible genetic mediators of the vascular changes in hypertensive cere-

bral arteries. Interestingly, previous research supports a connection between several of the

verified genes and the vascular changes associated with hypertension which highlights the

importance of the reported hypertension-susceptible genes to the current knowledge of

molecular mechanisms during hypertension. The strength of this study is that it is con-

ducted in hypertensive cerebral arteries since hypertension contributes to vascular changes

and is a risk factor of other cerebrovascular diseases such as stroke. Some of the genes have

previously been implicated in secondary complications to hypertension. This study supports

the selection of key genes to investigate in the future research of hypertension-induced end-

organ damage.
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S1 Fig. Genes with increased expression in MCAs from hypertensive compared to normo-

tensive rats. Scatter plot of (A) Postn, (B) Olr1, (C) Fas, (D) Vldlr, (E) Mmp2, (F) Timp1 and

(G) Serpine 1 expression from SHRs and WKY rats. ΔCt values are plotted on the y-axe by a

logarithmic scale. Data is expressed as median ± interquartile range, and n represents the num-

ber of rats. P-value <0.05 is considered statistical significant.

(TIF)

S2 Fig. Genes with no expressional changes in MCAs between hypertensive and normoten-

sive rats. Scatter plot of (A) Cd34, (B) Ptgs2 and (C) Mmp11 expression in middle cerebral

arteries from SHRs and WKY rats. ΔCt values are plotted on the y-axe by a logarithmic scale.

Data is expressed as median ± interquartile range, and n represents the number of rats. P-

value <0.05 is considered statistical significant.

(TIF)

S3 Fig. Western blot membrane of LOX1 and β-ACTIN. Western blot membrane with

(A) LOX1 and (B) β-ACTIN. The molecular marker is marked with a black square. Before

incubation with primary antibodies the membrane was cut just before 71 kDa and 28 kDa.

Sample in lane 2 and 3 are samples used to test different antibodies for the other membrane

pieces. (A) According to Abcam, LOX1 proform was detected at 50 kDa and LOX1 mature

form was detected at 31 kDa. However, the LOX1 proform in the antibody images from

Abcam homepage seems to be at 45 kDa and not 50 kDa according to the molecular marker

which correlate with the band around 48 kDa on our membrane. The other bands are unspe-

cific binding which could be due to the many different cell types in the cerebral arteries.

(B) According to Sigma, β-ACTIN was detected at 42 kDa. The membrane was stripped before

incubation with β-ACTIN but there might a vague LOX1 binding left on the membrane. We

used LOX1 and β-ACTIN antibodies from two different species.

(TIF)
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