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Automation of the kidney function prediction and
classification through ultrasound-based kidney imaging
using deep learning
Chin-Chi Kuo 1,2, Chun-Min Chang3, Kuan-Ting Liu3, Wei-Kai Lin3, Hsiu-Yin Chiang1, Chih-Wei Chung1, Meng-Ru Ho3, Pei-Ran Sun4,
Rong-Lin Yang4 and Kuan-Ta Chen3

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered
desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond
the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular
filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model
pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound
images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound
images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data
augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and
improve the model’s generalization. Moreover, the kidney function features obtained by our deep neural network were used to
identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong
relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of
our model was 85.6% —higher than that of experienced nephrologists (60.3%–80.1%). Our model is the first fundamental step
toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR
estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in
clinical practice.
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INTRODUCTION
The main clinical application of kidney ultrasound imaging
involves excluding reversible causes of acute kidney injury, such
as urinary obstruction, or identifying irreversible chronic kidney
disease (CKD) that precludes unnecessary workup such as kidney
biopsy.1 Its noninvasiveness, low cost, lack of ionizing radiation,
and wide availability make it an attractive option for frequent
monitoring and follow-up of the longitudinal change in kidney
length and sonographic characteristics of kidney cortex relevant
to kidney functional change. However, the high subjective
variability in image acquisition and interpretation makes it difficult
to translate experience-based prediction into standardized prac-
tice, such as invasive serum creatinine measurement. Yet,
noninvasive imaging techniques for organ functional and
structural characterization have been increasingly investigated
aiming to minimize the invasive approach in both diagnostic and
screening settings. Lorenzo et al. has recently proposed a unique
pediatric CKD care model balancing cost and minimizing
invasiveness with the improvement of risk prediction by using
kidney ultrasound imaging to predict the development of CKD
and surgical outcomes in infants with hydronephrosis.2

Conventionally, nephrologists tend to use kidney length and
volume and cortical thickness and echogenicity to evaluate the
severity of kidney injury. Very short renal length (e.g., <8 cm),
apparent white cortex, and contracted capsule contour, all
indicate an irreversible kidney failing process with high specificity
but limited sensitivity.3 Furthermore, whether these ultrasono-
graphic parameters can be used to predict accurate estimated
glomerular filtration rates (eGFRs) remains controversial. For
instance, studies3–14 have reported that although kidney length
is highly specific in detecting irreversible CKD, its correlation with
eGFR was only weak to moderate, ranging no association to 0.66.
Even if only studies using the conventional Modification of Diet in
Renal Disease Study (MDRD) equation to estimate eGFR (MDRD-
eGFR) are considered,15 the best correlation noted between
kidney length and eGFR has been only 0.36.8,16 Similarly, a fair-to-
moderate correlation of kidney volume and cortical echogenicity
with eGFR has been reported.6,11,14,17,18 By contrast, cortical
thickness seems to be better correlated with MDRD-eGFR than is
kidney length, with a correlation coefficient as high as
0.85.3,8–13,16,18 However, the study reporting the correlation
coefficient of 0.85 was obtained for a small sample of 42 adults
with CKD without validation.8 Yapark et al.5 developed a CKD
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scoring system integrating three ultrasonographic parameters,
namely kidney length, parenchymal thickness, and echogenicity,
to improve the correlation; however, the correlation was moderate
(r= 0.587).5 Furthermore, the assigned score of each parameter
remains subjective with undefined interobserver reliability.5,19

To overcome substantial interobserver variability in kidney
ultrasound interpretation, machine learning provides a solid and
objective foundation for analytic standardization to inform clinical
decisions. Recent advances in image segmentation, classification,
and registration through deep learning have considerably
expanded the scope and scale of medical image analysis.20 Deep
learning-oriented diagnostic applications may minimize unneces-
sary and invasive procedures, thus greatly improving the
efficiency and sustainability of current health care systems.
Moreover, with the phenomenal increase in computing perfor-
mance, real-time computer-aided diagnosis may further change
mobile telecare and telemedicine. In the current CKD care model,
it remains controversial whether kidney function should be
routinely screened in all asymptomatic adults.21 The most
commonly used CKD screening tests include testing the urine
for protein or testing the blood for serum creatinine; however,
there is no conclusive evidence suggesting which screening test is
more appropriate to the other in the context of routine screening.
Developing an easily available and noninvasive image marker of
kidney function using deep learning methods thus may provide a
valuable complimentary tool for diagnosing CKD. To explore this
possibility in clinical practice, we developed a deep learning
algorithm based on both kidney ultrasound imaging and clinical
data in a large registry-based CKD cohort.

RESULTS
Study population
The median age of 1299 included patients was 65 years; 582 (45%)
of them were men. Moreover, 41% and 74.7% were diagnosed as
having diabetes and hypertension, respectively (Table 1). The
median serum creatinine level and eGFR were 2.07 (interquartile
range [IQR]: 1.40–4.29) mg/dl and 30.12 (IQR: 12.56–48.72) ml/min/
1.73 m2, respectively. The distribution of eGFR is summarized in
Supplemental Fig. 1.

Predicting eGFR through convolutional neural networks
The architecture and training process of the proposed convolu-
tional neural networks (CNNs) are detailed in the Methods section
and summarized in Figs 1 and 2. The learning curve of our ResNet
model is shown in Fig. 3a. For predicting continuous eGFR, the
aggregated model achieved a correlation of 0.741 and a mean
absolute error (MAE) of 17.605 on the testing dataset after
averaging the results from 10 models (Supplemental Table 1).
The relationship between predicted and actual eGFRs was

visualized using a scatter plot (Fig. 3b). Despite achieving a
satisfactory Pearson’s correlation coefficient of 0.74, the Bland-
Altman plot showed that a significant mean difference (predicted –
actual eGFR) was −7.74ml/min/1.73 m2 (95% CI, −11.57 ~ −3.91)
and this difference increased with the magnitude of eGFR with a
slope of −0.82 (p value < 0.001) (Fig. 3c). However, there was a
both clinically and statistically non-significant 3.9% mean percent
difference (95% CI, −5.98 ~13.77) with a slope of −1.68 (p-value <
0.001) (Fig. 3d) and overall agreement was satisfactory (Fig. 3c, d).
We initially attributed this observation to the limited capacity
within the ResNet model because its final fully connected layer is
linearly activated. However, even after calibration of the predicted
eGFRs by using a high-degree polynomial regression model, the
MAE reduced by only 0.1. Therefore, this issue cannot be simply
explained by the model’s insufficient capacity. The root cause may
be the uneven distribution of measured eGFRs in the selected
dataset (Supplemental Fig. 1). More than 85% of sonographic
studies with an eGFR of <60ml/min/1.73m2 had a learned
regressor too conservative to spread the predictions.

CKD classification through extreme gradient-boosting tree
compared with that by nephrologists
For classifying eGFR with a threshold of 60 ml/min/1.73 m2, our
model achieved an overall accuracy of 85.6% and area under
receiver operating characteristic (ROC) curve (AUC) of 0.904. The
classification performance is summarized in Supplemental Table 2
and Fig. 4. The attained specificity was up to 92.1%, demonstrating
the effectiveness of our deep learning algorithm for assessing CKD
by using ultrasound images (Supplemental Table 2). However, the
sensitivity of our algorithm was only moderate (approximately
60.7%). The almost perfect agreement (B statistic, 0.81) between
CNN-based eGFR and serum creatinine-based eGFR in the

Table 1. The clinical characteristics of the study datasets at patient and image level

Variables Patients
(N= 1297)

Ultrasound Images
(N= 4505)

Ultrasound Images in nontesting
dataset (N= 4,010)

Ultrasound Images in testing
dataset (N= 495)

p valuea

Demographics, median (IQR)

Age (years) 65 (53, 74) 65 (52, 74) 65 (53, 74) 63 (51, 74) 0.269

Male, n (%) 715 (55.1) 2464 (54.7) 2201 (54.9) 263 (53.1) 0.459

Comorbidity, n (%)

Cardiovascular disease 1001 (77.2) 3504 (77.8) 3117 (77.7) 387 (78.2) 0.820

Hypertension 968 (74.6) 3405 (75.6) 3024 (75.4) 381 (77.0) 0.446

Diabetes 533 (41.1) 1888 (41.9) 1697 (42.3) 191 (38.6) 0.112

Biochemical value, median (IQR)

Serum creatinine (mg/dL) 2.1 (1.4, 4.4) 2.1 (1.4, 4.3) 2.1 (1.4, 4.4) 2.0 (1.4, 3.6) 0.003

eGFR (mL/min/1.73m2) 30.0 (12.3, 48.6) 30.1 (12.6, 48.7) 29.9 (12.3, 48.2) 31.6 (15.7, 55.5) 0.001

Sonographic parameter, median (IQR)

Kidney length (cm) 9.72 (8.76, 10.53) 9.62 (8.69, 10.51) 9.63 (8.66, 10.51) 9.54 (8.80, 10.48) 0.703

ap values denotes probability for difference between the nontesting and testing datasets and are calculated by Wilcoxon rank sum test for continuous
variables and Chi-square test (or Fisher’s exact test as appropriate) for categorical variables
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classification prediction of CKD was observed (Supplementary
Table 2). When we set a stricter eGFR threshold (45 ml/min/
1.73 m2), the results were similar with an overall accuracy of 78%
and AUC of 0.83 (Fig. 4).
We evaluated how nephrologists performed on the testing data

set compared with our proposed approach. We invited four
nephrologists who had practiced nephrology for more than 10
years, with an annual volume of kidney sonography procedures
larger than 800, to assess the images of the testing dataset. Our
approach achieved average accuracy, precision, recall, and
F1 score of 0.856, 0.913, 0.906, and 0.909, respectively, thus
outperforming most nephrologists by a substantial margin. One
nephrologist demonstrated the best precision (0.957) but the
worst recall (0.528), demonstrating that they misclassified
numerous samples to an eGFR of <60ml/min/1.73 m2. According
to these results, our proposed method reached nephrologist-level
accuracy and provided reliable discrimination in practice. The
results are summarized in Supplemental Table 3.

Performance comparison with other CNN architectures and
traditional machine learning approaches
To objectively demonstrate the feasibility and efficiency of the
CNN architecture we chose, ResNet-101, we evaluated whether
other state-of-the-art architectures such as Inception V422 and
VGG-1923 can improve the performance trade-offs considering
MAE, correlation, Fused Multiply-Adds (FMA), and model size on
eGFR prediction compared that of the reference ResNet-101.
Despite VGG-19 did improve 3.1% of MAE, this model required 2.5-
fold more computational operations and 3.2-fold larger model size
compared that of ResNet-101 (Supplementary Table 4). We
additionally compared the performance of common traditional
machine learning approaches such as histogram of oriented
gradients (HOG),24 local binary pattern (LBP),25 and Oriented FAST
and Rotated BRIEF (ORB)26 with ResNet-101 from the perspective
of CKD classification, none of them outperformed the ResNet-101
(Supplementary Table 5). Overall, specifically for the present task,

Fig. 1 CNN architecture for kidney function estimation based on kidney sonographic images. a Proposed neural network architecture
included 33 residual blocks (100 convolution layers in total) as a CNN-based feature extractor and three fully connected layers of 512, 512, and
256 neurons as a regressor for eGFR prediction. Feature maps are colored in blue and the regressor is specified in yellow. The dropout
probability was set at 0.5. (b) Components of the first residual block in the CNN

Fig. 2 Flowchart shows the summary of the data processing from bagging in the training phase to the final evaluation phase. Briefly, we
obtained 10 ResNet models for predicting continuous eGFR and 10 XGBoost models for CKD status classification. In the evaluation phase, we
averaged the output of 10 models as the final prediction result
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ResNet-101 is the most cost-efficient considering the balance
among model simplicity, model size, and performance.

DISCUSSION
Kidney sonography has long been a convenient point-of-care
diagnostic tool in nephrology. With the advancements in deep
CNNs, artificial intelligence (AI) can be introduced for real-time
interpretation of kidney sonography—an essential first step
toward a wide telemedicine outreach for effectively screening
CKD in a community setting. We attempt to use a deep learning
algorithm to predict eGFR and CKD status in a study population
with various degrees of CKD (stages 1–5). The proposed algorithm
moderately predicts continuous eGFR. Furthermore, it can reliably
determine whether eGFR is below 60ml/min/1.73 m2, with an
accuracy superior to that of senior nephrologists. Kidney function
is particularly prone to irreversible decline after eGFR becomes
<60ml/min/1.73 m2. Thus, this algorithm is applicable because it
helps optimize cost-effective CKD screening practices without
laboratory testing, particularly in settings with limited health care
resources. Notably, this algorithm provides a real-time diagnosis
and patient referral. The present study also demonstrates the

possible role of AI in turning conventional images into functional
screening and diagnostic tools – this type of automation will be
pervasive in the era of AI and Big Data. For instance, prior studies
have applied AI in automatically identifying glomeruli to
standardize renal biopsy interpretation,27–29 and even trying to
predict kidney function.30 While the predictive accuracy for eGFR
or CKD is not perfectly satisfied with current clinical practice at this
stage, our proposed deep learning algorithm is to complement
existing screening or case-finding instruments, rather than to
replace them.
Surging CKD-related health care costs burden both developed

and developing economies.31 In the United States, CKD pre-
valence is expected to increase by 16.7% by 2030. A study showed
that adults aged 30–49 years without CKD at baseline had a
residual lifetime incidence of CKD as high as 54%.32 Global trends
in population aging may increase CKD prevalence because aging
is a pertinent risk factor for CKD.33 The primary prevention of CKD
through early detection is recommended particularly among high-
risk patients with diabetes and hypertension.34 However, the
screening relies on serum creatinine (invasive) and urine protein
(noninvasive) level measurement, require blood and urine speci-
mens to be analyzed by laboratory personnel by using laboratory

Fig. 3 Performance of predicting continuous eGFR (estimated glomerular filtration rate) levels. a Learning curve of the ResNet model. Because
we restored the model with minimum validation loss, in this case, we kept the model at epoch 14, where the smallest overfitting occurred.
b Scatter plot of both predicted and actual eGFRs with a linear regression prediction line. γ, Pearson correlation coefficient. c Bland-Altman
plot of difference between predicted and actual eGFR (predicted- actual eGFR) against mean eGFR. The blue solid line indicates the mean of
difference from zero (thin black dotted line) with crude 95% confidence interval (blue dotted line) and the bold black dotted line represents
the 95% crude limits of agreement. A linear regression line (red line) with 95% limits of agreement (red dotted line) characterizes the
relationship between mean difference and the magnitude of eGFR with a slope of −0.82 (p value < 0.01). d Bland-Altman plot where mean
differences are presented in percentage. Shaded grey areas in (c) and (d) represent the range of mean eGFR less than 60ml/min/1.73m2
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equipment of appropriate quality, respectively. The mass screen-
ing for CKD in the general population by measuring serum
creatinine levels is expensive in most health care systems because
of the costs and invasiveness involved. Proteinuria-based screen-
ing, such as routine urinalysis, is more acceptable by the general
population because it is noninvasive. Among the 10 studies
enrolled in a recent systematic review of the cost-effectiveness of
primary CKD screening, 8 used proteinuria-based screening, such
as urine dipstick testing and protein-to-creatinine ratio measure-
ment, reflecting the well perceived patient acceptance of
noninvasive urine-based tests.34 However, the poor screening
performance of routine urinalysis, with 93% specificity but only
11% sensitivity, in detecting early CKD among the general
population reveals the need for new screening methods.35

The cost-effectiveness of mass screening in general population
for CKD has long been debated.36,37 For instance, the American
College of Physicians’ 2013 clinical practice guideline for mana-
ging stage 1–3 CKD recommends against universal CKD screening
among asymptomatic adults because evidence from randomized
trials supporting the benefits of regularly screening for CKD is
insufficient.38 By contrast, the American Society of Nephrology
strongly recommends regular screening of CKD, given its clinical
silence and preventable progression with relatively low cost of
testing.39,40 More conclusive research is required to fill the practice
gaps in key areas ranging from the identification of novel and
cost-effective techniques to the development of systemic evalua-
tion methods that are economically efficient for mass CKD
screening.
Over the past decade, Taiwan has demonstrated the highest

end-stage renal disease (ESRD) incidence and prevalence world-
wide, and they are still increasing, despite the considerable
amount of resources available for CKD care programs.41 Therefore,
cost-effective universal screening for CKD may aid Taiwan. On the
basis of our current study, we propose a two-stage CKD screening
approach: Stage 1 comprises kidney ultrasound image screening
using our AI-aided screening method, whereas stage 2 comprises
serum creatinine quantification for identifying missed true
positives. This two-stage screening model offers advantage in
terms of logistics supportability (wide availability of ultrasound
machines and pervasive Internet services in Taiwan) and sustain-
ment with financial capability and affordability. This AI-aided
model also provides a potential complementary care model to
routine urinalysis or serum creatinine measurement for primary
CKD screening. Conducting a comprehensive economic analysis to

examine the cost-effectiveness of our proposed AI-aided screen-
ing model is beyond the scope of this study. Future studies should
examine the economic viability of our model. Furthermore, our
approach should be extended to mobile applications to augment
its impact on health care efficiency and quality.
Ensuring a sufficient number of samples is a prerequisite for

training a robust deep learning model. We evaluated how much
performance improvement can be achieved by increasing the
data size through the following steps of the experimental study:
(1) Use a sample 10% of the entire dataset without replacing the
experimental data set. (2) Train several ResNet models by using
the experimental dataset under different random seeds, and
average their testing performance to obtain a robust evaluation.
(3) Randomly add additional 10% of the entire dataset to the
experimental dataset. (4) Repeat Steps 2 and 3 until all data are
added to the experimental dataset. We did not apply bootstrap
aggregation in this experiment. The results are shown in
Supplemental Fig. 2a: a clear declining trend in testing loss was
noted when data size increased. Simultaneously, Pearson’s
correlation coefficient improved (Supplemental Fig. 2a). For
instance, compared with 10% of the entire dataset, the testing
loss using 50% of the entire dataset resulted in a twofold increase
in performance and increase in correlation coefficient from 0.53 to
0.66. Therefore, the testing performance of our model may
improve when more sonographic studies are available.42

Relatively few sonographic studies in our dataset (15%)
reported a normal eGFR of greater than 60ml/min/1.73 m2. To
resolve this data imbalance for CKD status classification, we
reduced the weight of the samples using eGFR of <60 ml/min/
1.73 m2 by a factor of 0.25 to balance their effects, classify the loss,
and summarize the predictive performance based on unscaled
data (Supplemental Table 6). The overall accuracy was comparable
to the results based on scaled data, despite the inherent tradeoff
between sensitivity and specificity. Both approaches can ade-
quately be the first screening test in our proposed two-stage mass
screening model. Because CKD and ESRD are highly prevalent in
Taiwan, the best positive predictive power can be obtained by
adjusting the algorithm targeting high specificity. This sensitivity
experiment indicated the strategic flexibility of our deep neural
network algorithm.
Numerous possibilities exist for functional AI-powered automa-

tion to support the efficiency of health care. Our proposed deep
learning algorithm offers the possibility of noninvasive assessment
of kidney function and represents a fundamental step for realizing

Fig. 4 Performance of predicting CKD status. a Confusion matrix of the CKD status classification (eGFR < 60ml/min/1.73 m2). b ROC curves of
the CKD status classification using different eGFR cutoff values based on our proposed CNN model
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the potential of transforming kidney ultrasound into an effective,
real-time screening tool. With a diagnostic accuracy comparable to
the predictions of experienced nephrologists, our CNN model has
the potential to improve the cost efficiency of universal CKD
screening, for instance, by selecting high-risk patients using kidney
ultrasound in the first round of a two-stage screening model.

METHODS
Clinical information
Taiwan’s National Health Insurance launched the Integrated Care of CKD
project in 2002. China Medical University Hospital (CMUH), a tertiary
medical center in Central Taiwan, joined this program in 2003,
prospectively enrolling consecutive patients with CKD willing to partici-
pate.41 CKD diagnosis was based on the criteria of the National Kidney
Foundation’s Kidney Disease Outcomes Quality Initiative’s Clinical Practice
Guidelines for CKD.41,43 The patients in this program were regularly
followed at the outpatient department; they routinely underwent at least
one kidney sonographic study. In Taiwan, almost all kidney sonographic
studies are performed and interpreted by nephrologists. Biochemical
markers of renal injury, including serum creatinine and blood urea nitrogen
levels as well as spot urine protein-to-creatinine ratio, were measured at
least every 12 weeks or more frequently. Since 2003, CMUH has
implemented electronic medical records (EMRs) for care management;
therefore, we integrated the data of CMUH’s pre-ESRD program with
CMUH’s EMRs containing laboratory test results, medications, special
procedures, medical images, and admission records.44 We initially enrolled
8,281 CMUH pre-ESRD patients aged 20–89 years, with a total of
203,353 sonographic images; their eGFR was measured within 4 weeks
before or after the day of the kidney sonography. The study was approved
with waived informed consent by the Research Ethical Committee/
Institutional Review Board of the China Medical University Hospital in
Taiwan (Approval no.: CMUH105-REC3–068 and CMUH106-REC3–118).
The eGFR was estimated using the abbreviated MDRD equation (eGFR=

186 × creatinine−1.154 × age−0.203 × 1.212 [if black] × 0.742 [if female]).45

The serum creatinine level closest to and within the 4 weeks before and
after the day of the kidney sonography was used to define the labeled
eGFR. The sociodemographic variables collected during the enrollment
interview were age, sex, education, cigarette smoking status, and alcohol
consumption. Diabetes mellitus and hypertension were defined by the
physicians’ clinical diagnoses based on the patients’ International
Classification of Diseases codes and glucose-lowering or blood pressure-
lowering agent use. History of cardiovascular disease was defined as
documented coronary artery disease, myocardial infarction and stroke in
the EMRs.

Data information
All kidney ultrasound studies were performed by board-certified nephrol-
ogists and deidentified with waived consent, complying with the
Institutional Review Board of CMUH. We selected studies performed after
2014 that used GE ultrasound systems (LOGIQ E9 and LOGIQ P3, GE
Healthcare, Milwaukee, WI, USA) for higher image quality, with regard to
sharpness, contrast, and noise, compared with images from prior systems
(before 2014). The original Digital Imaging and Communications in
Medicine files were then converted into Portable Network Graphics
images; 37,696 images were selected from the two GE models with two
different sizes: 960 × 720 for LOGIQ E9 and 820 × 614 for LOGIQ P3.
In general, nephrologists determine an individual’s kidney length by

obtaining images of the best possible quality to capture the maximum
observable kidney length. We then used the template matching technique
to detect the presence of this specific annotation pattern in every image
and then filter out those images without length annotations measuring
kidney size. We selected these high-quality images to train our deep
learning model, with the final dataset containing 1,446 uniquely
identifiable primary sonographic studies of 1299 patients. Each sono-
graphic study provided at least one image each of the right and the left
kidneys. Each sonographic study also served as the primary unique input,
with the final database comprising 4,505 images. The selection flow chart
is presented in Supplemental Fig. 3. For the selected 4,505 images, we
applied the “findContours” function of the cv2 module in Python to isolate
“bean-shaped” kidneys from irrelevant information surrounding the
kidneys, such as the supplier’s logo, which may have obfuscated the
learning accuracy of our proposed CNN.

Model Selection: prediction of continuous eGFRs through CNNs
We predicted eGFRs based on patients’ kidney ultrasound images by using
deep CNNs. Our neural network architecture, as illustrated in Fig. 1a, was
referenced from the ResNet-101 model.46 In brief, the ResNet-101 model
comprises a bunch of residual blocks, with each block being a combination
of convolution and identity-mapping layers, resulting in a total of 101
layers (Fig. 1b). To predict the patients’ eGFRs, we replaced the last 1000-
class classifier in the ResNet-101 model by using a regressor of consecutive
fully connected layers, comprising 512 (FC1), 512 (FC2), 256 (FC3), and 1
(output), as illustrated in Fig. 1a. We employed a dropout layer to reduce
overfitting between every two consecutive fully connected layers, where
the dropout probability was determined using the grid search method.47

The activation function of all layers except the output layer used rectified
linear units; the output layer adopted a linear activation function because
this prediction task was a regression-type problem with the output values
ranging from 0 to >100. For this regression-type prediction problem, we
optimized the mean squared error defined as follows:

MSE ¼ 1
n

Xn
i¼1

Ŷi � Yi
� �2

;

where Ŷi and Yt are the predicted and actual eGFRs of sample i,
respectively.
Motivated by the observation44 that the earlier features of a convolution

network are generally not specific to a particular task and thus transferable
to other tasks, we explored different combinations of freezing residual
blocks and found that by keeping the first residual block fixed, a minimal
mean squared error was achieved over the validation dataset (Supple-
mental Table 7).48 By contrast, the parameters of the regressor were
randomly initialized using a Gaussian distribution, with a mean of zero and
standard deviation of 0.1. Except the regressor, we considered ResNet-101
pretrained on ImageNet as an initialization for the rest of our network
weights.

Model selection: prediction of irreversible CKD status through
extreme gradient-boosting tree
Clinically, an eGFR of <60ml/min/1.73m2 denotes prognostic significance
of reduced kidney function. At this stage, patients must receive
multidisciplinary nephrological care.49 To evaluate whether our CNN
model accurately detects an irreversible CKD status, we reformulated the
original regression problem to a binary classification problem by predicting
whether a patient’s eGFR was lower than the cutoff threshold of 60ml/
min/1.73 m2.
Here we treated the ResNet model that was well-trained in Section 3 as a

fixed feature extractor and computed a 256-dimension vector for every
image containing the activation of the last fully connected layer (FC3) of
the ResNet model in Section 3. We demoted these 256-dimension features
as image codes. After extracting these codes from the images, we trained
an eXtreme Gradient-Boosting model (XGBoost), a scalable end-to-end tree
boosting model proposed by Chen and Guestrin,50 to identify whether the
corresponding eGFR value was below the 60-ml/min/1.73 m2 threshold.
The objective function of this binary classification problem was of
minimizing binary entropy loss; the hyperparameters of our XGBoost
model were determined using the grid search method.47 For the
implementation of XGBoost in Python, the finalized hyperparameters
were set as tree depth= 3, learning rate= 0.1, data subsampling= 50%,
column sampling= 50%, and scale the positive sample weight by 0.25; the
remaining components were set using the default setting. The XGBoost
model output a probability of eGFR below the cutoff threshold (60 ml/min/
1.73m2).

Training phase
All sonographic studies were partitioned into nontesting (90%) and testing
(10%) groups based on the unique and hashed patient identification key to
ensure mutually exclusive flow of patients into different groups. The
sample size planning was based on the MAE learning curves (Supplemen-
tary Fig. 2a). We used all images from sonographic studies in the same
group as the dataset of that group. The testing dataset was not employed
in this phase. We adopted the bootstrap aggregation (also called bagging)
technique, a model ensemble algorithm, to improve the stability and
accuracy of our deep learning model. During bagging, we uniformly
sampled from the nontesting dataset with replacement to assemble a
double sized dataset as the training dataset. Some duplicate sonographic
studies existed in a training dataset, and it is expected to have a fraction of
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86.4% of unique sonographic studies of the entire nontesting dataset.51

We considered such sonographic studies from a training dataset as the
validation (out-of-bag) dataset. We repeated the above sampling process
10 times to obtain 10 pairs of the training and out-of-bag datasets. For
each pair, we trained a ResNet model and XGBoost for eGFR prediction and
CKD status classification, respectively. In the final evaluation (testing)
phase, we averaged the output of 10 independent models from bagging
as the final prediction. The flowchart is presented in Fig. 2.
Before feeding images into our ResNet model, we conducted a tailored

image-cropping method, based on two markers annotating the kidney
length, to remove the irrelevant peripheral region of the kidneys. We first
identified the positions of the two markers ðx1; y1Þ and ðx2; y2Þ and
calculated their distance and middle point, denoted as d and ðxc; ycÞ,
respectively. Next, we cropped the square region centered at ðxc; ycÞ with a
length d. To unify the size of the input images, we resized the cropped
images to 224 × 224 pixels and normalized each pixel value based on the
mean and standard deviation of the images in the ImageNet dataset.
During training, three image augmentation schemes—namely shift along x
and y axes (±10%), rotation (±40 degree), and horizontal flip—were
applied independently, with each scheme having an 80% probability of
occurrence. Several input images are presented in Fig. 5.
In Section 3, our ResNet model was trained using Adam optimizer, which

automatically adapted the learning rate for every parameter and
considered the momentum of gradients during optimization using a
batch size of 128 at a time for gradient calculation.52 An initial learning rate
of 10−4 was used, which was then reduced by a factor of 10 after validation
loss plateaued over 10 epochs. We imposed an L2 regularization of 10−5

on the network parameters (also called weight decay) to achieve better
model generalization. We adopted an early stopping mechanism with a
patience of 20 to prevent overfitting and retain the model at the minimum
validation loss. We then aggregated the 10 ResNet models in the bagging
process by averaging their predictions when evaluating the dataset
testing. In Section 4, we trained a corresponding XGBoost model to
identify whether a patient’s eGFR was <60ml/min/1.73 m2 by using the
codes extracted from the ResNet model as inputs. The nontesting and

testing members were the same as in Section 3. Finally, we obtained 10
XGBoost models for predicting an irreversible CKD status and then
restored these models for the next testing phase.

Evaluation(testing) phase
For each sonographic study in the testing group, we selected the
ultrasound kidney image with the longest annotated length for the final
testing dataset. No image augmentation was performed in the evaluation
phase. To reduce the variance among the models, we averaged the
outputs from the 10 ResNet models, restored in the bagging process as
the final eGFR prediction. We quantified the prediction results by using the
following metrics: MAE, Pearson’s correlation, and R-squared.
Ŷi ¼ 1

10

P10
j¼1 yij , where yij is the prediction of input sample i by the

ResNet-j model
MAE ¼ 1

n

Pn
i¼1 Ŷi � Yi

�� ��, where Yi is the measured eGFR value of input
sample i
ρY;Ŷ ¼ covðY;ŶÞ

σY �σŶ
R2 ¼ 1� SSres

SStot
, where SStot ¼

Pn
i¼1

ðYi � YiÞ2 and SSres ¼
Pn
i¼1

ðŶi � YiÞ2:
For evaluating the testing performance for classifying CKD status, we

averaged the output probabilities from 10 restored XGBoost models used
in the previous training phase. The classification probability threshold was
set to 0.5 as follows:

P̂i ¼ 1
10

P10
j¼1 Pij , where Pij is the prediction of input sample i by the

XGBoost-j model

Ŷi ¼ 0; P̂i < threshold
1; P̂i � threshold

�
, where threshold is set at 0.5.

True positive rate (TPR), true negative rate (TNR), false positive rate (FPR),
and false negative rate (FNR) were used for calculating accuracy, precision,
recall, F1 score and plotting the Receiver Operating Characteristic (ROC)
curve and the estimated Area Under Curve (AUC). We also evaluate the
agreement between CNN-based eGFR and serum creatinine-based eGFR in

Fig. 5 Tailored image-cropping method, based on two markers that annotated the kidney length, was used to remove the irrelevant
peripheral region of the kidneys. To unify the image size to our neural network model, we resized cropped images to 224 × 224 pixels. Data
augmentation schemes comprising shift, rotation, and horizontal flip were performed
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the classification of CKD by B-statistic due to the highly symmetrically
imbalanced nature of the present data. The definitions of TRP, FPR, TNR
and FNR are provided in the Supplementary Text. To examine the model’s
reliability, we leveraged the bootstrap method to construct 95% bootstrap
confidence intervals, evaluating the model’s performance on 10,000
bootstrap testing datasets, sampled from the testing dataset with
replacement. We regarded the 2.5th and 97.5th percentiles of the
evaluation results as the 95% bootstrap confidence intervals. The bootstrap
confidence intervals of the accuracy, precision, recall, and F1 score are
presented in the Results section.
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