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Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death

in the United States. COPD represents one of many areas of research where identifying

complex pathways and networks of interacting biomarkers is an important avenue toward

studying disease progression and potentially discovering cures. Recently, sparse multiple

canonical correlation network analysis (SmCCNet) was developed to identify complex

relationships between omics associated with a disease phenotype, such as lung function.

SmCCNet uses two sets of omics datasets and an associated output phenotypes to

generate a multi-omics graph, which can then be used to explore relationships between

omics in the context of a disease. Detecting significant subgraphs within this multi-

omics network, i.e., subgraphs which exhibit high correlation to a disease phenotype

and high inter-connectivity, can help clinicians identify complex biological relationships

involved in disease progression. The current approach to identifying significant subgraphs

relies on hierarchical clustering, which can be used to inform clinicians about important

pathways involved in the disease or phenotype of interest. The reliance on a hierarchical

clustering approach can hinder subgraph quality by biasing toward findingmore compact

subgraphs and removing larger significant subgraphs. This study aims to introduce new

significant subgraph detection techniques. In particular, we introduce two subgraph

detection methods, dubbed Correlated PageRank and Correlated Louvain, by extending

the Personalized PageRank Clustering and Louvain algorithms, as well as a hybrid

approach combining the two proposed methods, and compare them to the hierarchical

method currently in use. The proposed methods show significant improvement in the

quality of the subgraphs produced when compared to the current state of the art.
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INTRODUCTION

Discovering significant subgraphs within multi-omics networks,
such as those produced by methods such as sparse multiple
canonical correlation network analysis (SmCCNet) (Shi et al.,
2019) and DIABLO (Singh et al., 2019), can be a valuable tool
for gaining information about disease pathways. Such subgraphs
can inform clinicians about molecules which interact with
each other and play a role in the progression of a disease of
interest. An ideal subgraph is highly correlated to a disease
phenotype and contains nodes which are highly related to
each other’s function or expression. Currently, subgraphs are
identified using hierarchical clustering, which comes with some
limitations, such as a bias toward small, uniform subgraphs,
and poor scalability to larger biological networks. We propose
three new methods for detecting significant subgraphs, which
improve the quality of subgraphs produced while being more
easily scalable to large datasets. In the rest of this section,
we introduce a motivating application of the methods we
introduce, then provide an overview of the current approach to
significant subgraph detection, and conclude with an overview
of our contributions.

Motivating Application
Chronic obstructive pulmonary disease (COPD) is a chronic
lung condition which causes expiratory airflow limitation
and respiratory problems, and has recently been the fourth
leading cause of death in the United States (Garcia et al.,
2017). There are a variety of environmental, behavioral, and
genetic factors that contribute to development of this disease.
Clinical variables, such as age, smoking history, body mass
index (BMI), and dyspnea, are often used for modeling and
predicting disease severity and progression. Nevertheless, due
to the highly complex and widely heterogeneous phenotypes
of COPD, the complex relationship between these variables
is not well understood (Reinhold et al., 2017; Zemans et al.,
2017).

COPD is independently associated with systemic diseases such
as coronary artery disease, congestive heart failure, interstitial
lung disease, pulmonary hypertension, cancer, weight loss,
metabolic syndrome, and diabetes and blood is commonly
used to study the systemic effects of COPD. Blood biomarkers
are often used to assess the relationship between smoking
and COPD. Most biomarker studies have focused on single
molecules, as they can facilitate prognosis and individualized
treatment. However, as single biomarkers cannot fully explain the
COPD cross-sectional and longitudinal outcomes, recent studies
suggest multiple biomarkers may be more informative to predict
severity, progression, and morality (Zemans et al., 2017; Mastej
et al., 2020).

We will use COPD as a running example to demonstrate our
proposed methods. We introduce three new methods for the
detection of significant subgraphs in a protein-metabolite multi-
omics network, which we compare to the current state of the
art approach.

Current State of the Art
SmCCNet uses canonical correlation analysis (CCA) to calculate
correlation between a pair of biomarkers or omics features,
such as proteins and metabolites, in the context of a disease
marker, such as forced expiratory volume in 1 s (FEV1) or
forced expiratory volume in 1 s percent predicted (FEV1%)
(Mastej et al., 2020). SmCCNet produces a graph representing
the interaction of the chosen biomarkers and their correlation
with the disease marker. Combined with network analysis tools,
these graphs become a powerful way to explore the interaction
of multiple biomarkers and a target disease. Network clustering
techniques can be used to detect communities relevant to disease
progression within a graph. Groups of relevant biomarkers can
be used to inform further research into disease progression or
targeted therapies.

Currently, hierarchical clustering is commonly used to
identify omics clusters or modules in methods such as
Weighted Gene Co-Expression Analysis (WGCNA) (Langfelder
and Horvath, 2008). Hierarchical clustering is a limited approach
to clustering graphs produced by SmCCNet, as it does not
consider correlation to the phenotype, clustering based solely
on the topology of the network. While edges between nodes
are weighted according to their correlation together and to the
phenotype, these weights only reflect that relationship between a
pair of connected nodes and the phenotype. Edge weights alone
fail to reflect the broader relationship between a larger group of
nodes and the target phenotype, and thus a clustering algorithm
which only considers topology is inadequate. Furthermore,
hierarchical clustering, and most other clustering methods, aim
to assign every node in a graph to a cluster, whereas significant
subgraph detection simply wants to find an important subset of
nodes within the graph. Finally, this approach does not scale to
larger omics networks, and can quickly become computationally
expensive when applied to typical biological dataset.

Contribution
In this paper, we present three approaches to detecting significant
subgraphs in networks produced by SmCCNet.

We first introduce an extension of the Personalized PageRank
Clustering (PPC) algorithm, dubbed Correlated PageRank, to
find significant subgraphs. PageRank is a local graph clustering
method that is commonly used for web page ranking, social
networks, and recommendation systems (Tabrizi et al., 2013; Xie
et al., 2015). This method offers better scalability when compared
to hierarchical clustering, as its runtime is determined by the
size of the identified subgraph rather than the global graph. We
extend PPC by incorporating correlation information into the
subgraph identification process, introduced in more detail in
Section Correlated PageRank.

We then introduce an extension to the Louvain algorithm,
similarly incorporating correlation to identify significant
subgraphs. The Louvain algorithm offers a scalable approach
to identifying subgraphs in a network by applying repeated
objective optimization and merging steps, and has been shown
to offer good scalability while maintaining subgraph quality. Our
contribution, dubbed Correlated Louvain, is introduced in more
detail in Section Correlated Louvain.
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Finally, the two proposed methods were combined into a
hybrid approach, utilizing Correlated Louvain to produce high
quality seed nodes to form the teleport set for the Correlated
PageRank algorithm, and iteratively applying the two methods
to produce highly correlated, succinct subgraphs. We detail this
approach in Section Hybrid Approach.

In addition to the subgraph identification techniques, we
also developed a novel technique to visually compare subgraphs
produced by these methods. This subgraph comparison
technique allows for the highlighting of unique subgraphs from
a pool of identified significant subgraphs, reducing overlap
between subgraphs and producing a more informative set
of subgraphs.

To compare performance of the proposed measures, the top
subgraphs produced by the proposed methods are compared
to those produced by the currently used hierarchical clustering
approach. We show that our proposed approaches to subgraph
identification outperform the currently accepted state of the art,
producing more highly correlated subgraphs.

The remainder of the paper is organized as follows: Section
RelatedWork examines related work. Section ProblemDefinition
formalizes the problem of subgraph identification. Section
Methods describes the overall pipeline as well as a more in-
depth description of the three approaches. Section Experimental
Evaluation: A Case Study evaluates the performance of the
proposed approaches in the form of a case study. Finally, Section
Conclusion and Future Work offers concluding remarks and
future directions for this work.

RELATED WORK

In what follows, we briefly review the field of graph clustering,
then give an overview of SmCCNet, a tool which has been used
to generate multi-omics networks, which present one potential
application of subgraph detection.

Graph Clustering
Graph clustering is the process of finding subgraphs of related
nodes within a graph (Schaeffer, 2007). This field has grown
recently, and has seen many applications, from community
detection in social networks, to ranking search results, to
powering recommendation systems. The field of graph clustering
algorithms is vast, but methods revolve around the optimization
of an objective function which aims to quantify the connectivity
within a subgraph compared to the connectivity to nodes outside
of the subgraph. That is, graph clustering algorithms aim to find
subgraphs which maximize connectivity within the subgraph,
while minimizing connectivity to nodes outside the subgraph.
Graph clustering methods can generally be split into two broad
categories, global and local (Schaeffer, 2007).

Global clustering methods aim to assign every node in a graph
to a cluster. Global clustering can either produce a hierarchical
structure, where a hierarchy of clusters is generated with each
top-level cluster being composed of subclusters, each of which
can be its own top-level cluster to a set of subclusters, or it can
produce a flat clustering where each cluster is simply a vertex

subset of the global graph. Hierarchical clustering methods can
be further classified as divisive or agglomerative.

Divisive global methods, or top-down methods, recursively
partition a graph into clusters, starting with the global graph.
Different criteria have been developed to determine how a graph
should be divided, such as min-cut methods which find the
minimum cut within the graph to maximize flow (Elias et al.,
1956), or similarity based metrics that split the graph in a way
which optimizes some similarity metric such as conductance or
modularity. Spectral methods which use the eigenvectors of the
normalized Laplacian, or approximations thereof, as a similarity
measure have also been proposed (Capocci et al., 2005; Qiu and
Hancock, 2006). Random walk approaches find clusters on the
principle that a random walker is likely to stay within a cluster
than it is to hop between clusters (Chen et al., 2008; Zhang et al.,
2016). Meila et al. have in turn shown a relationship linking the
mathematics of random walks to those of cut-based methods
(Meil and Shi, 2000).

Agglomerative global methods, also known as bottom-up
approaches, operate on the opposite end of the spectrum. Instead
of dividing graphs into subgraphs, they merge similar subgraphs
together to form larger graphs. Similarity measures such as
Jaccard index and cosine similarity, or connectivity measures
such as modularity are used to determine suitable subgraphs to
merge. Carrasco et al. propose one such method to bipartite
graphs (Carrasco et al., 2003). The Louvain algorithm is a popular
global agglomerative graph clustering algorithm (Blondel et al.,
2008). The Louvain algorithm is an agglomerative clustering
strategy that iteratively moves nodes to neighboring clusters to
locally maximize modularity, then merges the cluster to create
a representative super-node to be considered in the following
iteration. It aims to improve scalability without significantly
reducing partitioning quality. It has been used in a variety of
applications, such as clustering twitter users based on their
political preferences (Sánchez et al., 2016), community detection
based image segmentation (Nguyen et al., 2018), and recently
used to classify aquatic biota (Milošević et al., 2022). Owing to
the use of modularity during the optimization step, the Louvain
algorithm is subject to the resolution limit, where communities
smaller than some threshold can’t be detected (Fortunato and
Barthélemy, 2007). Louvain is also limited due to the algorithms
inability to move nodes once they have been merged into a
super-node in a previous iteration, which can lead to non-
optimal segmentations with certain network topologies (Traag
et al., 2019). This algorithm has been expanded upon over time,
making it more parallelizable (Lu et al., 2015) and introducing
additional heuristics to improve runtime and address some of
the limitations of the original algorithm (Traag et al., 2019).
Despite these limitations, the base algorithm remains a widely
used method due to its simplicity and applicability to a large
variety of problems.

Traditionally, global clustering techniques generate hard
partitionings where each node belongs to one cluster. However,
this restriction isn’t representative of some applications. For
example, nodes in a biological graph may represent molecules
with multiple functions, which wouldn’t be highlighted with
a traditional clustering approach. Overlapping clustering
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techniques allow nodes to belong to multiple clusters (Baadel
et al., 2016). Several variations of K-Means clustering have
been proposed. Fuzzy K-Means uses membership degrees to
assign membership to different clusters, allowing a data point
to belon to multiple clusters simultaneously, with different
weights (Peizhuang, 1983). Overlapping K-Means introduces a
threshold to determine whether an object assigned to a cluster
should also be assigned to its next nearest neighbor (Cleuziou,
2009). Weighted Overlapping K-Means extends Overlapping
K-Means and Weighted K-Means which introduces a weighting
vector when considering distance and importance of certain
features (Huang et al., 2005). Overlapping clustering approaches
have also been applied to graph clustering. LP-HCLUS is one
such method, generating hierarchical clusters with potential
for overlap, allowing diseases and ncRNA in a heterogenous
graph to be involved in multiple interaction subnetworks, better
reflecting their true function (Barracchia et al., 2020).

Local clusteringmethods aim to find important clusters within
a larger subgraph, rather than assigning every node to a cluster.
This is important for larger graphs, as global methods tend to be
computationally expensive or unfeasible. Local search methods
are designed to find near-optimal solutions without exploring the
entirety of the graph. One such method, Personalized PageRank
Clustering (PPC), has previously been used for complex disease
analysis. PPC calculates PageRank scores for each node in a
graph, then uses those scores to identify a community around
a user-specified seed node. Kohler et al. used it to search in
the interactome for the prioritization of candidate disease genes
(Kohler et al., 2008). Voevodski et al. applied PageRank-Nibble
to identify local communities in protein-protein interaction
networks (Voevodski et al., 2009). They demonstrated that PPC
outperforms other partitioning methods such as spectral and
nearest neighbor, finding clusters which are more coherent and
better connected, measured by conductance, while also being
biologically relevant. Shang and Liu leveraged weighted PPC on
bilayer molecular networks to prioritize Type 2 diabetes genes
(Shang and Liu, 2021). Li and Zhao utilized a multiplex PPC
approach to mine functional modules in gene-gene and protein-
protein networks (Li and Zhao, 2016).

Biclustering approaches add another dimension to the
clustering problem. While clustering algorithms assign samples
into clusters, biclustering approaches simultaneously assign
samples and their features into clusters, offering more flexibility
(Busygin et al., 2008). Given a matrix of genes and conditions,
for example, clustering approaches would either produce gene
clusters or condition clusters, whereas biclustering approaches
can cluster both together, producing arbitrary subsets of genes
and conditions. Direct clustering, the first of these methods,
relies on statistics analysis of submatrices to form biclusters
(Hartigan, 1972). Cheng and Church’s node-deletion algorithm
introduced the mean squared residue measure and heuristics to
minimize it and obtain a gene expression bicluster (Cheng and
Church, 2000). BROCCOLI uses matrix factorization to produce
biclusters which allow for overlapping clusters, as well as being
robust against outlier data points (Hess et al., 2021).

One primary limitation with these general clustering
techniques is that they fail to incorporate external data, solely

clustering based on topology. While topology is important, other
factors, such as correlation of the nodes to a target variable,
have no effect on clustering outcomes. Attributed network
clustering techniques have previously been proposed to address
this shortcoming (Chunaev et al., 2020). Early fusion methods,
such as that proposed by Bhatt et al., merge node attributes and
graph structure together before applying a clustering algorithm
(Bhatt et al., 2019). Simultaneous fusion methods combine the
clustering and fusion steps such that attribute and structure
information are combined during the community detection
process. One such method, PLANE, uses a generative process
to model a document’s embedding and topic simultaneously,
then uses a mapping function to correlate documents and topics.
Late fusion methods apply community detection separately
to structure and attribute data, then combine the partitions
to generate a structure-and-attribute aware partitioning.
While these techniques address the problem of integrating
structure and attribute data into an inclusive partitioning, they
do not consider correlation between node attributes and an
external target. Clusters identified using these methods will
be similar structurally and attribute-wise, but they may not
be relevant to the application as that relevance was not taken
into consideration.

Network based approaches have been used to characterize
biomarker-disease interactions in the past. Yang et al. applied
a propagation algorithm to a bipartite lncRNA-disease graph to
discover hidden lncRNA-disease associations (Yang et al., 2014).
Similarly, Alaimo et al. applied a resource transfer technique
to a tripartite graph to predict nrRNA-target and target-disease
interactions (Alaimo et al., 2014). Both of these methods
exploited known interactions to produce bipartite and tripartite
graphs, respectively, which were then used to predict candidate
interactions that could be tested in vitro.While these are powerful
techniques for identifying single biomarkers which may be
associated with a disease, they don’t capture the interaction
between larger groups of biomarkers in a disease pathway, and
they don’t represent multi-omic interactions.

The problem of significant subgraph detection necessitates
incorporating not only structural and attribute information
within the graph but doing so in the context of an external
target variable. In the context of COPD networks generated
by SmCCNet, a significant subgraph is one whose nodes are
similar structurally and attribute-wise while also being highly
correlated to a selected phenotype such that they are clinically
relevant. Existing methods fail to represent this relationship to
a target variable. To address this, we introduce two methods
based on a local clustering approach and an agglomerative
global approach, namely Personalized PageRank Clustering
and Louvain, respectively, which we extend beyond the base
algorithms to incorporate correlation to a target variable. We
also introduce a hybrid method combining the two approaches
to obtain higher quality subgraphs.

Significant Subgraph Identification
SmCCNet is a tool used for integrating multiple omics datasets
together with a phenotype of interest to generate a multi-omics
graph representing the interaction between biological markers
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in the context of the phenotype. It uses canonical correlation
analysis to integrate two sets of omics data and a quantitative
disease phenotype, producing a graph with nodes representing
different biomarkers and edges between them representing
canonical correlation between the connected pair of biomarkers
in the context of the phenotype. These graphs can be used
for downstream tasks such as community detection, which can
help inform clinicians about pathways important to a disease’s
progression. SmCCNet has previously been used by several
authors for omics network detection. Zhuang et al. applied the
method on miRNA-mRNA networks to identify the relevant
omics features for COPD phenotypes in a set of 404 subjects
(Zhuang et al., 2021). Mastej et al. used SmCCNet to explore
novel protein and metabolite networks related to lung function
and emphysema (Mastej et al., 2020).

Currently, detecting important subgraphs from a multi-omics
graph is done using hierarchical clustering. While this approach
does lead to the detection of well correlated graphs, it suffers from
two major limitations. Hierarchical clustering can bias toward
smaller, similarly sized clusters, ignoring larger but potentially
more important pathways. Hierarchical clustering also doesn’t
scale well to larger omics networks, which is particularly limiting
with typical biological datasets.

PROBLEM DEFINITION

In this section, we give a formal definition of the problem. Let
G = (V , E) be a weighted undirected graph with vertex set
V and edge set E. We assume that G is a simple graph, with
no multiple edges connecting nodes. We define edge set E =
{((

vi, vj
)

, w
)

| vi, vj, ∈ V
}

, where w = f
(

vi, vj
)

, 0 ≤ w ≤ 1
represents an edge weight defined by a function f . Each node
vi ∈ V has a corresponding data vector xi ∈ Rm. For a set of
n vertices V , we define a data matrix X =

[

xT1 , x
T
2 , . . . , xTn

]

, the
concatenation of the transpose of the data vector corresponding
to each node in V . We also define a target vector, Y ∈ Rm.

Let G
′
=

(

S, E
′
)

be a subgraph of G, where S ⊆ V and

E
′
=

{((

vi, vj
)

, w
)

| vi, vj, ∈ S
}

, E
′
⊆ E, with data matrix

X′. The correlation ρ of a subgraph is defined as the Pearson
correlation between the first principal component of the data
matrix X

′
corresponding to the set of nodes S, PC1s, with the

target variable Y , as shown below in Equation 1. PC1s is used
to represent the data matrix X′ as a single vector to facilitate
comparison to the target variable.While there are other measures
that can be used to represent correlation with a target variable,
such as Spearman correlation or Kenall correlation, we chose
Pearson correlation to match the measure used by Mastej et al.
to facilitate comparison between findings (Mastej et al., 2020).
The cohesion of subgraph G′ can be calculated using various
connectivity measures, such as modularity or conductance, and
serves as a measure the connectivity of subgraph G′ relative to G.
These measures are specified further in Section Methods.

ρ (PC1S, Y) =

∑

i∈PC1S, j∈Y
(i− PC1S)(j− Y)

√

∑

i∈PC1S, j∈Y

(

i− PC1S
)2 (

j− Y
)2

(1)

We define a significant subgraph as the subgraph G
′
=

(

S, E
′
)

with maximal correlation and cohesion among all subgraphs
of G. With the significant subgraph detection problem, given a
graph G, we want to find a significant subgraph which optimizes
a bi-criteria function reflecting correlation and cohesion, such
that a significant subgraph is maximally correlated to Y while
also maximally cohesive topologically. A subgraph identified by
significant subgraph detection, relative to other subgraphs, will
have high connectivity within the subgraph, low connectivity
outside of the subgraph, and high correlation to the target
variable Y .

As defined above, significant subgraph detection is a
constrained graph clustering problem with correlation as the
constraining balancing factor, and considering any balancing
factor for graph clustering has been shown to be an NP-Hard
optimization problem (Wagner and Wagner, 1993). In this
paper, we introduce efficient heuristic methods as approximate
solutions for significant subgraph detection problem.

METHODS

We will first summarize the basic PPC and Louvain algorithms
below, then describe the changes we made to incorporate
correlation to the phenotype to formally define Correlated
PageRank and Correlated Louvain. We also discuss a hybrid
approach which combines Correlated PageRank and Correlated
Louvain to produce more refined subgraphs. We then present
our approach to comparing subgraphs produced by the proposed
approaches. We conclude by briefly discussing the platform used
to implement and test these methods.

Correlated PageRank
We begin by giving an overview of the existing PPC algorithm.
PPC is a local graph clustering method that is used in a variety
of applications, such as webpage ranking, social networks, and
recommendation systems (Tabrizi et al., 2013; Xie et al., 2015).
It offers better scalability with runtimes proportional to the size
of individual clusters rather than the full graph. This algorithm
works based on the Markov process; a random walker starts at
a seed node and travels through nodes in the graph either by
transitioning to a neighboring node, with probability 1−α, or by
teleporting to a node in the defined teleportation set independent
of its current location, with probability α. The PageRank formula
is shown in Equation 2 (Gleich and Kloster, 2016); prα (S) is the
steady state distribution of a random walker, α ∈ (0, 1) specifies
the teleportation probability, s is the teleportation set, and W is
the random walk transition matrix (Voevodski et al., 2009).

prα (s) = αs+ (1− α) prα (s)W (2)

The steady state vector, which is also called the PageRank vector,
is used to sort the vertices from higher to lower probability-per-
degree, which represents the probability of a node being visited
by the random walker. This produces the sweep-set, a set of m
non-zero entries in the vector set V. The sweep cut procedure
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computes the conductance of the first j elements (from 1 tom) in
the sweep-set, and the set with lowest conductance is selected.

PPC results are affected by a variety of user-selected
parameters. The seed set determines the nodes around which
a cluster is formed. Selection of the set of seed nodes can
be done based on node degree, with high degree nodes being
selected to act as hub nodes, or the selection can be informed
by biological function, with nodes corresponding to biological
markers suspected of being highly correlated to the disease being
selected. The teleportation probability affects the distance from
the seed set the random walker will explore, with a higher
teleportation probability resulting in a higher emphasis on near
the seed set, and a lower probability producing larger diameter
clusters. The termination factor (ǫ ∈ [0, 1]) determines the
length of the search domain.

The traditional PPC approach to clustering lacks
consideration for correlation to the phenotype. While subgraphs
identified by the algorithm will be densely connected, this
does not capture the full relationship between omics and the
phenotype. In order to better identify important subgraphs,
correlation between a given set of omics and the phenotype is
calculated and incorporated. Correlated PageRank consists of
two main steps, a subgraph identification step where significant
subgraphs are identified based on the calculated PageRank
score, and a pruning step which serves to decrease the size of
subgraphs produced such that the algorithm produces smaller
subgraphs while maintaining connectivity and correlation. In
Section Subgraph Identification we introduce two approaches to
incorporating correlation into the subgraph identification step
of Correlated PageRank, dubbed sequential and simultaneous.
In Section Subgraph Pruning we introduce two approaches to
pruning the subgraphs produced in the previous step, which
we refer to as threshold and nesting. The nesting approach to
pruning is further split into two approaches, called graph nesting
and subgraph nesting.

Subgraph Identification
Two measures were used when identifying significant subgraphs,
conductance (8) and omics-phenotype correlation (ρ). We
define volume of G to be the sum of degrees of the nodes in G,
shown in Equation 3. Conductance, shown in Equation 4 (Gleich
and Kloster, 2016) below, is a measure of how well connected a
subgraphwith nodes S is relative to the global network with nodes
V and edge weights w. A lower conductance represents a better
subgraph that is well connected internally and well isolated from
the remainder of the graph.

vol (G) =
∑

j∈G

dj (3)

8(S, V , w) =

∑

i∈S , j/∈S wij

min
(

vol (S) , vol (V − S)
) (4)

Two methods were used for subgraph identification, referred to
as sequential and simultaneous. In the sequential approach, the
conductance (8) was calculated during the sweep cut procedure
to generate highly connected subgraphs. The omics-phenotype

correlation (ρ) was then calculated for each subgraph as in
Equation 1, and those with the highest correlation were chosen as
the best subgraphs. In the simultaneous approach, conductance
and correlation are combined into a single objective function as
a weighted sum, shown in Equation 5, replacing conductance
during the sweep cut procedure. kP is a user set weight, such that
kP ≤ 1, which sets the proportion of conductance and correlation
in the combined objectective function 8 + ρ.

8 + ρ = kP∗8 + (1− kP)∗ρ (5)

Subgraph Pruning
Subgraphs produced by Correlated PageRank are very large
and may contain weak edges between features. To improve
subgraph quality, we explored methods for shrinking the
size of the identified subgraph, removing weaker edges and
improving correlation. Two pruning methods are applied,
threshold and nesting.

In the threshold pruning approach, a threshold is chosen,
and any edges with an edge weight lower than the threshold are
removed. Isolated nodes and smaller fragments resulting from
this edge removal are also removed from the subgraph, resulting
in a smaller, more strongly correlated subgraph. While a similar
pruning approach is applied during the SmCCNet procedure to
produce the global graph, the thresholds used are intentionally
small to avoid over-pruning and fragmenting the network prior
to downstream analyses. To choose the optimal threshold, a grid
search approach is used. Different thresholds in the range of edge
weights are tested, with the optimum threshold resulting in the
highest omics-phenotype correlation and an appropriate ratio
between omics, informed by the biological context of the omics
and disease of interest. This approach to pruning is naïve, as it
removes all edges classified as weak without considering their
effects on the overall quality of the subgraph. While a grid search
technique was applied to find an optimal threshold that led to the
highest quality subgraph, this remains a heavy-handed approach
to decreasing subgraph size.

In the nesting approach, the Correlated PageRank algorithm
is iteratively applied to produce progressively smaller subgraphs.
Two nesting sub-approaches were investigated, graph nesting
and subgraph nesting. In graph nesting, once a top subgraph
G′ was identified, it is removed from the global network G, and
Correlated PageRank was applied to the resulting network G\G′.
In subgraph nesting, the top subgraph is used as the input to
the next iteration of Correlated PageRank. We expect the nesting
approach to be a more suitable way to decrease subgraph size.
In contrast to the threshold approach, the nesting approach
iteratively applies the same Correlated PageRank algorithm to
subsequent subgraphs; correlation to the phenotype is considered
throughout the process, and smaller subgraphs are generated in
a more informed way. Within the two sub-approaches, we expect
subgraph nesting to perform better, as it continues searching for
stronger subgraphs within an already known strong subgraph.

Correlated Louvain
As before, we begin with an overview of the traditional Louvain
algorithm, then introduce our changes. The Louvain algorithm is
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a two-phase heuristic graph clustering algorithm, consisting of an
optimization phase followed by a merging phase (Blondel et al.,
2008). It has been shown to consistently produce high quality
subgraphs while remaining scalable to very large graphs.

The algorithm starts with each node in a singleton subgraph.
During the optimization phase of the algorithm, the modularity,
Q, is calculated for the current partitioning of the graph Aij as
shown in Equation 6, Equation 7 and Equation 8 (Newman,
2004). Aij represents the weight of the edge between nodes i and
j while ci is the subgraph in which node i appears.

Q =
1

2m

∑

i, j

[

Aij −
kikj

2m

]

δ(ci, cj) (6)

ki =
∑

j

Aij (7)

δ (u, v) =

{

1
0

if u = v

otherwise
(8)

Each node is then iteratively considered to be moved to a
neighboring subgraph, and the modularity is calculated with the
prospective partitioning. The node is moved to the subgraph
which yields the largest positive change in modularity, or
otherwise remains in its original subgraph if no potential moves
yield a positive change. This process is repeated with all nodes
iteratively until there is little change in modularity during
an iteration.

Once all nodes are moved to the subgraph which yields the
largest positive change in modularity, the merging phase begins,
and all nodes in a subgraph are merged into one node. New edges
are created such that all edges connecting nodes in a subgraph
become a self-edge, and all edges connecting nodes in different
subgraphs become edges connecting the new merged nodes. The
new edges are given a weight equal to the sum of the weights of
the edges which merged to form the edge.

The objective function in this algorithm is modularity
(Equation 6), which is a measure of connectivity within a
subgraph compared to the expected connectivity if all edges
were randomly assigned. Similar to conductance, which was
used in the Correlated PageRank method, it aims to capture
connectivity within subgraphs. By optimizing for connectivity,
the Louvain algorithm optimizes subgraphs such that nodes are
well connected within a subgraph, and less connected between
other subgraphs, effectively finding connected communities
within a network.

To optimize this algorithm for an omics dataset, where both
connectivity and correlation to a phenotype are important,
Correlated Louvain uses the weighted sum of modularity, Q
(Equation 6), and Pearson correlation, ρ (Equation 1) in a hybrid
objective function. We define kL, a weight parameter to control
the effect of modularity and correlation in the hybrid objective
function, such that kL ≤ 1. The hybrid objective function,
Equation 9, allows the algorithm to optimize subgraphs such that
they are well connected (high modularity) and well correlated
to the phenotype (high omics-phenotype correlation). Different

weights were tested using a grid search method to find the
optimal balance between the quality metrics.

Q+ ρ = kL∗Q+ (1− kL)∗ρ (9)

As the Correlated Louvain algorithm produces a partitioning
of the graph, which consists of a set of subgraphs, a separate
subgraph identification step is not necessary with this method,
unlike Correlated PageRank. During our testing, subgraphs
produced by this method were small in size, and thus pruning
was also not necessary, but would follow a similar procedure to
those outlined in Section Subgraph Pruning. The expected size
of a significant subnetwork depends heavily on application; in
our case study this was informed by the biological processes and
literature surrounding COPD. While subgraphs in our tests were
not large enough to necessitate further pruning, this may not
always be the case with every application.

Hybrid Approach
A hybrid approach utilizing both Correlated Louvain and
Correlated PageRank to generate significant subgraphs was
explored. The Correlated Louvain approach described in Section
Correlated Louvain, is first utilized to generate a partitioning
for the global graph generated by SmCCNet. Correlation to the
phenotype is calculated for all non-singleton subgraphs, and
the subgraph with the highest correlation is used to seed the
Correlated PageRank algorithm. Teleportation values for the
nodes in the seed set are weighted by their relative contribution
to the subgraph’s correlation, as shown in Equation 10. The
contribution of node i is defined as the difference between the
correlation of the subgraph containing the node i, S, and the
subgraph excluding the node i, S’, and its relative contribution αi

is the ratio of its contribution to that of the node with the largest
contribution, αmax.

S
′
= S\i

ρi = |ρ (S)| −
∣

∣

∣
ρ

(

S
′
)
∣

∣

∣

αi =
ρi

max
{

ρi′
∣

∣ i
′
∈ S}

∗αmax (10)

The Correlated PageRank algorithm produces a top subgraph,
which is then partitioned again using Correlated Louvain. The
cycle, depicted in Figure 1, repeats until the size of the subgraph
generated by the Correlated PageRank algorithm stops changing,
or until it produces a singleton subgraph which cannot be further
partitioned by the Correlated Louvain algorithm.

By using the Correlated Louvain algorithm to generate
candidate seed nodes for the Correlated PageRank algorithm, the
need to pre-select a seed node, whether randomly or based on
biological intuition, is bypassed, allowing for a more systematic
selection of a good set of seed nodes. This, in turn, should
allow the Correlated PageRank algorithm to perform better.
Repeating this process has a similar outcome to nesting and
pruning, in that it iteratively decreases the size of the network
such that the remaining nodes generate strongly correlated and
well-connected subgraphs of an appropriate size.
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FIGURE 1 | Hybrid clustering procedure. The first iteration (1) uses the global graph provided by SmCCNet, with subsequent iterations (2+) using the cluster

generated by PageRank in its place.

Subgraph Comparison
Subgraph identified by the above approachesmay have significant
overlap. Identifying the unique subgraphs from a pool of
significant subgraphs is an important task when considering the
problem of identifying pathways from a multi-omics network.
We developed a method to visually compare two subgraphs,
allowing for easy identification of the similarity of two subgraphs,
which we discuss below.

Two measures were used to assess the similarity of two
subgraphs, computed using the edit distance, or Levenstein
distance of node i, as shown in Equation 11, where E (i)
represents the set of all unique edges in the graphs G1 and G2-
connected to node n, d(e) represents the edit distance between
edge e in G1 and G2, and w(Gi, e) is the weight of edge e in graph
Gi. Edit distance quantifies the similarity between two graphs
by counting the minimum number of edits needed to make the
two graphs match; a higher edit distance corresponds to more
edits and lower similarity, whereas an edit distance of 0 signifies
identical graphs.

lev(i) =

{

∞ if n /∈ G1 ∪ n /∈ G2
∑

e∈E(i) d (e) otherwise

d(e) =

{

1 if [e /∈ G1 ∪ e /∈ G2] ∪
[

w (G1, e) 6= w(G2, e)
]

0 otherwise

(11)

As an example, consider the sample graphs G1 (left) and G2

(right) in Figure 2A. Since nodes d and e don’t exist in both
graphs, lev

(

d
)

= lev (e) = ∞. Looking at node c, which exists
in both graphs, lev (v) = 4; of the 4 unique edges connected to
c in either graph, one edge, bc, has a different weight, and three
edges, ac, cd and ce, only exist in one graph. Similarly, lev (a) = 1,
since edge ab exists in both graphs with equal weight while edge
ac only exists in G2. The sorted edit distance vector for the sample
graphs is as follows:

−−−−−−−−−−→
a
1

b
2

c
4

d
∞

e
∞

This can be visualized as a heatmap to quickly assess and compare
the similarity of multiple pairs of graphs. For the above sample,
the heatmap shown in Figure 2B is generated.

We also assess similarity using the Jaccard index, J, as
shown below in Equation 12. The Jaccard index is the ratio
of the intersections of two graphs, G1 and G2 to their union,
and is a quantitative measure that can be used to assess how
similar or dissimilar they are. A higher Jaccard index implies
higher similarity.

J (G1, G2) =
|G1 ∩ G2|

|G1 ∪ G2|
(12)

Graph similarity is primarily used to find unique subgraphs; the
Correlated PageRank method will generate different subgraphs
given different seed nodes, but some of these subgraphs may
be very similar. Similar subgraphs are not informative as they
uncover the same biological pathways. To find unique subgraphs,
and thus unique pathways, different highly correlated subgraphs
are compared, and those showcasing significant dissimilarity
are selected for further analysis. Significant dissimilarity is
discovered by plotting the Jaccard indices and visually identifying
a steep drop in the index values indicating a significantly
dissimilar subgraph.

Platform
Correlated PageRank was implemented using Python 3.8.
Correlated Louvain was implemented in C++ and exposed to
Python as a module. All testing was done using Python 3.8. The
graph used in our case study was generated using the SmCCNet
R package, version 0.99.0, and exported to be used with the
NetworkX and igraph Python packages during testing. Tests were
conducted on an Intel Core i9-11900K. Code for our proposed
methods is available on GitHub at bdlab-ucd/correlated-louvain.
The datasets used in our case study, Section Experimental
Evaluation: A Case Study, is available from COPDGene; while it
is a public dataset, it is made available by request with a submitted
proposal detailing the intended usage of the dataset.
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FIGURE 2 | Graph comparison between (A) two sample graphs, G1 (left) and G2 (right); (B) shows the heatmap visualization of the edit distances between G1 and

G2, with the green regions representing similarity between he graphs and gray regions representing differences; the ration between the regions visually represents how

similar the two graphs are.

EXPERIMENTAL EVALUATION: A CASE
STUDY

To study the behavior of our proposed techniques and compare
them to the existing hierarchical clustering approach, we used
a COPD multi-omics dataset as a model. We use protein
and metabolite omics datasets, consisting of 1,317 and 996
biomarkers, respectively. The phenotype (target) dataset consists
of FEV1% measurements, which is commonly used for COPD
diagnosis and severity evaluation. All measurements were taken
from 994 subjects common across the two omics datasets and
the phenotype dataset. Using the same dataset Mastej et al.
reported two omics subnetworks, one with 13 proteins and 7
metabolites having −0.34 correlation (p = 2.5 ∗ 10−28) to lung
function, and another with 13 proteins and 10metabolites having
−0.27 correlation (p = 2.6 ∗ 10−17) to percent emphysema
(Mastej et al., 2020).

Experimental Methodology
For each of the approaches we introduced, we first conducted
behavioral tests to optimize each approach individually. The top
subgraphs produced by each approach, as well as those produced
by the current hierarchical approach, were compared. The results

reported below were produced by running the experiment once
for each set of parameters.

All tests were run using the same protein-metabolite omics
dataset and FEV1% phenotype, for the same set of subjects, as
described above. SmCCNet weights, which control the weight of
different features when calculating canonical correlation during
the SmCCNet algorithm, represented as a-b-c, were explored
using the Correlated PageRank approach, detailed below, and the
optimal set of weights was then used to generate the same graph
used in all final comparisons.

Our primary measure of subgraph quality was correlation to
the phenotype, ρ (Equation 1), with a higher absolute correlation
indicating a more significant subgraph which better describes
the phenotype. We also report conductance, 8 (Equation 4),
to summarize connectivity within each subgraph relative to the
global network. Subgraph size is also reported, which can be
an indication of subgraphs which are likely too small or too
large to be of importance. While appropriate subgraph size will
depend on the specific omics used and intended application,
subgraphs with hundreds of nodes are likely too broad to be
informative, and subgraphs with very few nodes are potentially
too narrow in scope and ignore important participants in the
pathway they describe.
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TABLE 1 | Tolerance effect on Correlated PageRank for 1-10-10 graph at α =

0.04 and seed = 2,137.

ǫ Subgraph size 8 ρ (p_value) 8 + ρ

Sequential Correlated PageRank (1-10-10)

1.00e-01 419 0.502 −0.14 (5.2e-06)

1.00e-02 419 0.502 −0.14 (5.2e-06)

1.00e-03 337 0.502 −0.3 (9.76e-22)

1.00e-04 337 0.502 −0.3 (9.76e-22)

1.00e-05 322 0.501 −0.29 (1.69e-20)

1.00e-06 322 0.501 −0.29 (1.69e-20)

Simultaneous Correlated PageRank (1-10-10)

1.00e-01 439 0.547 −0.17 (1.29e-07) 0.098

1.00e-02 439 0.547 −0.17 (1.29e-07) 0.098

1.00e-03 328 0.528 −0.31 (7.43e-23) 0.226

1.00e-04 328 0.528 −0.31 (7.43e-23) 0.226

1.00e-05 303 0.552 −0.3 (1.73e-21) 0.215

1.00e-06 303 0.552 −0.3 (1.73e-21) 0.215

Experimental Results
For each of the three proposed approaches, different parameters
needed to be tuned to find the optimal subgraphs, the results of
which are discussed below.

Correlated PageRank
Correlated PageRank is affected by factors such as tolerance
(ǫ), teleportation factor (α), the selected seed node, and the
weights used in the SmCCNet algorithm to generate the global
graph. Tolerance, teleportation factor, and SmCCNet weights
were studied using a grid search method, testing different values
to find an optimal set of parameters. Seed nodes were selected
at random to study their influence on the resulting subgraphs’
correlation and conductance.

Correlated PageRank consisted of two similar but distinct
approaches, sequential and simultaneous as discussed in Section
Subgraph Identification, which are discussed separately in
Sections Subgraph Identification–Sequential Approach and
Subgraph Identification–Simultaneous Approach. The size
of subgraphs identified by Correlated PageRank necessitate
pruning, which is discussed in Section Subgraph Pruning.

Subgraph Identification–Sequential Approach
The effects of tolerance (ǫ) on the Correlated PageRank subgraph
size and conductance are shown in Table 1. ǫ has a considerable
role on the size of the subgraphs. When ǫ < 1∗10- 2, the
subgraphs generated were large (419 nodes) and the absolute
correlation was small (0.14), whereas when ǫ > 1∗0−3, the
tolerance stops affecting size and correlation significantly. As
mentioned before, the PageRank search continues until the
difference between PageRank scores in two consecutive iterations
is below ǫ. When ǫ is lowered, the random walker can
visit more nodes on the graph, and thus subgraph size and
correlation increase.

Table 2 displays the Correlated PageRank results of the 1-10-
10 graph for different teleportation (α) values. As the α increases,

TABLE 2 | Teleportation effect on Correlated PageRank for 1-10-10 graph at ε =

1.0e-4 and seed = 2,137.

α Subgraph size 8 ρ (p_value) 8 + ρ

Sequential Correlated PageRank (1-10-10)

0 425 0.501 0.29 (2.72e-20)

0.02 352 0.501 −0.3 (1.72e-22)

0.04 337 0.502 −0.3 (9.76e-22)

0.06 329 0.501 −0.29 (7.39e-21)

0.08 328 0.502 −0.29 (7.93e-21)

0.1 325 0.503 −0.29 (7.69e-21)

Simultaneous Correlated PageRank (1-10-10)

0 453 0.59 0.31 (6.31e-23) 0.22

0.02 350 0.505 −0.3 (9.63e-23) 0.22

0.04 328 0.528 −0.31 (7.43e-23) 0.226

0.06 324 0.513 −0.3 (1.79e-21) 0.219

0.08 319 0.524 −0.3 (6.89e-22) 0.218

0.1 318 0.524 −0.3 (7.32e-22) 0.218

the subgraph sizes decrease, and the correlation experiences very
little change. Subgraph size decreases substantially slower once
α > 0.04. When α increases, the random walker is more likely to
return to the seed node with each step, and is thus less likely to
visit neighboring nodes and traverse deeper into the graph. The
correlation values are quite high at 0.3 (p = 7.93 ∗ 10−21), which
is about 1.5 times higher than the previous hierarchical results
with the same graph (-0.18, p= 2.3 ∗ 10-−8).

Figure 3A displays the influence of seeds on a subgraph’s
correlation and conductance. Absolute correlation ranged
from 0.1 to 0.35, while conductance remained near 0.5
for all chosen seeds. Figure 3B shows the distribution of
absolute correlation with the phenotype, with a majority
of the correlation values falling below 0.2. This shows the
importance of the seed on the quality of the resulting subgraph,
highlighting one of the limitations of a PageRank based
approach.

Appendix A shows the results from sequential Correlated
PageRank at various SmCCNet weights. These experiments were
conducted with ǫ in the range of 1 ∗ 10−1-1 ∗ 10−8 and α in
the range of 0–0.15. The absolute correlations of the subgraphs
produced from the 1-10-10 graph were about twice those of the 1-
5-5 subgraphs, with conductance being about a third. SmCCNet
weights are applied to the canonical correlation to adjust the
relationship between different features. Larger b and c values
create a stronger correlation between each of the omics and the
phenotype compared to the correlation between the two omics.
This has the effect of pruning the weak edges in the global
graph generated by SmCCNet, resulting in stronger edge weights
overall, and higher quality subgraphs when Correlated PageRank
is applied. This experiment was also conducted with SmCCNet
weights of 1-11-11 and 1-1-1, both of which resulted in small
global networks not suitable for subgraph identification, at 32 and
228 nodes, respectively. SmCCNet weight, as seen here, can have
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FIGURE 3 | Correlated PageRank results: (A) shows the randomized search results for the sequential approach to Correlated PageRank; (B) shows a distribution of

|ρ| for subgraphs identified by sequential Correlated PageRank with randomized seed selection; (C) shows randomized search results for the simultaneous approach

to Correlated PageRank; (D) shows a distribution of |ρ| for subgraphs identified by simultaneous Correlated PageRank with randomized seed selection; (E) shows

randomized search results for simultaneous Correlated PageRank with selected strong seeds only; (F) shows a distribution of |ρ| for simultaneous Correlated

PageRank with strong seeds.

a significant effect on the subgraphs found downstream. The 1-
10-10 set of weights produced the most favorable results, so it
was used for all further experiments.

Subgraph Identification–Simultaneous Approach
Table 1 summarizes the effect of tolerance (ǫ) on the size of the
subgraphs generated with the simultaneous Correlated PageRank
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approach using Troponin (node 2,137) as a seed. As ǫ decreases,
the size of the subgraphs and the conductance decrease while the
absolute correlation and 8 + ρ increase. At a lower tolerance,
the random walker spends longer traversing nodes and as a
result visits high degree nodes more often, resulting in a smaller
subgraph and larger correlation. Although not shown, similar
results were seen with other seed nodes.

Table 2 shows the influence of teleportation probability (α)
on the size of simultaneous Correlated PageRank subgraphs. We
see that a larger α results in a smaller subgraph and higher
conductance, while the correlation and 8 + ρ see little change.
These are similar results to what was seen with the sequential
Correlated PageRank method.

Figure 3C displays the correlation and conductance of
subgraphs generated by simultaneous Correlated PageRank using
a random selection of seed nodes. The experiment conditions
are the same as those used with the sequential Correlated
PageRank approach. As expected, seeds have a significant effect
on the correlation and conductance values. Compared to the
sequential Correlated PageRank approach, we see a wider range
of conductance values, ranging from 0.5 to 1, instead of all
being roughly 0.5. Figure 3D shows the distribution of absolute
correlation values. We again see a majority of subgraphs with
correlation lower than 0.2, but there is a noticeable increase
in subgraphs with correlation higher than 0.3, indicating better
performance compared to the sequential approach.

We repeated these experiments with only strong seeds,
shown in Figures 3E,F. Strong seeds were selected by applying
Correlated PageRank on the full graph with parameters α =

0.95, ǫ = 5.0∗10−4, then selecting seed nodes from subgraphs
with |ρ| > 0.33. These seeds produced subgraphs with stronger
correlation and lower conductance, as expected.

Appendix A shows the effect of different SmCCNet weights
on the simultaneous Correlated PageRank subgraphs. The 1-10-
10 subgraphs have higher correlation and lower conductance
compared to the 1-5-5, similar to the results seen with the
sequential approach.

Subgraph Pruning
Two pruning approaches were tested, with the goal of reducing
subgraph size while maintaining quality. Results from these
approaches under different conditions are summarized below.

Table 3 summarizes the threshold pruning results for the
subgraphs generated by the seed 248. A higher threshold resulted
in a smaller subgraph with lower correlation and more balanced
omics ratio. Mastej et al. applied the same approach to remove
weak edges from hierarchical subgraphs (Mastej et al., 2020). In
their study, pruning resulted in a balanced protein-metabolite
ratio without significantly affecting correlation. A potential cause
for the decrease in correlation when threshold pruning is applied
to Correlated PageRank subgraphs is that it may already be
accounting for weak edges when generating scores, thus further
pruning leads to a decrease in quality.

Two nesting approaches were investigated, global and
subgraph nesting. Global nesting consists of removing the
top subgraph from the global graph, then applying Correlated
PageRank to the remaining graph. Subgraph nesting instead

TABLE 3 | Threshold pruning on the subgraph created by seed = 248.

Prune

threshold

Remaining

edges (%)

Subgraph

size

Prot_ratio ρ (p-value)

0 0 249 0.65 −0.33 (2.48e-27)

0.01 45.3 216 0.65 −0.32 (1.99e-25)

0.02 59.2 211 0.65 −0.32 (1.25e-25)

0.03 68.2 200 0.65 −0.32 (2.41e-25)

0.04 74.8 189 0.66 −0.32 (1.43e-24)

0.05 79.3 179 0.66 −0.31 (3.6e-24)

0.06 83.1 168 0.66 −0.31 (1.4e-23)

0.07 86.1 157 0.65 −0.31 (2.87e-23)

0.08 88.5 150 0.66 −0.3 (9.08e-23)

0.09 90.5 143 0.65 −0.3 (1.74e-22)

TABLE 4 | Results of graph and subgraph nesting.

α ǫ Seed Subgraph size 8 ρ (p-value) 8 + ρ

Graph nesting (seed: 248)

0.05 0.0005 1,502 277 0.553 −0.34 (1.41e-27) −0.251

0.1 0.0002 1,805 101 0.664 −0.26 (5.36e-17) −0.168

0.1 0.001 1,867 68 0.673 −0.24 (2.02e-14) −0.149

0.1 0.0003 893 32 0.728 −0.16 (8.15e-07) −0.071

Subgraph nesting (seed: 1502)

0.15 0.00056 707 177 0.611 −0.35 (3.44e-29) −0.254

0.01 0.00078 2,193 54 0.524 0.32 (9.29e-25) −0.236

isolates the top subgraph and applies Correlated PageRank to
it instead of the global network. To obtain high correlation
subgraphs, strong seeds were chosen at each iteration.

Table 4 summarizes the global nesting result. Subgraph size
and correlation decreased, and conductance increased with each
iteration of global nesting. This is likely due to the removal of the
top subgraph from the global graph leaving a residual graph with
weaker edges and less correlated nodes. As strong subgraphs are
removed, Correlated PageRank produces lower quality subgraphs
from the remainder of the graph.

Table 4 also summarizes the results of subgraph nesting, using
the top subgraph from the first iteration of global nesting as
the starting graph. We again see a decrease in subgraph size
and correlation. Despite this, subgraphs produced by subgraph
nesting display higher correlation and lower conductance when
compared to those produced by global nesting. Subgraph nesting
likely produces higher quality subgraphs since it uses a high-
quality subgraph as its starting point, compared to using the
lower quality residual of the global network in global nesting.

Correlated Louvain
The Correlated Louvain method is affected by the weight used
in the objective function kL, which we studied using a grid
search. Additionally, as Correlated Louvain is a global clustering
approach, we studied the distribution of correlations of the
clusters generated by the algorithm to better understand the
quality of clusters generated by the algorithm. Finally, we studied
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the behavior of the algorithm at different levels in the hierarchy
to understand how the partitionings generated evolve as the
algorithm progresses.

The primary parameters to adjust in the Louvain algorithm
implementation were the weights used in the objective function,
controlling the balance between modularity and correlation in
the produced subgraphs. A grid search was applied to a range of
weights, the results of which are summarized in Table 5. The best
subgraphs, in terms of correlation, were produced when kL was
set to 0.2, which produced a top subgraph with ρ = −0.29 (p =
1.28 ∗ 10−20). We see, however, that all subgraphs produced are
much smaller than those produced by the Correlated PageRank
method. While this forgoes the necessity to prune the resulting
subgraphs, it also may heavily limit the useful information
which can be extracted from this subgraph. The largest
subgraph produced was of size 39, but correlation drops to 0.24
(p= 4.23 ∗ 10−14).

Across all tests, we see alarmingly high conductance. However,
we see an increase in conductance which correlates with the
increase in network size; the largest subgraph, generated by
kL = 0.8, also has the lowest conductance at 0.94, while
all other weights generate subgraphs with 0.99 conductance
and <10 nodes. This also extends to the Correlated PageRank
results, where much larger subgraphs result in significantly lower

TABLE 5 | Correlation with different modularity and correlation weights.

kL Subgraph size 8 ρ (p-value)

0.8 39 0.94 0.24 (4.23e-14)

0.6 7 0.99 0.26 (1.29e-16)

0.4 7 0.99 0.22 (1.35e-12)

0.2 6 0.99 −0.29 (1.28e-20)

0 6 0.99 0.25 (3.70e-15)

conductance. The size of subgraphs is likely the key contributing
factor the high conductance; since the global network consists
of many subgraphs, and connections within a small subgraphs
are inherently limited, conductance may highlight weak inter-
subgraph connections due to the sheer number of subgraphs in
comparison to the small number of intra-subgraph connections.
We don’t believe this affects subgraph quality, as conductance is
only used for comparison between methods and does not affect
the algorithm’s performance.

The distribution of absolute correlations, shown in Figure 4A,
shows a roughly normal distribution, with the majority of
correlation values falling below 0.2. However, since the Louvain
algorithm is a global clustering algorithm, and thus places
every node in a subgraph, some subgraphs are singletons. The
distribution with singletons removed is shown in Figure 4B.
The correlation values follow a similar pattern, with a majority
of subgraphs still under a correlation of 0.2, but we can see a
few higher quality subgraphs. It is evident that the majority of
singleton subgraphs are less correlated to the phenotype, as their
removal results in a dramatic drop in the number of subgraphs
with |ρ| < 0.2.

The Louvain algorithm, similarly to other hierarchical
approaches, generates graph partitions at multiple levels, which
each iteration of the two phases generating a new level
in the hierarchy. While the final level should provide the
optimal partitioning of the graph, and thus the best subgraphs,
intermediate levels may be informative. To study the behavior of
the algorithm, the correlation of all intermediate subgraphs that
merged to form a subgraph in the final partitioning were plotted.
Two examples are shown in Figure 5. For the majority of the top
subgraphs, they behave similar to subgraph 21 in Figure 5A, with
nodes merging into a single subgraph by the second iteration of
the algorithm, with a consistent increase in absolute correlation
when doing so. However, Figure 5B shows that this is not always
the case, with a subgraph following a less direct path toward the

FIGURE 4 | Correlated Louvain results: (A) shows a distribution of |ρ| produced by the Correlated Louvain method with k4 = 0.8; (B) shows the same distribution but

with singleton clusters removed, only showing subgraphs with |V| ≥ 2.
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FIGURE 5 | Level effect of Correlated Louvain: (A) shows the intermediate clustering of cluster 21 with k4 = 0.8, representing the common behavior of intermediate

clusters; (B) shows uncommon behavior or intermediate clusters, such as cluster 1 with k4 = 0.2.

TABLE 6 | Effect of Louvain weights on top subgraphs produced by the hybrid

approach.

kL Subgraph size 8 ρ (p-value)

0.8 25 0.746 0.41 (1.19e-41)

0.6 69 0.514 −0.35 (2.75e-29)

0.4 39 0.515 −0.34 (1.45e-27)

0.2 317 0.503 −0.33 (1.26e-26)

0.2 23 0.552 0.33 (7.58e-27)

0 22 0.548 −0.39 (2.31e-37)

0 5 0.592 −0.39 (5.39e-38)

0 4 1 −0.39 (8.03e-37)

optimal partitioning. Notably, this behavior occurred when the
correlation portion of the objective function was weighted less
(kL = 0.8), which is also the partitioning which resulted in larger
but less correlated top subgraphs. This is possibly due to the
larger effect modularity has outcompeting correlation, resulting
in merges which sometimes reduced correlation, but likely lead
to a more interconnected subgraph.

Hybrid Approach
As we saw in both Correlated PageRank approaches, the
teleportation factor has little effect on correlation, primarily
affecting subgraph size. However, we see that for α values <

0.04, the effects of teleportation have a less pronounced effect. As
such, an α value of 0.04 was selected for these tests. Similarly, a
tolerance factor of 1∗10−6 was used for all trials. Different weight
values for the Correlated Louvain algorithm, kL, were tested.

A grid search technique similar to that used with the
Correlated Louvain algorithm was used to test the effect
of weight on the hybrid approach. The effect of different
weights on the most correlated subgraph produced during the
Correlated PageRank step is summarized in Table 6. We see

high correlation values for all weight values, with all subgraphs
identified outperforming the traditional hierarchical method
and the Correlated Louvain algorithm and performing equal
or better than the Correlated PageRank method. Conductance
values are closer to those produced by the Correlated PageRank
method, near 0.5, and are much lower than those produced
by the Correlated Louvain algorithm, which implies more well-
connected subgraphs. Subgraph sizes are much smaller than
those produced by Correlated PageRank, with the exception of
a 317-node subgraph produced when kL = 0.2, while also
being larger than the sub-10-node subgraphs produced by the
Correlated Louvain method. Unfortunately, there doesn’t appear
to be a pattern between weights and correlation, with both low
and high kL values producing highly correlated subgraphs of
similar size and conductance.

The hybrid approach terminates when the subgraphs
produced by the Correlated PageRank step stop changing in size.
However, the most correlated subgraphs were produced during
intermediate steps. Figure 6 displays the change in correlation
and subgraph size of subgraphs produced by the Correlated
PageRank step in each iteration. Correlation generally increases
during the first few iterations of the procedure, reaching a
peak at iteration 3–5 before beginning to decrease. Subgraphs
rapidly decrease in size, with a visible elbow corresponding to
the decrease in correlation. The algorithm seems to favor always
decreasing subgraph size, leading to a decrease in subgraph
quality, likely due to a constriction in the available nodes in the
network. Once the most correlated subgraph is found, continued
restriction on the network size leads to important nodes being
removed and a decrease in overall correlation.

Comparative Analysis
Table 7 contains a summary of the top subgraphs generated
by Correlated PageRank, Correlated Louvain, hybrid approach,
and the traditional hierarchical approaches. As can be seen,
with the 1-10-10 SmCCNet weights, both Correlated PageRank

Frontiers in Big Data | www.frontiersin.org 14 June 2022 | Volume 5 | Article 894632

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Abdel-Hafiz et al. Significant Subgraph Detection

FIGURE 6 | Change in correlation (A) and subnet size (B) of subnets produced by PageRank in each iteration.
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TABLE 7 | Summary of top subgraphs.

α ǫ Seed kL Subgraph size 8 ρ (p-value) 8 + 8

Sequential Correlated PageRank (1-10-10)

0.03 1.00E-04 2,137 341 0.5 −0.31 (6.18e-23)

0.08 1.00E-04 303 321 0.5 −0.31 (2.68e-23)

0.01 1.00E-03 905 307 0.5 −0.29 (8.79e-21)

Simultaneous Correlated PageRank (1-10-10)

0.04 1.00E-04 2,137 328 0.53 −0.31 (7.43e-23) 0.23

0.01 1.00E-03 303 385 0.55 0.32 (2.18e-24) 0.23

0.1 1.00E-06 905 208 0.63 −0.34 (2.50e-28) 0.24

Hierarchical clustering (1-10-10)

29 0.18 (1.90e-08)

Hierarchical clustering (1-11-11)

22 0.33 (3.90e-26)

Correlated Louvain (1-10-10)

0.8 39 0.94 0.24 (4.23e-14) 1.18

0.6 7 0.99 0.26 (1.29e-16) 1.25

0.4 7 0.99 0.22 (1.35e-12) 1.21

0.2 6 0.99 −0.29 (1.28e-20) 0.70

0 6 0.99 0.25 (3.70e-15) 1.24

Hybrid approach (1-10-10)

0.04 1.00E-06 0.8 25 0.75 0.41 (1.19e-41) 1.16

0.04 1.00E-06 0.6 69 0.51 −0.35 (2.75e-29) 0.16

0.04 1.00E-06 0.4 39 0.52 −0.34 (1.45e-27) 0.18

0.04 1.00E-06 0.2 23 0.55 0.33 (7.58e-27) 0.88

0.04 1.00E-06 0 22 0.55 −0.39 (2.31e-37) 0.16

FIGURE 7 | Visual comparison of subnet 175 with other top subnets.

and Correlated Louvain outperform the hierarchical approach,
with much higher correlation to the phenotype. Both Correlated
PageRank approaches generate much larger subgraphs, which
can be pruned while still maintaining a higher correlation value.
The Correlated Louvain approach, however, generates much
smaller subgraphs overall, with the exception of the subgraphs
produced when kL = 0.8 which produced a more comparably
sized subgraph while still maintaining a higher correlation.

The hybrid approach appears to combine the best properties
of both methods, and further improves on them. Correlation

values are higher than those produced by the Correlated Louvain
method, and similar to or better than those produced by
the Correlated PageRank approach. Notably, correlation values
produced by the hybrid approach are a significant improvement
over those produced by the state of the art hierarchical approach,
achieving a maximum |ρ| = 0.44, compared to the maximum
|ρ| = 0.33 seen with hierarchical clustering, while maintaining a
similarly sized subgraph. Subgraphs produced by this method are
much smaller than those produced by the Correlated PageRank
approach while not being as restricted in size as those produced
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TABLE 8 | Top simultaneous PageRank subgraphs from visual comparison.

Subgraph 1 Subgraph 2 Subgraph Size 8 ρ (p-value) J

175 175 293 0.503 0.35 (1.22e-29) 1

175 122 335 0.503 0.34 (2.52e-28) 0.64

175 352 334 0.504 −0.34 (5.99e-28) 0.56

175 248 252 0.501 −0.34 (1.7e-27) 0.49

175 1,523 246 0.507 −0.34 (1.54e-27) 0.45

122 122 335 0.503 0.34 (2.52e-28) 1

122 342 334 0.502 0.34 (8.46e-28) 0.69

122 425 261 0.678 0.34 (1.7e-27) 0.56

122 248 252 0.501 −0.34 (1.7e-27) 0.45

106 352 334 0.504 −0.34 (5.99e-28) 0.61

106 1,502 277 0.553 −0.34 (1.41e-27) 0.53

by the Correlated Louvain method. They are similarly sized
to those produced by the hierarchical approach and are an
appropriate size for biological analysis.

Subgraph Comparison
Using a pool of significant subgraphs identified by the Correlated
PageRank approach, we applied our subgraph comparison
approach to identify a set of unique subgraphs, which can be
used for downstream analysis and applications. The subgraph
with the highest correlation to the phenotype, seed node 175
with ρ = 0.35 (p = 1.22 ∗ 10−29) was selected as the
reference subgraph, and all other subgraphs were compared
to it. To find unique subgraphs, the reference subgraph was
compared to all other subgraphs, and the resulting Jaccard indices
were ranked. High Jaccard indices indicates a subgraph highly
similar to the reference subgraph, which was removed from later
comparisons, while a sudden drop in Jaccard indices indicated
the first significantly different subgraph, which was used as the
next reference subgraph. This process was repeated until all
top subgraphs exhausted; any subgraphs not considered highly
similar to a reference node are sufficiently unique and can be used
for further biological analysis.

Figure 7 shows a sample of the visual comparisons generated
when comparing subgraph 175 with other top subgraphs, and
the results are summarized in Table 8. Visually, we observe that
subgraphs 122 and 345 are quite similar, whereas 122 and 1,523
are quite different; this is observed as a larger portion of the
generated heatmap being green, signifying similarity, than gray,
which signifies difference. This observation is supported by the
Jaccard indices, with 122 and 345 showing comparable Jaccard
values.

CONCLUSION AND FUTURE WORK

In this study, we proposed three novel implementations of
significant subgraph identification techniques which can be used
to study the relationship between mixed omics datasets and a
disease phenotype. The proposed Correlated PageRank approach
combines conductivity and correlation to find significant

subgraphs, while the Correlated Louvain approach combines
modularity and correlation. A hybrid approach, combining the
Correlated Louvain and Correlated PageRank methods was also
explored, using the Correlated Louvain method to better inform
seeds used during the Correlated PageRank algorithm. We
discussed the effects of various parameters on each approach’s
performance. When comparing the subgraphs produced by these
approaches, they all outperform the state of the hard hierarchical
clustering currently in use, by producing subgraphs with much
higher correlation to the phenotype. While this wasn’t a direct
focus of this study, these approaches should also prove to be
much more scalable, which is necessary when applied to large
biological datasets.

While we used SmCCNet to generate a protein/metabolite
multi-omics network in our case study, these approaches can be
used to detect significant subgraphs in a multitude of similar
graphs, where correlation to a target variable and topological
cohesion define subgraph quality and significance. For example,
these approaches can be used to detect significant subgraphs in
the single-omics networks generated by WGCNA.

These approaches do highlight some limitations, which will
be addressed in future work. Correlated PageRank currently
relies on the selection of a good seed, which must be chosen
based on node degree, or ideally informed by biology. Correlated
Louvain approach suffers from small subgraph size, which limits
the informativeness of the subgraphs generated. The hybrid
approach appears to address the limitations of both methods but
introduces longer runtimes. Future work will focus on addressing
these limitations, as well as applying these approaches to other
datasets, such as RNA andmRNA omics, or different phenotypes.
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Meil,ă, M., and Shi, J. (2000). Learning segmentation by randomwalks. Proceedings

of the 13th International Conference on Neural Information Processing Systems.

Denver, CO, MIT Press, 837–843.
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APPENDIX

APPENDIX A | Effect of different SmCCNet weights on Correlated PageRank methods.

SmCCNet Weights α ǫ Seed Subgraph size 8 ρ(p_value) 8+ρ

Sequential Correlated PageRank (1-10-10)

1,10,10 (613 nodes) 0.03 0.0001 2,137 341 0.502 –0.31 (6.18e-23)

0.08 0.0001 303 321 0.501 –0.31 (2.68e-23)

0.01 0.001 905 307 0.501 –0.29 (8.79e-21)

1,5,5 (794 nodes) 0.1 0.0001 2,137 357 0.209 0.16 (8.29e-07)

0.01 0.1 303 362 0.194 0.16 (7.87e-07)

0.01 0.1 905 359 0.17 0.16 (9.09e-07)

Simultaneous Correlated PageRank (1-10-10)

1,10,10 (613 nodes) 0.04 0.0001 2,137 328 0.528 –0.31 (7.43e-23) 0.226

0.01 0.001 303 385 0.552 0.32 (2.18e-24) 0.233

0.1 0.000001 905 208 0.634 –0.34 (2.5e-28) 0.243

1,5,5 (794 nodes) 0.01 0.1 2,137 362 0.209 0.16 (9.02e-07) 0.086

0.01 0.1 303 361 0.194 0.16 (8.08e-07) 0.089

0.01 0.1 905 359 0.17 0.16 (9.09e-07) 0.094
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