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Effect of cold atmospheric plasma treatment 
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Abstract 

Background:  Acute myeloid leukemia (AML) is a typically fatal malignancy and new drug and treatment need to 
be developed for a better survival outcome. Cold atmospheric plasma (CAP) is a novel technology, which has been 
widely applied in biomedicine, especially in various of cancer treatment. However, the changes in cell metabolism 
after CAP treatment of leukemia cells have been rarely studied.

Methods:  In this study, we investigated the metabolite profiling of plasma treatment on leukemia cells based on Gas 
Chromatography Tandem Time-of-Flight Mass Spectrometry (GC-TOFMS). Simultaneously, we conducted a series of 
bioinformatics analysis of metabolites and metabolic pathways with significant differences after basic data analysis.

Results:  800 signals were detected by GC–TOF mass-spectrometry and then evaluated using PCA and OPLS-DA. All 
the differential metabolites were listed and the related metabolic pathways were analyzed by KEGG pathway. The 
results showed that alanine, aspartate and glutamate metabolism had a significant change after plasma treatment. 
Meanwhile, d-glutamine and d-glutamate metabolism were significantly changed by CAP. Glutaminase activity was 
decreased after plasma treatment, which might lead to glutamine accumulation and leukemia cells death.

Conclusions:  We found the above two metabolic pathways vulnerable to plasma treatment, which might result in 
leukemia cells death and might be the cornerstone of further exploration of plasma treatment targets.

Keywords:  Cold atmospheric plasma, Acute myeloid leukemia, Metabolite profiling, Alanine, aspartate and 
glutamate metabolism, d-Glutamine and d-glutamate metabolism
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Background
Acute myeloid leukemia (AML) is a myeloid cancer, 
which is characterized by the rapid growth in the bone 
marrow and blood [1]. AML is mainly treated with long-
term chemotherapy and radiation therapy for the pur-
pose of induction of remission, or treated with stem cell 
transplantation [1, 2]. There is no doubt that these thera-
pies bring about unavoidable harm to human normal 
cells. Therefore, it’s necessary to develop a new technol-
ogy for the treatment of acute myeloid leukemia.

Cold atmospheric plasma (CAP) is a new technol-
ogy that has attracted much attention in recent years 
especially in biomedical applications, such as bacterial 
disinfection, application of skin diseases, dentistry, cell 
transfection, wound healing and cancer treatment [3–8]. 
It is an ionized gas generated by electrical discharges in 
the atmospheric pressure at room temperature [9]. It has 
reported that plasma can effectively induce cell death in 
various types of cancer cells, including colon cancer, mel-
anoma, cervical cancer, glioma, multiple myeloma and so 
on [10–17]. However, the effect of plasma treatment on 
the metabolites of tumor cell has been rarely reported. 
Cell metabolism, a general term for a series of ordered 
chemical reactions, is one of the most important physi-
ological mechanism to maintain the normal growth and 
reproduction of organisms [18]. Cancer cells are able to 
achieve rapid and explosive proliferation due to metabolic 
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reprogramming. Metabolic reprogramming is an onco-
genic signaling, which facilitates assimilation of carbons 
into macromolecules such as lipids, proteins and nucleic 
acids to generate a large number of intermediate metabo-
lites required for the growth and proliferation of cancer 
cells [19–22]. Therefore, it’s of great necessity to under-
stand the effects of gas plasma on tumor cell metabolism, 
so as to treat cancer more precisely by plasma treatment. 
Based on the above notion, we performed a metabolomic 
analysis, which showed that the metabolites of leukemia 
cells have changed a lot after plasma treatment. Impor-
tantly, we found that alanine, aspartate and glutamate 
metabolism had a significant change, suggesting that ala-
nine, aspartate and glutamate metabolism may exist criti-
cal targets for plasma treatment.

Methods
Surface plasma device
In this study, we used a surface plasma device. As shown 
in Fig. 1a, the surface discharge structure of the plasma 
consisted of a high-voltage (HV) electrode, a ground 
electrode and a 1 mm thickness hexagonal polytetrafluro-
ethylene (PTFE) sandwiched between the two electrodes. 
The surface plasma was generated when a sinusoidal 
high voltage at peak-to-peak value of 5  kV was applied. 
We used a HV probe (Tektronix, P6015A) and a cur-
rent probe (Tektronix, P6021) to measure the discharge 

voltage and current respectively. Surface plasma was 
maintained at an electrical power of 0.06  W/cm2. The 
physical map of the surface discharge device and the 
plasma interface were shown in the Fig. 1b.

Optical emission spectroscopy
We used a UV/visible spectrometer (Maya pro 2000, 
Ocean Optics, China) within a wavelength range of 
200–800 nm to measure emission spectra of the surface 
plasma. The optical probe was mounted directly away the 
discharge area at 2 cm, which ensured a clear spectrum 
when detecting the spectrum.

Cell culture condition
The MOLM13 leukemia cell line was used in this study. 
MOLM13 cells were cultured in Roswell Park Memorial 
Institute (RPMI) 1640 medium coupled with 10% fetal 
calf serum, 100 U/mL penicillin, and 50  µg/mL strep-
tomycin (Gibco-Invitrogen, Carlsbad, CA, 15140-122). 
Cell culture bottles were placed at 37 °C in an incubator 
(Thermo Scientific, Waltham, MA, USA) containing 5% 
CO2. The medium was refreshed 24 h before performing 
experiments.

Fig. 1  a Schematic diagram; b physical map and discharge photograph of the surface plasma; c discharge parameters; d V–Q Lissajous figure of the 
discharge powers; e emission spectra of the Surface plasma
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Cell viability assessment
We used a Cell-Titer-Glo® luminescent cell viability assay 
kit (Promega, Madison, WI, USA) to measure cell viabil-
ity, which was based on quantitation of the ATP (Adeno-
sine triphosphate) to determine the number of viable cells 
in culture medium. And we added 100 μL of samples and 
100 μL of Cell-Titer-Glo® reagent to the opaque-walled 
multiwell plate (96-well plates), and then the mixture was 
incubated at room temperature for 10  min. We utilized 
a microplate reader (Thermo Scientific Varioskan Flash, 
Waltham, MA, USA) with the protocol of “luminomet-
ric” measurement to detect the luminescence.

Solvents and reagents
L-2-chlorophenylalanine was purchased from Hengbai 
Biotech Co Ltd (Shanghai, China). The methoxy amina-
tion hydrochloride (chromatographic grade), pyridine 
and chloroform were all from Admas (Shanghai, China). 
In addition, we bought BSTFA (including 1% TMCS, v/v) 
from REGIS Technologies Inc (Morton Grove, IL, USA) 
and methanol (HPLC grade) from ANPEL Laboratory 
Technologies Inc (Shanghai, China). Saturated fatty acid 
methyl lipids (C8, C9, C10, C12, C14, C16, C18, C20, 
C22, C24) were purchased from Dr. Ehrenstorfer (Augs-
burg, Germany). Deionized water (Thermo; Waltham, 
MA, USA) was used throughout the experiment. We 
used 20 µΜ/L and 40 µM/L BPTES in DMSO for subse-
quent experimental verification.

Sample collection
We seeded 3 × 105 cells/well in 300 μL of the medium in 
a 24-well plate. Wells were treated with gas plasma for 
40 s as plasma treatment group, and the rest wells were 
control group without any treatment, containing 5 rep-
licates/samples in each group. After incubation for 24 h, 
cells were collected and counted to ensure that the num-
ber of cells was about 1 × 107 cells/sample. Cells were 
centrifuged at 4  °C for 5  min at the speed of 135g and 
washed 3 times at 4 °C with PBS at the speed of 76g. Then 
the cell mass in EP tube was placed in liquid nitrogen for 
5 min rapidly and stored in the − 80 °C refrigerator until 
it was analyzed.

Sample preparation
Before metabolite analysis, sample was that 0.6 ml extract 
(V methanol: chloroform = 3:1) in 2  ml EP tube and 10 
μL L-2-cholrophenylalanine (1  mg/mL stock in dH2O) 
as internal standard were mixed. After vortex mixing 
for 30 s, steel balls were added and ground at 45 Hz for 
4 min, and then sonicated in ice water for 5 min. Next, 
the above step was repeated 3 times. After centrifugation 
at 15,871g, 4 °C for 15 min, the supernatant (0.5 mL) was 

transferred to a fresh 2  ml GC/MS glass vial. Then, the 
extracted metabolites were dried in a vacuum concentra-
tor without heating, and 30 μL of methoxylamine hydro-
chloride was added. After incubation in oven at 80  °C 
for 30 min, 40 μL of BSTFA reagent (1% TMCS, v/v) was 
thoroughly mixed with the sample aliquots and incu-
bated at 70 °C for 1.5 h to obtain a derivative metabolite 
for GC–MS analysis.

GC–TOF–MS analysis
We performed GC–TOF–MS analysis using an Agi-
lent 7890 gas chromatograph system coupled with a 
Pegasus HT Time-of-Flight Mass Spectrometer. The 
system utilized a DB-5MS capillary column coated with 
5% diphenyl cross-linked with 95% dimethylpolysilox-
ane (30 m × 250 μm inner diameter, 0.25 μm film thick-
ness; J&W Scientific, Folsom, CA, USA). 1 μL aliquot of 
the analyte was injected in splitless mode. Helium was 
used as the carrier gas, the front inlet purge flow was 
3  mL  min−1, and the gas flow rate through the column 
was 1  mL  min−1. The initial temperature was kept at 
50 °C for 1 min, then raised to 310 °C at a rate of 10 °C 
min−1, then kept for 8 min at 310 °C. The injection, trans-
fer line, and ion source temperatures were 280, 280, and 
250 °C, respectively. The energy was − 70 eV in electron 
impact mode. The mass spectrometry data were acquired 
in full-scan mode with the m/z range of 50–500 at a rate 
of 20 spectra per second after a solvent delay of 6.27 min.

Data preprocessing and annotation
We used Chroma TOF 4.3X software of LECO Corpo-
ration and LECO-Fiehn Rtx5 database for exacting raw 
peaks, filtering the data baselines and calibration of the 
baseline, peak alignment, deconvolution analysis, peak 
identification and integration of the peak area [23]. Both 
of mass spectrum match and retention index match were 
considered in metabolites identification.

Spectrophotometric detetion of GLS activity
We used a glutaminase (GLS) activity assay kit (Comin, 
Suzhou, China) to measure GLS activity. The principle 
was to measure the rate of ammonia production from 
glutamine catalyzed by GLS to calculate the enzymatic 
activity. We first collected leukemia cells into a centrifuge 
tube (1 million cells), washed them 2–3 times with PBS, 
centrifuged and discard the supernatant, and then added 
400  µL extract, ultrasonically disrupted cells (sonicate 
for 7–8 s, interval for 10–15 s, repeat 10 times, ice bath) 
with power 200 W. After the above steps were completed, 
we centrifuged the disrupted cells for 10 min at 4  °C to 
take the supernatant. The supernatant and the reagent 1, 
2 were mixed in 37 °C water bath for 1 h. Last, we used 
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a spectrophotometer to read the absorbance of ammonia 
at 420 nm.

Results
Plasma discharging parameter and characters
A sinusoidal power supply at f = 10 kHz and Vpp = 5 kV 
was used to generate a surface plasma in ambient air. 
Figure 1c showed the applied AC voltage curve and the 
corresponding current curve when the surface plasma 
discharging. A V–Q Lissajous figure of the discharge 
powers was shown in Fig. 1d. The discharging character-
istic of the surface plasma was depicted by an emission 
spectra, as shown in Fig. 1e. There were several spectral 
lines in the surface plasma (e.g. OH (A) 310 nm, N2 (C) 
340 nm, N2

+ (B) 390 nm).

Metabolic profiles of plasma‑treated cells by GC–TOF
We totally investigated 10  samples of MOLM13 leuke-
mia cell line, of which five samples as the experimental 
group were treated with plasma for 40  s and the other 
five samples were not treated as experimental controls. 
Figure 2 showed that cell viability of MOLM13 cell line 
was decreased significantly with increasing plasma treat-
ment time while cell viability of normal cell line derived 
from normal bone marrow stromal cells was decreased 
slightly. And the leukemia cell activity after the plasma 
treatment for 40 s is about 70%, which is especially con-
ducive to further metabolic analysis. Using Gas Chro-
matography Tandem Time-of-Flight Mass Spectrometry 
(GC-TOFMS), we extracted 837 signals based on mass 
spectral deconvolution software for peak detection. In 
order to better analyze the data, we performed a series 
of preprocessing on the raw data and finally 800 signals 
were retained. Figure  3a showed the GC-TOFMS total 

ion chromatogram of plasma treatment group and con-
trol group. The database mapping of metabolites was 
listed in Additional file 1.

Unsupervised and supervised evaluation of metabolite 
signatures
First, we made a principal component analysis (PCA) 
after preprocessing the raw data. Because variables con-
tain both differential variables related to categorical vari-
ables and large quantities of them irrelevant to each other, 
the result of metabolic differences was not very signifi-
cant, which was basically in the 95% confidence interval 
(Hotelling’s T-squared ellipse). Therefore, this data was 
be further analyzed using orthogonal least squares discri-
minant analysis (orthogonal projection to latent structure 
discriminant analysis, OPLS-DA). Different from PCA, 
OPLS-DA was a supervised statistical method for discri-
minant analysis. This method used OPLS-DA to establish 
a relationship model between metabolite expression lev-
els and sample categories to achieve prediction of sam-
ple categories. We filtered out the orthogonal variables 
that were independent of the classified variables in the 
metabolites and analyzed the differences between non 
orthogonal and orthogonal variables in order to obtain 
more reliable metabolites. The parameters of the OPLS-
DA model were shown in the statistical model parameter 
Table 1. R2X and R2Y represented the interpretation rates 
of the model for the matrix X and Y respectively, and Q2 
denoted the prediction ability of the model. Theoretically, 
the closer the value of R2 and Q2 is to 1, the better the 
model is Table 1 showed that our OPLS-DA model could 
be used for further verification.

As Fig.  3b shows, the X-axis denoted the predicted 
principal component score of the first principal compo-
nent, while the Y-axis showed the orthogonal principal 
component score. The different scatter shape and color 
represented different experimental groups respectively. 
The results of the OPLS-DA score plot showed that the 
two groups of samples were very distinct, and the sam-
ples were all at the 95% confidence interval. The OPLS-
DA permutation test was to avoid overfitting of the test 
model and to ensure statistical significance of the evalu-
ation model. The result of the permutation test of the 
OPLS-DA model between plasma treatment group and 
control group was shown in the Fig. 3c. The X-axis and 
Y-axis represented the degree of substitution retention of 
the permutation test and the value of R2Y or Q respec-
tively. Green circles and blue square points denoted R2Y 
value and Q value, which were obtained by the permuta-
tion test respectively. The two dotted lines indicated the 
R2Y’s and Q’s regression lines. The result showed that the 
original model had good robustness and there was no 
overfitting phenomenon.
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Screening of differential metabolites
Based on the inherent characteristics of GC-TOFMS 
metabolomic data, we used multivariate statistical anal-
ysis methods to analyze the data and screened out dif-
ferential metabolites (Additional file  2) between plasma 
treatment group and control group. P value of student’s 
t-test is less than 0.05 and the first principal component’s 
Variable Importance in the Projection (VIP) is greater 
than 1. Volcano plot was a kind of image used to show the 
difference data between groups, where the X-axis rep-
resented the fold change of the plasma treatment group 
compared to the control group (base 2 logarithm) and 
the Y-axis represented the student’s t-test P-value (base 
10 logarithm). We visualized the above results of screen-
ing differential metabolites in the form of volcano plot 
(Fig. 4). The result showed the significantly up-regulated 
metabolites (red), down-regulated metabolites (blue), 
and non-significant differential metabolites (gray). The 
scatter size represented the VIP value of the OPLS-DA 

model. The larger scatter was on behalf of the bigger VIP 
value.

Cluster analysis
Heatmap uses color changes to reflect data information 
in a two-dimensional matrix or table. It can visually rep-
resent the size of data value with defined depths of color. 
The hierarchical clustering analysis can clear classify the 
metabolites with the same and different characteristics 
between the sample groups. The clustered data are repre-
sented on the heatmap, and the high abundance and low 
abundance species can be clustered. The similarity and 
diversity of the community composition at different lev-
els can be reflected by the color gradient and similarity.

After hierarchical clustering analysis of the differential 
metabolites between the surface plasma treatment group 
and the control group, we visualized the obtained results 
in a heatmap (Fig.  5). Clustering of samples using the 

Fig. 3  a GC-TOFMS total ion chromatogram; b score scatter plot of OPLS-DA model; c permutation test of OPLS-DA model

Table 1  Statistical model parameters table of OPLS-DA model

Model Type A N R2X (cum) R2Y (cum) Q2 (cum)

Model 1 OPLS-DA 1 + 1 + 0 10 0.426 0.999 0.875
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significantly regulated metabolites resulted in a nearly 
perfect separation of the plasma treatment group and 
the control group. It indicated that there were significant 
differences in the expression of metabolites between the 
two groups.

All the pathways relevant to differential metabolites 
by KEGG analysis
All the metabolites do not work alone and they are 
involved with one or more metabolic pathways together 
with other metabolites. Deregulation of differential 
metabolites is also the result of mutual influence, which 
even changes the expression of their own metabolic 
pathways.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is 
a huge database used to systematically analyze gene func-
tions, which can link genomic information to metabolites 
functional information [24]. The PATHWAY database 
utilizes a few direct homologous tables to obtain infor-
mation about conserved subpathways that is usually 
encoded by positionally coupled genes on the chromo-
some, which is particular useful for further understand-
ing the metabolic changes of the pathway [24].  We 
mapped all 800 metabolites to Homo sapiens in the 
KEGG pathway database. And we also listed all the path-
ways for mapping differential metabolites, as shown in 

Additional file 3. Next, we marked the differential metab-
olites on the KEGG pathway map. As shown in Fig.  6, 
bright red dots represented up-regulation, while bright 
blue dots represented down-regulation.

Metabolic pathway analysis related with differential 
metabolites
To know whether these pathways were significantly 
affected after plasma treatment, KEGG analysis was not 
enough, therefore we further analyzed metabolic path-
ways for differential metabolites. By comprehensive 
analysis of pathways where differential metabolites were 
located (including enrichment analysis and topological 
analysis), we further screened pathways and found the 
key pathways with the highest correlation with differen-
tial metabolites. Metabolic pathway analysis results were 
shown in Additional file 4.

The results of the metabolic pathway analysis were 
shown as bubble diagram (Fig.  7). One metabolic path-
way was represented by one bubble in the diagram. The 
location of the X-axis of a bubble and the size of the bub-
ble indicated impact value of a metabolic pathway, which 
was from the topological analysis of metabolic pathway. 
The location of the Y-axis of a bubble and the color of the 
bubble indicated the P value of the enrichment analy-
sis. Pathways with significant metabolic differences was 
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screened by considering impact value of the topological 
analysis and P value of the enrichment analysis. From the 
bubble diagram, we could find out that alanine, aspartate 
and glutamate metabolism pathway was the most sig-
nificant changes after gas plasma treatment in MOLM13 
cells. Furthermore, it was worth noting that d-glutamine 
and d-glutamate metabolism were also significantly 
changed in leukemia cells.

Inhibition of GLS after plasma treatment leading 
to disruption of glutamine metabolism
We found that glutamine in alanine, aspartate and glu-
tamate metabolism pathway and in d-glutamine and 
d-glutamate metabolism pathway was up-regulated in 
plasma treatment group (Fig. 5). Studies have shown that 
glutamine metabolism plays an important role in bio-
synthesis, energy metabolism and cell homeostasis of 
tumor cells and promotes tumor growth [25, 26]. Moreo-
ver glutaminase (GLS) is overexpressed in many tumor 
cells and converts glutamine to glutamic acid, which is 
then converted to ∝-KG and introduced into TCA cycle 

[25]. We therefore hypothesized that glutaminase activ-
ity of plasma-treated leukemia cells was reduced and glu-
tamine could not be normally metabolized and converted 
to glutamic acid, which suppressed the proliferation of 
leukemia cells and even leaded to leukemia cells apopto-
sis. This also explained why alanine, aspartate and gluta-
mate metabolism are abnormal after plasma treatment.

To determine whether the differentially metabolic 
pathway and the differential metabolite were responsible 
for leukemia cells death, we analyzed glutaminase activ-
ity of leukemia cells before and after plasma treatment. 
The result showed that glutaminase activity after plasma 
treatment was reduced (Fig. 8a). Subsequently, we inhib-
ited glutaminase activity with 20  µM/L and 40  µM/L 
BPTES (bis-2-(5-Phenylacetmido-1,2,4-Thiadiazol-2-yl)
Ethyl Sulfide, GLS inhibitor) for 24 h, 48 h and 72 h. We 
found that when glutaminase was inhibited (Fig. 8b), leu-
kemia cells activity was decreased (Fig. 8c). Interestingly, 
when we added glutamate to the experimental group 
containing 20 µM/L BPTES for 48 h, relative cell activity 
had a certain increase (Fig. 8d).

Fig. 6  KEGG pathway map with bright red/blue dots representing the differentially expressed metabolites. Bright red dots represented 
up-regulated metabolites; Bright blue dots represented down-regulated metabolites
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Discussion
As a new developed technology, atmospheric-pressure-
cold plasma has aroused widespread concern in biomedi-
cal applications. It has reported that atmospheric cold 
plasma can selectively induce various tumor cells death 
[27, 28]. And a large number of metabolites have been 
shown to contribute to distinguish tumors from healthy 
tissue [29]. Therefore, it’s a new perspective to explore 
changes in metabolites and metabolic pathways of tumor 
cells before and after plasma treatment. This metabolic 
study might be useful to identify metabolic pathways that 
could be targeted for plasma treatment. In this way, the 
bioenergetic state of the tumor can be destroyed more 
specifically. In our study, we investigated the changes in 
cell metabolism after CAP treatment of leukemia cells 
by GC–TOF–MS analysis. From results, we found that 
significant differences in metabolites between plasma 
treatment group and control group. By multivariate 
analysis, we screened for differential metabolites that 

were significantly up-regulated or down-regulated. The 
changes in the level of these differential metabolites were 
not independent. On the contrary, they had mutual pro-
motion or antagonism among them, which might affect 
the level of certain metabolic pathways and further affect 
the viability and metabolic level of cells. Therefore, it’s 
important to analyze the metabolic pathways that have 
the highest correlation with differential metabolites. 
It has reported that several drugs such as A1CAR and 
A-76969662 were able to upregulate AMPK signaling 
directly or indirectly by activating the AMPK protein 
complex so as to inhibit leukemia cells growth and even 
induce apoptosis [30–32]. However, by KEGG analysis 
of the metabolic pathways, we found that alanine, aspar-
tate and glutamate metabolism had significant change 
while AMPK signaling pathway had no change after 
plasma treatment in leukemia MOLM13 cells. We next 
focused on glutamine, the differential metabolite in ala-
nine, aspartate and glutamate metabolism pathway and 
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in d-glutamine and d-glutamate metabolism pathway, 
because many studies have showed that glutamine plays 
an important role in signal transduction and proliferation 
of tumor cells [26, 33]. The first step of glutamine catabo-
lism occurs through the activation of glutaminase (GLS), 
which catalyzes the conversion of glutamine to glutamic 
acid. Inhibition of glutaminase can inhibit leukemia 
cell growth and even induce apoptosis [34]. In cluster 
analysis, we found that glutamine was upregulated after 
plasma treatment. In order to determine its reason, we 
investigated that GLS activity in leukemia cells after 
plasma treatment, and the result showed that GLS activ-
ity was decreased. We also inhibited GLS activity of leu-
kemia cells by BPTES and found that inhibiton of GLS 
activity reduced cell viability. However, when added glu-
tamate to leukemia cells inhibited GLS activity, we found 
increased relative cell activity. The above results showed 
that CAP treatment could inhibit the GLS activity of 

leukemia cells so that glutamine was not able to be nor-
mally metabolized to produce glutamic acid and thus 
accumulated, which might lead to leukemia cells death 
due to the lack of required nutrients. Our current work 
initially screened metabolites and metabolic pathways 
with significant differences of leukemia cell after CAP 
treatment with reduction of viability. At the same time, 
we used pathway inhibitors to manipulate the perturbed 
key pathway and analyzed the causes and effects of this 
pathway change. With more details about the changes of 
metabolic pathways induced by CAP treatment, it will be 
a breakthrough to improve the treatment effect by CAP 
in tumor therapy of leukemia or even other tumors.
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Conclusions
In conclusion, we analyzed the differential metabolites 
in leukemia cell between plasma treatment group and 
control group by bioinformatics analysis. More impor-
tantly, we found a crucial differential metabolic pathway, 
alanine, aspartate and glutamate metabolism pathway, 
which was vulnerable to plasma treatment. Its changes 
may lead to leukemia cells apoptosis. Metabolomic analy-
sis is therefore a promising approach to investigate the 
key targets of plasma-treated tumor. The present study 
may be a meaningful finding for further screening the 
optimum target of plasma treatment for tumors.
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