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ABSTRACT: Paleo-wildfires can help elucidate the transition trends of Earth from “icehouse” to “greenhouse,” thereby allowing us
to forecast the current changes associated with wildfires of this era. In this study, the early Permian Shanxi Formation in the
Pingdingshan coalfield, located south of the North China Basin, was selected as a study site. Based on data on inertinite content,
inertinite reflectance, nine polycyclic aromatic hydrocarbons (PAHs), paleo-wildfires, and their paleoclimate effect during the early
Permian coal formation were systematically analyzed. The inertinite content in coal in the study area ranged from 9.76 to 29.65%,
with an average of 19.32%. Meanwhile, the average inertinite reflectance values ranged from 2.41−4.74%, with an average of 2.75%.
PAHs in the study area were mainly tricyclic and tetracyclic; the contents of fluorene, phenanthrene, pyrene, bypyrene,
benzo[b]fluoranthene, and benzo[e]pyrene were higher than those of other PAHs in the same stratum. The total concentration of
PAHs varied widely between layers (3601−21,894 ng/g). The presence of paleo-wildfires was confirmed by the contents of inertinite
and PAHs. It can be concluded that paleo-wildfires in the study area were dominated by surface fires at low and medium
temperatures based on the combustion equation. The oxygen content in the paleo-atmosphere of the Early Permian Shanxi
Formation in the study area was 24.29%, which provided the necessary conditions for the occurrence of wildfires.

1. INTRODUCTION
Wildfires not only refer to modern occurrences but also include
paleo-wildfire events before theQuaternary period,1−3 which are
an important part of earth systems.4,5 Paleo-wildfires have been
widespread since Silurian plants first emerged on the continent
and have had a dramatic impact on terrestrial ecosystems.2,6−10

Environmental factors and climatic conditions greatly influence
the frequency and intensity of wildfires.4,11 Large-scale wildfire
events not only consumed oxygen but also produced large
amounts of greenhouse gases and particulate matter, leading to
changes in global climate.6,9,12,13 Therefore, an in-depth study of
paleo-wildfires has important significance for exploring the
transition trends of the Earth from ″icehouse″ to ″greenhouse″
climates.2,8,11

Wildfires warm the atmosphere by emitting black carbon,
which is paleoecologically known as charcoal in the μm and mm
sizes;3,5,8,14 these are also referred to as inertinite in
anthracology, with several scholars agreeing that it is the

product of the incomplete combustion of plants.7,14−17 In
addition, pyrolytic PAHs are commonly used as evidence of
wildfire burning;18−22 however, most studies on paleo-wildfires
have focused on periods of biological mass extinction, such as
the Cretaceous−Paleocene,23,24 Permian−Triassic,7,25−29 and
Jurassic3,16 extinction events. Meanwhile, the Late Carbon-
iferous−Permian was a globally important period of coal
accumulation and a period of major changes in global plate
tectonic patterns, climate, marine environments, and ecosys-
tems. Different from previous studies on coal formation in
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continental facies, the study area was mainly marine or
transitional facies during this period. What is the anomaly in
the identification of wildfire events? What is the correlation
between the changes of oxygen and carbon content in the
atmosphere and the paleoclimate? It is of great significance to
the climate environment and carbon cycle that we are facing
today, and the study area is located in low latitudes and at the
junction of plate tectonics. To address this, this study
investigates paleo-wildfire events and their paleoclimatic effects
in the Early Permian coals of southern North China.
Furthermore, this research provides a scientific basis for the
global greenhouse effect by focusing on the identification of
macroscopic charcoal in coal rock samples, the content and
reflectance of inertinite, and PAH analyses in coal seams.

2. GEOLOGICAL BACKGROUND
The Pingdingshan coalfield is situated at the southern margin of
the North China Craton and the northern margin of the Qinling
orogenic belt (see Figure 1), which is part of the North China
Craton Xiaoxiong Tectonic Zone. The regional structural
features of NW-trending tensile faults and folds are formed
under the influence of the NW-trending tensile stress and
tension−torsion stress. Regional structural lines are mostly NW-
trending followed by NE-trending, with faults characterized by
their large-scale and long extensions.30−32 The Pingdingshan
coalfield is part of the Late Paleozoic coal-bearing basin in North
China.
The main coal-bearing strata are the Late Paleozoic Permian

coal-bearing rock systems, which are divided from bottom to top
into the Lower Permian Taiyuan Formation, Shanxi Formation,
Middle Permian Lower Shihezi Formation, and Upper Permian
Upper Shihezi Formation, respectively.31 Since the late Late
Carboniferous, the seawater in the study area has undergone
large-scale sea regression from the southeast direction, followed
by a brief sea immersion, which created a suitable condition for
the development of No.21, forming the No.21 coal seam with
stable deposition and large thickness in the whole area.35

3. MATERIALS AND METHODOLOGY
Samples of No.21 coal were collected from the Early Permian
Shanxi Formation of ShoushanMine, Pingdingshan Coalfield. A
total of 13 samples (numbered SY-1 to SY-13, where SY-5 is
mudstone gangue) were collected from fresh drill cores at
intervals of 20 cm from the bottom to the top and placed into
sealed bags immediately after collection.

3.1. Maceral Identification. Polished powder coals were
prepared according to the GB/T 15590-2008 ″Method for
Sample Preparation of Coal and Rock Analysis″, and the
macerals of coal were identified according to GB/T 8899-2013
″Method for the Determination of Microgroups andMinerals in
Coal″ by using the oil-soaked lens of a Zeiss Axio Scope A1
microscope with a 10× eyepiece and a 50× objective lens.

3.2. Reflectance Determination. The reflectance of the
prepared polished powder coals was determined using a Leica
CRAIV 508 DM4P microscope with an eyepiece of 10× and an
objective lens of 50× oil immersion, according to GB/T 6948-
2008 ″Microscopic DeterminationMethod of Reflectance of the
Specular Group of Coal″. The aforementioned tests were
completed at Henan Polytechnic University in Jiaozuo, China.

3.3. PAH Testing.Using an Agilent 6890GC/5975iMSmass
spectrometer, the test conditions were as follows: initial
temperature of 50 °C was held for 1 min, ramped up to 120
°C at 20 °C per minute, and increased for 25 min at 3 °C/min to
310 °C. The carrier gas used was 99.999% helium with a flow
rate of 1 mL/min and an injection temperature of 300 °C. The
mass spectrometer was operated in the electron collision mode
with an ionization energy of 70 eV and full scan/multi-ion data
acquisition, according to the GB/T 18606-2017 standard
(″Determination of Biomarkers in Sediments and Crude Oil
by Gas Chromatography Mass Spectrometry″). The quality
requirements are in line with the national standard GB /
T18606-2017, that is, when the blank sample is made, there is no
obvious impurity peak in the baseline and the generated mass
chromatographic peaks were normally distributed and sym-
metrical. The precision of the test method the parameter values
determined by the comparison experiment obey the normal
distribution, and the repeatability and reproducibility are
calculated according to the method specified in GB/T 6379.1-

Figure 1. Tectonic location map of the study area, (a) Location of the study area in Asia (Modified with permission from ref 17. Copyright Elsevier
Ltd., 2012), (b) Location of the study area in the North China Craton (modified with permission from refs 33 and 34. Copyright Royal Society and
Elsevier Ltd., 2012).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00127
ACS Omega 2023, 8, 24210−24217

24211

https://pubs.acs.org/doi/10.1021/acsomega.3c00127?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00127?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00127?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00127?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2004. This experiment was performed at the State Key
Laboratory of Oil and Gas Resources and Exploration, China
University of Petroleum (Beijing).

4. RESULTS
4.1. Macerals in Coal. The maceral content of coal samples

in the study area ranged from 84.16 to 92.31%, with amean value
of 85.13% (see Table 1). The vitrinite group content ranged

from 70.35 to 90.24%, with a mean value of 80.29%; it was
dominated by desmocollinite and lenticular telocollinite,
followed by telinite and vitrodetrinite and then occasional
corpocollinite and gelocollinite (see Figure 2). The inertinite
content ranged from 9.76 to 29.65%, with a mean value of
19.32%; it was dominated by semifusinite and fusinite, whose
cell structures have been expanded or squeezed and damaged,
while also occasionally comprising secretinite and funginite (see

Table 1. Test Results of the Maceral Content and Reflectance of Vitrinite and Inertinite in Coal Samples

samples maceral minerals vitrinite exinite inertinite random reflectance of vitrinite random reflectance of inertinite

SY-1 90.48 9.52 75.49 0 24.51 1.528 2.467
SY-2 88.68 11.32 87.99 1.31 10.70 1.543 2.636
SY-3 87.30 12.70 82.35 2.04 15.61 1.553 2.489
SY-4 87.43 12.57 77.63 1.32 21.05 1.494 2.794
SY-6 50.00 50.00 90.24 0 9.76 1.496 4.740
SY-7 84.16 15.84 84.97 0 15.03 1.491 2.915
SY-8 92.31 7.69 80.41 0 19.59 1.512 2.504
SY-9 90.29 9.71 70.35 0 29.65 1.502 2.548
SY-10 85.80 14.20 82.99 0 17.01 1.509 2.631
SY-11 86.08 13.92 73.77 0 26.23 1.404 2.303
SY-12 89.75 10.25 74.43 0 25.57 1.454 2.539
SY-13 89.33 10.67 82.83 0 17.17 1.443 2.409
average value 85.13 14.87 80.29 0.39 19.32 1.49 2.75

Figure 2.Microscopic structural characteristics of maceral: (a−c) desmocollinite (C2) and telocollinite (C1) with pyrite (py); (d, e) fusinite (F) with
obvious cell structure; (f) fusinite and semifusinite (Sf); (g−i) semifusinite and pyrite show high reflectivity of pyrite and high relief of semifusinite.
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Figure 2). The exinite content ranged from 0 to 2.04%, with a
mean value of 0.39%. The vitrinite content increased from ∼75
to ∼90% from SY-1 to SY-6, showing an increasing trend; from
SY-6 to SY-13, the content decreased from∼90 to 70%, showing
a decreasing trend. The inertinite content decreased from ∼24
to∼9% from SY-1 to SY-6, showing a decreasing trend; from SY-
6 to SY-13, the content increased from ∼9 to ∼25%, showing an
upward trend (see Figure 3).

4.2. Reflectance. The random vitrinite reflectance of coal
samples in the study area ranged from 1.404 to 1.553% with a
mean value of 1.49%, which is a coking coal of medium−high
coal rank metamorphism. The random reflectance of inertinite
ranged from 2.409 to 4.740% with a mean value of 2.75%. The
reflectance of all samples is ∼2.5%, except for sample SY-6,
which exhibits a larger value (see Figure 3).

4.3. Polycyclic Aromatic Hydrocarbons. A total of 17
PAHs were extracted from coal samples, namely: naphthalene-
(Nap.), fluorine(Flu.), phenanthrene(Phe.), anthracene(Ant.),
fluoranthene(FL.), pyrene (Pyr.), benzo[a]anthracene (BaA.),
cyclopentane (CHR.), benzo[b]fluoranthene (BbF.), benzo[k]-
fluoranthene (BkF.), benzo[e]pyrene (Bep.), benzo[a]pyrene

(Bap.), Perylene(Per.), benzo[ghi]perylene (Bghip.), indeno-
[1,2,3-cd]pyrene (IP.), dibenzo[a, h]anthracene(DBA.), and
halo benzene (Cor.). In this study, Flu, Phe, Pyr, minerals, BkF,
and Bep were at higher levels relative to other PAHs in the same
stratum. The total concentration of PAHs also varied in a
relatively large range (3601−21,894 ng/g) among different
strati, with SY-11 being the lowest and SY-1 the highest (see
Table 2). PAHs in the coal samples were classified according to
the number of rings, with dicyclic, tricyclic, tetracyclic,
pentacyclic, and hexacyclic rings accounting for 0.1, 72.9, 17.6,
8, and 1.3% of the total rings, respectively. Thus, these coal
samples were dominated by tricyclic and tetracyclic aromatic
hydrocarbons.

5. DISCUSSION
5.1. Evidence of the Existence of Paleo-Wildfires.

5.1.1. Charcoal. Although the genesis of inertinite in coal is still
debated in the academic world, with the deepening of research,
increasing evidence shows that inertinite is the product of
incomplete combustion of plants.3,5,7,15,16,28,36−38

Figure 3. Variation trend of inertinite content and random reflectance test results in coal samples.

Table 2. Contents of PAHs in the Samples

PAHs (ng/g) SY-1 SY-2 SY-3 SY-4 SY-6 SY-7 SY-8 SY-9 SY-10 SY-11 SY-12 SY-13

Nap. 1 0 0 0 88 1 4 0 0 0 1 14
flu. 3229 2077 695 847 1339 957 1406 762 1467 568 1264 2023
Phe. 12,087 7402 2136 2795 3441 3437 3774 2451 4975 2078 3568 6713
Ant. 18 10 3 4 7 4 6 4 8 3 5 8
FL. 425 239 100 110 115 126 127 80 147 71 133 258
Pyr. 733 392 167 183 194 227 218 138 261 125 231 445
BaA. 213 109 37 52 70 95 82 65 153 70 112 230
CHR. 3097 1438 490 554 527 652 593 371 722 364 696 1252
BbF. 718 331 189 202 125 184 185 112 187 108 246 378
BkF. 70 40 19 22 18 24 21 12 23 13 26 43
Bep. 841 370 345 258 127 208 223 116 185 116 306 459
Bap 146 66 37 43 35 50 42 24 44 23 47 83
Per. 14 9 1 5 3 4 4 2 3 1 3 6
Bghip. 44 18 18 18 12 19 19 10 16 10 21 31
IP. 166 64 99 73 32 65 72 34 49 34 98 124
DBA. 71 29 17 21 17 28 23 12 23 12 25 39
Cor. 19 7 12 10 5 13 14 7 8 6 19 21
Σ PAHs 21,894 12,602 4364 5195 6155 6096 6811 4201 8270 3601 6801 12,128
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The inertinite content in the study area ranges from 9.76 to
29.65%, with a mean value of 19.32%, which is moderately high
compared to that of the Late Carboniferous Taiyuan Formation
(<25%), Early Permian Shanxi Formation (20−35%), and Late
Permian (<30%) of southern China in the North China
Basin,15,39 and it is moderately low compared to that of the Early
and Middle Jurassic of northwest China (30−50%)39 and the
Middle Jurassic (30−50%) in Northwest China.39 Meanwhile,
this is higher than the 4.27% content in peat in the current
environment.40 These values indicate that wildfire events were
present in the study area during the Early Permian deposition
and occurred significantly more frequently than in the current
environment in the region.

5.1.2. Polycyclic Aromatic Hydrocarbons. PAHs are
commonly used as combustion indicators due to their pyrolytic
genesis, especially when they coexist with charcoal.19,41−43 The
most significant source of pyrolytic PAHs is the incomplete
combustion of organic matter in forest fires,43−45 which is
considered an indicator of paleo-wildfire events due to its
inertness and long-term preservation capacity. The ratio method
has been widely applied to determine the source of PAHs.
Yunker et al.45 proposed a method that utilized BaA/228 and
IP/(IP + BghiP) ratios to study PAHs sources in the Fraser River
basin and concluded that BaA/228 > 0.35 indicates combustion
sourcing, BaA/228 < 0.2 indicates petrogenic sourcing, and
BaA/228 values between 0.2 and 0.35 are indicative of
petroleum combustion. IP/(IP + BghiP) > 0.5 suggests that
grass, wood, and coal combustion; IP/(IP + BghiP) < 0.2
indicates petrogenic sourcing and 0.2 < IP/(IP + BghiP) > 0.5
indicates liquid fossil fuel. The BaA/228 ratios in the study area
range from 0.16 to 1.01, with the ratios of SY-1, SY-4, SY-6, SY-9,
and SY-11 being 0.16, 0.23, 0.31, 0.29, and 0.31, respectively.
The remaining seven samples exhibit BaA/228 ratios exceeding
0.35 and IP/(IP + BghiP) ratios greater than 0.5 (0.73−0.85),

Figure 4. Contents of PAHs in nine combustion sources (PHE and CHR refer to the right ordinate).

Figure 5. Variation trends of the total content of PAHs and inertinite from nine combustion sources in coal samples.

Table 3. Parameter Values in Eq 2

best max min

omin (%) 16 16 16
omax(%) 35 33 38
n 1.8 1.7 1.8
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suggesting that PAHs in coal samples from the study area are
mainly derived from biomass combustion and may also have a
petroleum source.
According to the classification scheme of Huang et al.,46 Shen

et al.,42 Song et al.,43 etc., this paper focuses on the analysis of
Phe, Pyr, CHR, BbF, Bep, Bap, Bghip, IP, and Cor, as well as
nine pyrolytic PAHs. The change trends of the nine pyrolytic
PAHs in the coal of the study area are in good agreement (see
Figure 4), and there is a significant increase in the SY-8 and SY-
10 seams. The sum of pyrolytic PAHs shows a trend of
decreasing and then increasing from bottom to top (see Figure
5), which has a good correlation with the variation trend of
inertinite content in coal (see Figure 3), indicating that these
nine pyrolytic PAHs are formed via the combustion and thermal
decomposition processes during inertinite formation.

5.2. Types of Paleo-Wildfires. Based on the spatial
distribution of fuels and burning temperatures, paleo-wildfires
can be divided into three types: ground, surface, and crown
fires.10,37,47 Ground fire fuels are mainly organic matter such as
dead branches and leaves as well as peat from decaying
vegetation below the ground surface, and they generally burn at
temperatures less than 350 °C. Surface fire fuels include mainly
fallen leaves from herbaceous plants, shrubbery, and forest
floors, burning at temperatures of ∼200−700 °C. Crown fire
fuels are mainly produced by fires spreading from the canopy of
trees and large shrubs to the canopy and usually burn at
temperatures >800 °C.2,48,49 Scott and Glasspool38 demon-
strated, experimentally, that inertinite reflectance is positively
correlated with charcoal formation temperature, and Jones et
al.50 proposed the following combustion equation:

= + × =T R r184.10 117.76 %( 0.91)o
2

(1)

where T is the temperature at which the charcoal was formed
and Ro% is the reflectance of the inertinite.

When choosing the value of reflectance, we considered the
fact that the microscopic charcoal is light in mass and can be
carried to high altitudes by the hot air flow generated during
combustion, after which it is carried hundreds or even thousands
of kilometers away. Therefore, we needed to choose the average
reflectance of the inertinite to estimate the combustion
temperature and determine the type of wildfires. The average
reflectance of the inertinite in the coal of the study area is∼2.5%,
and the burning temperature can be estimated between 455.30
and 742.28 °C according to the formula; this indicates that the
type of paleo-wildfire in the early Permian coal-forming period
in the study area were mainly surface fires with low and medium
temperatures.

5.3. Early Permian Paleo-Wildfires in Relation to
Paleoclimate. The occurrence of paleo-wildfire requires
three factors: fuel, fire source, and oxygen, with oxygen content
being a prerequisite that affects flammability. Scott and
Glasspool38 inferred the oxygen content of the paleo-
atmosphere based on the charcoal identified in the stratigraphy.
Studies have identified 17% oxygen content as the lower limit for
natural wildfire occurrence,38,51 18.5% for fires to spread, and
>23% for wildfires to be frequent.6,40,52

Glasspool et al.40 reconstructed the atmospheric oxygen
content over 400 million years based on the relationship
between the inertinite content in coal seams and the
atmospheric oxygen content; they later refined the model
using the following equation:
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where I is the inertinite content andO is the atmospheric oxygen
content. Table 3 shows the range of values of Omin, Omax, and n,
where Omin is the oxygen content when the inertinite content is
0, Omax is the oxygen content when the inertinite content is
100%, and n is the maximum gradient of the S curve shown in
Figure 6. The average inertinite content in the Early Permian
Shanxi Formation coal samples in the study area is 19.32%, and
the paleo-oxygen content is 24.29%, as calculated by eq 2,
indicating that wildfires were frequent in the study area during
this period. Diessel15 collected the global inertinite content from
Devonian to Quaternary coal. The average inertinite content of
the Early Permian Shanxi Formation coal in North China is

Figure 6. Calibration curve of inertinite content in coal and atmospheric oxygen.

Table 4. Average Content of Inertinite in Shanxi Formation
Coal of Early Permian in North China

region
average content of
inertinite (%) reference

Fuxin basin (Liaoning Province) 20.5 15
Xingtai coal field (Hebei Province) 45 15
No. 4 coal in Liulin coal field (Shanxi
Province)

14.63 53

No. 5 coal in Liulin coal field (Shanxi
Province)

24.62 53

Ordos basin 34.3 54
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obtained by adding to the data of the Early Permian Shanxi
Formation (see Table 4). The value ranges from 14.63 to 45%,
and the average inertinite content in the study area is 19.32%,
i.e., within the range in North China, thus indicating that the
calculated ancient oxygen content in the study area is
reasonable.

6. CONCLUSIONS

(1) The inertinite in the coal of the Early Permian Shanxi
Formation in southern North China is dominated by
semifusinite and fusinite. Meanwhile, the inertinite
content ranges from 9.76 to 29.65% (with an average of
19.32%), which is at a moderately high level compared to
the Permian in North China.

(2) According to the ratio method, PAHs in the coal samples
are mainly sourced from biomass combustion and may
also be produced via petroleum combustion. The nine
pyrolytic polycyclic aromatic hydrocarbons (PAHs) in
coal are highly consistent; their content is in accordance
with that of inertinite, indicating the existence of paleo-
wildfires in the study area.Moreover, the type of wildfire is
mainly surface fire at medium and low temperatures.

(3) The oxygen content of the Early Permian Shanxi
Formation paleo-atmosphere in southern North China
is inferred to be 24.29% based on the charcoal identified in
the stratigraphy, which, when combined with evidence on
charcoal and PAHs, suggests the presence of frequent
paleo-wildfires in the study area.
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