
Atheroprotective Effects and
Molecular Mechanism of Berberine
Lu Xing1†, Xin Zhou1†, Ai-Hong Li2, Hui-Jin Li 1, Chun-Xia He1, Wei Qin1, Dong Zhao1,
Peng-Quan Li1, Li Zhu1 and Hui-Ling Cao1,2*

1Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical
University, Xi’an, China, 2Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute,
Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi’an, China

Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide.
Atherosclerosis is the main pathological basis of cardiovascular diseases and it is closely
associated with hyperlipidemia, endothelial injury, macrophage-derived foam cells
formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet
aggregation, and altered gut microbiota. Various symptomatic treatments, that are
currently used to inhibit atherosclerosis, need to be administered in long term and their
adverse effects cannot be ignored. Berberine (BBR) has beneficial effects on
atherosclerosis through regulating multiple aspects of its progression. This review
highlights the recent advances in understanding the anti-atherosclerosis mechanism of
BBR. BBR alleviated atherosclerosis by attenuation of dyslipidemia, correction of
endothelial dysfunction, inhibition of macrophage inflammation and foam cell formation,
activation of macrophage autophagy, regulation of the proliferation and migration of
VSMCs, attenuation of platelet aggregation, and modulation of gut microbiota. This
review would provide a modern scientific perspective to further understanding the
molecular mechanism of BBR attenuating atherosclerosis and supply new ideas for
atherosclerosis management.
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HIGHLIGHTS

1) Berberine attenuated atherosclerosis by regulating dyslipidemia.
2) Berberine alleviated atherosclerosis by affecting cellular targets, including ameliorating

endothelial injury, inhibiting the formation of macrophage-derived foam cells, regulating the
proliferation andmigration of vascular smoothmuscle cells, and suppressing platelet aggregation.

3) Berberine restrained atherosclerosis by modulating gut microbiota.

INTRODUCTION

According to the World Health Organization (WHO), an estimated 17.9 million people died of
cardiovascular diseases, accounting for 30% of the total mortality worldwide (WHO, 2020).
Atherosclerosis is the main pathological basis of cardiovascular diseases (Benjamin et al., 2019).
The complex pathological mechanisms are developed by various factors, such as hyperlipidemia,
endothelial injury, macrophage-derived foam cells formation, proliferation andmigration of vascular
smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota (Tabas et al., 2015;
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Jonsson and Backhed, 2017; Fang et al., 2018; Qiao and Chen,
2018; Marchio et al., 2019). Atherosclerosis is initiated primarily
by the accumulation of low-density lipoprotein cholesterol (LDL-
C) in the vessel wall and subsequently intensified by oxidized low-
density lipoprotein (oxLDL) (Marchio et al., 2019). Circulating
oxLDL, increased chemokines together with the expression of
adhesion proteins trigger the recruitment of immune cells,
particularly monocytes (Buckley and Ramji, 2015). The
monocytes then differentiate into macrophages, which engulf
oxLDL and lead to foam cell formation—the hallmark of
atherosclerosis (McLaren et al., 2011; Buckley and Ramji,
2015; Tabas and Bornfeldt, 2016). Subsequently, necrosis or
apoptosis of foam cells, proliferation and migration of VSMCs
coupled with chronic inflammatory response result in lesion
development and atherosclerosis complications (McLaren
et al., 2011; Buckley and Ramji, 2015; Basatemur et al., 2019).

Clinically, drugs used for symptomatic treatment mainly
include lipid-lowering drugs (statins and niacins), antiplatelet
and thrombolytic drugs (aspirin and urokinase), and
anticoagulant drugs (warfarin). For atherosclerosis patients
with ischemic symptoms, treatment of vasodilators and
β-blockers such as phentolamine and propranolol can also be
applied. Atherosclerosis can be effectively attenuated by these
drugs, but the adverse effects of the drugs have been widely
documented after long-term therapy. For example, statins can
cause liver injury, myopathy, and rhabdomyolysis that cannot be
ignored and there is an urgent need to develop new therapies
(Björnsson, 2017; Liu et al., 2019).

The Nobel Prize in Physiology or Medicine in 2015 was
awarded to Youyou Tu for the discovery of qinghaosu
(artemisinin) and to William C. Campbell and Satoshi Omura
for ivermectin’s discovery. This heralded a new golden age of
natural product drug discovery (Li and Lou, 2018; Shen, 2015).
Berberine (BBR, Figure 1) has beneficial effects on atherosclerosis
through regulating multiple aspects of its progression (Neag et al.,
2018; Feng et al., 2019). The guideline from the European Society
of Cardiology and European Atherosclerosis Society suggested

BBR as a dietary supplement and functional food for the
treatment of dyslipidemia (Catapano et al., 2016). This review
highlights the recent advances in understanding the anti-
atherosclerosis mechanism of BBR, as shown in Figure 2. BBR
alleviated atherosclerosis by attenuation of dyslipidemia,
correction of endothelial dysfunction, inhibition of
macrophage inflammation and foam cell formation, activation
of macrophage autophagy, regulation of the proliferation and
migration of VSMCs, attenuation of platelet aggregation, and
modulation of gut microbiota. This review would provide a
modern scientific perspective to further understanding the
molecular mechanism of BBR attenuating atherosclerosis and
supply new ideas for atherosclerosis management.

BERBERINE ATTENUATED
ATHEROSCLEROSIS BY REGULATING
DYSLIPIDEMIA
Hyperlipidemia, characterized by declined high-density
lipoprotein (HDL) and increased total cholesterol (TC),
triglyceride (TG), and LDL-C levels in serum, is a major risk
factor of atherosclerosis. LDL-C plays a primary role in the
formation of atherosclerosis plaque (Botham and Wheeler-
Jones, 2013; Marchio et al., 2019). With the growing use of
alternative herbal medicines for atherosclerosis management,
BBR, as a bright new star, could alleviate atherosclerosis
through regulating serum lipid profile.

According to the studies of Kong et al., orally administered
BBR reduced the serum TC, TG, and LDL-C in
hypercholesterolemic patients after a 3-months treatment. BBR
activated extracellular signal-regulated kinase (ERK) and
increased the mRNA stability of low-density lipoprotein
receptor (LDLR), thus exhibited lipid-lowering effects in
hyperlipidemic hamsters and HepG2 cells (Kong et al., 2004).
This finding is consistent with a recent study conducted by Zhou
et al., who suggested that BBR and its metabolites increased the
LDLRmRNA and protein and had beneficial effects on inhibiting
cellular lipid accumulation (Zhou et al., 2014). Clinical trials
indicated that BBR increased plasma HDL-C and reduced TC,
TG, and LDL-C after three months of administration (1.0 g daily)
in subjects with low cardiovascular risk and patients with
dyslipidemia and type 2 diabetes (Zhang et al., 2008; Derosa
et al., 2013). The combination of BBR and simvastatin reduced
serum LDL-C (46.2%) more effectively than that of BBR (26.8%)
or simvastatin (28.3%) administered alone. This role might be
attributed to the up-regulatory effects on LDLR expression of
BBR, which is distinct from the inhibition of 3-hydroxy-3-
methylglutaryl-coenzyme A reductase with statins (Kong et al.,
2008). Another study by Brusq et al. demonstrated that BBR
inhibited lipid synthesis in HepG2 cells through the activation of
adenosine monophosphate-activated protein kinase (AMPK) in
addition to upregulating the LDLR (Brusq et al., 2006). Recent
studies showed that BBR could alleviate hyperlipidemia partly by
promoting intracellular cholesterol efflux and decreasing
cholesterol uptake by enterocytes (Wang et al., 2014; Li et al.,
2015; Ma et al., 2020a).

FIGURE 1 | The molecular structure of Berberine.
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BERBERINE ALLEVIATED
ATHEROSCLEROSIS BY AFFECTING
CELLULAR TARGETS

Endothelial Cells
Vascular endothelium, the inner layer of the cardiovascular
system, is a major regulator of vascular homeostasis in healthy
individuals (Gimbrone and Garcia-Cardena, 2016). The healthy
endothelium function mainly as a mechanical barrier between
blood vessel walls and plasma molecules. Besides, it can respond
to physical and chemical stimuli by producing numerous factors
that regulate leukocyte attachment, vascular tone,
thromboresistance, vessel wall inflammation, and VSMCs
proliferation (Deanfield et al., 2007). Endothelial cell dysfunction
plays a vital role in atherosclerosis lesion initiation and progression.

Berberine Suppressed Endothelial Proinflammation
A spectrum of factors lead to endothelial dysfunction, which
results in the expression of endothelial-leukocyte adhesion

molecules [e.g., vascular cell adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1), and endothelial-
leukocyte adhesion molecule-1], secreted chemokines [e.g.,
monocyte chemoattractant protein-1 (MCP-1), interleukin-8
(IL-8)] and other effector proteins (Gimbrone and Garcia-
Cardena, 2016). These events bring about the recruitment of
numerous inflammatory cells and trigger vascular inflammation.

BBR was reported to dramatically decrease oxLDL-stimulated
adhesion of monocytes to human umbilical vein endothelial cells
(HUVECs) by suppressing the expression of VCAM-1 and
ICAM-1 (Huang et al., 2013). The results from Wang et al.
showed that BBR attenuated the production of adhesion
molecules and suppressed monocyte attachment to endothelial
cells. Therefore, the hyperglycemia-induced endothelial injury
was prevented partly by activating the AMPK signaling cascade
(Wang et al., 2009b). Ko et al. revealed that BBR dose-
dependently suppressed angiotensin II-induced U937 cells
adhesion to HUVECs and mRNA expression of C-C
chemokine receptor 2 (CCR-2) in U937 monocytes and MCP-
1 in HUVECs, thus effectively alleviated angiotensin II-induced

FIGURE 2 | Atheroprotective effect and key molecular mechanism of Berberine (Fang et al., 2018). Berberine attenuated atherosclerosis by regulating dyslipidemia
and gut microbiota. Meanwhile, Berberine alleviated atherosclerosis by affecting cellular targets, including ameliorating endothelial injury, inhibiting the formation of foam
cells derived from macrophages, regulating the proliferation and migration of vascular smooth muscle cells and suppressing platelet aggregation. Annotations: ↓,
reduction/down-regulation/inactivation; ↑, induction/up-regulation/activation.
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endothelial inflammation (Ko et al., 2007). HMC05, an extract
containing BBR, inhibited attachment of monocytes to
endothelial cells dose-dependently via decreasing the levels of
VCAM-1, ICAM-1, MCP-1, and CCR-2 after tumor necrosis
factor-α (TNF-α) induction, which was similar to that of BBR
(Lee et al., 2011).

Berberine Inhibited Endothelial Cell Apoptosis
Apoptosis of vascular endothelial cells contributes to
atherosclerosis development. The endothelial cells undergo
apoptosis when exposed to various environmental changes,
such as elevated oxLDL, blood glucose, and reactive oxygen
species (ROS), decreased nitric oxide, and low shear stress
(Paone et al., 2019).

BBR down-regulated the expression of proliferating cell
nuclear antigen, nuclear factor κB (NF-κB), and lectin-like
oxLDL receptor-1. Meanwhile, BBR inactivated
phosphatidylinositol 3 kinase (PI3K)/AKT serine/threonine
kinase (Akt), ERK1/2, and p38 mitogen-activated-protein
kinase (MAPK) signaling pathways. Thus, BBR protected
against oxLDL-caused endothelial dysfunction (Wang et al.,
2009b; Caliceti et al., 2017; Xu et al., 2017). Pretreatment of
BBR suppressed lipopolysaccharide (LPS)-induced apoptosis in
HUVECs by blocking the c-Jun N-terminal kinase-mediated
signaling pathway (Guo et al., 2016). BBR also alleviated high-
glucose-mediated endothelial damage and enhanced
vasodilatation via activating AMPK signaling cascade (Wang
et al., 2009b).

Berberine Attenuated Oxidative Stress
Oxidative stress is the imbalance of excessive ROS generation and
inactivated antioxidant defense systems. ROS generators in the
vessel wall include nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, xanthine oxidase, mitochondrial enzymes,
and uncoupled endothelial nitric oxide synthase (eNOS). The
antioxidant enzymes in atherosclerosis contain superoxide
dismutase, catalase, glutathione peroxidase, and paraoxonases
(Förstermann et al., 2017).

BBR treatment ameliorated CD31+/CD42− microparticles-
induced endothelial dysfunction through decreasing oxidative
stress in HUVECs (Cheng et al., 2013). Studies conducted by
Wang et al. (2009b), Zhang et al. (2013) demonstrated that BBR
alleviated endothelial injury induced by high glucose and
palmitate partly via activation of the AMPK signaling cascade
and reduced generation of ROS. BBR could reduce intracellular
ROS levels induced by TNF-α (Caliceti et al., 2017) and
endothelial progenitor cells dysfunction caused by TNF-α
could be improved by BBR via PI3K/Akt/eNOS signal
pathway (Xiao et al., 2014). Furthermore, HMC05, an extract
containing BBR, markedly inhibited the production of ROS and
dose-dependently attenuated TNF-α-induced adhesion of
monocytes to endothelial cells (Lee et al., 2011).

Berberine Activated Nitric Oxide Signaling Pathway
Nitric oxide (NO) produced by nitric oxide synthase (NOS) in
endothelial cells is of great importance in regulating vascular
tone. Neuronal NOS, eNOS, and inducible NOS are related to the

production of NO. Neuronal NOS and eNOS function as anti-
atherosclerosis factors, whereas inducible NOS is likely to play a
pro-atherosclerosis role (Li et al., 2014). BBR showed
atheroprotective effects by affecting the NO signaling pathway.

It was demonstrated that phosphorylation of eNOS at Ser1177
was enhanced by BBR dose-dependently, leading to an increased
eNOS protein expression and NO production (Wang et al.,
2009b). Zhang et al. (2013) reported that BBR considerably
upregulated eNOS expression and NO levels in palmitate-
treated HUVECs and ameliorated endothelial dysfunction. Bu-
Shen-Ning-Xin Decoction, a Chinese herbal compound
containing BBR, upregulated NO synthesis via estrogen
receptor β pathway. Subsequently, NO suppressed apoptosis
and NF-κB activity in endothelial cells and inhibited
atherosclerosis progression (Wang et al., 2013). Elevated
circulating endothelial microparticles (EMPs) are tightly linked
to endothelial dysfunction. The diminished eNOS protein
expression mediated by EMPs was markedly inhibited by BBR
in HUVECs. Furthermore, BBR-induced decline in circulating
CD31+/CD42−microparticles contributed to the improvement of
endothelial function in healthy subjects (Wang et al., 2009a;
Cheng et al., 2013).

Macrophages
Macrophages play critical roles in the initiation and progression
of atherosclerosis. The inflammatory responses and macrophage-
derived foam cell formation are the principal events in
atherosclerosis (Moore et al., 2013; Tabas and Bornfeldt,
2016). BBR can achieve its atheroprotective functions by
affecting the behavior of macrophages, such as inhibition of
macrophage inflammation, foam cell formation, and activation
of macrophage autophagy.

Anti-Inflammation
Macrophages constitute the most prominent inflammatory cells
in atherosclerosis lesions. Activated macrophages produce a
series of inflammation-related factors such as interleukin-1β
(IL-1β), TNF-α, interleukin-6 (IL-6), IL-8, MCP-1, matrix
metalloprotease-9 (MMP-9), and so on, which initiate
inflammation to induce atherosclerosis (Kleemann et al., 2008).

BBR significantly downregulated the expression of
proinflammatory genes such as IL-1β, IL-6, MCP-1, inducible
NOS, cyclooxygenase-2, and MMP-9 through AMPK activation
in macrophages (Jeong et al., 2009). In oxLDL-induced
macrophages, BBR markedly upregulated miR150-5p level and
decreased P2X7R-mediated extracellular matrix
metalloproteinase inducer (EMMPRIN) and MMP-9
expression (Lu et al., 2021). In LPS-stimulated macrophages
(RAW264.7), BBR treatment potently suppressed the
expression of inflammatory cytokines such as TNF-α, IL-6,
and MCP-1 through inhibition of NF-κB signaling via sirtuin
1-dependent mechanisms (Zhang et al., 2017). According to the
study by Chen et al., BBR inhibited acetylated low-density
lipoprotein-induced TNF-α, MCP-1, and IL-6 expression
through peroxisome proliferator-activated receptor c signaling
pathway in macrophages (Chen et al., 2008). BBR tremendously
inhibited TNF-α and IL-6 expression stimulated with an HIV
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protease inhibitor by modulating endoplasmic reticulum stress
signaling pathways in murine macrophages (Zha et al., 2010).
BBR reduced the expression of MMP-9 and EMMPRIN by
suppressing the activation of p38 and NF-κB signaling
pathways in human THP-1 macrophages (Huang et al., 2011;
Huang et al., 2012b). BBR alleviated NLR Family Pyrin Domain
Containing 3 inflammation activation by reducing IL-1β
secretion via NF-κB inhibition in macrophages (Jiang et al.,
2017). HMCO5 containing BBR suppressed the activation of
NF-κB and subsequently inhibited the secretion of TNF-α and
IL-1β in LPS stimulated RAW264.7 cells (Kim et al., 2007). In
mouse RAW264.7 macrophages and primary hepatocytes, BBR
significantly downregulated the proinflammatory cytokines
(TNF-α, IL-6, IL-1β, and MCP-1) via suppressing the protein
expression of endoplasmic reticulum stress genes (Wang et al.,
2020b).

Berberine Inhibited Foam Cell Formation
Foam cell formation is a hallmark at the initial stage of
atherosclerosis. The augmented ox-LDL influx and
accumulation of cholesterol esters in intimal macrophages are
responsible for this issue. Macrophages express a series of
scavenger receptors (SR) with affinity to oxLDL, such as SR
class A type I, CD36, and LOX-1. ATP-binding cassette
transporters ABCA1 and ABCG1 and SR class B type I (SR-
BI) in macrophages are involved in reverse cholesterol transport
(Chistiakov et al., 2016; Chistiakov et al., 2017). These proteins
protected macrophages from the formation of foam cells.

BBR can dose- and time-dependently downregulate oxLDL
receptor-1 expression and facilitate SR-BI expression in
macrophage-derived foam cells induced by oxLDL (Guan et al.,
2010). Simultaneous administration of BBR and atorvastatin
inhibited the expression of LOX-1 via the endothelin-1 receptor
in monocyte/macrophages, which inhibited foam cell formation
(Chi et al., 2014). BBR reduced foam cell formation by decreasing
oxLDL internalization and increasing cholesterol efflux via the
suppression of CD36, lectin-like oxLDL receptor-1, and adipocyte
enhancer binding protein 1 in macrophages (Huang et al., 2012a).
Macropinocytosis, excess free cholesterol-induced membrane
ruffling, and hypercholesterolemic serum-induced cholesterol
accumulation were inhibited by BBR in macrophages (Zimetti
et al., 2015). BBR inhibited foam cell formation by increasing
cholesterol efflux through enhancing liver X receptor α-ABCA1
expression in macrophages (Lee et al., 2010).

Berberine Promoted Macrophage Autophagy
Macrophage autophagy inhibited foam cell formation by the
deficiency of oxLDL ingestion and the increase of efferocytosis
and cholesterol efflux in macrophages. Therefore, promoting
macrophage autophagy may alleviate atherosclerosis (Jia et al.,
2006; Muller et al., 2011; Scherz-Shouval and Elazar, 2011; Shao
et al., 2016).

BBR treatment alleviated inflammation in murine macrophages
(J774A.1) by promoting autophagy, which was initiated by
activation of the AMPK/mechanistic target of rapamycin
(mTOR) signaling pathway (Fan et al., 2015). BBR-mediated
sonodynamic therapy effectively induced cholesterol efflux by

promoting ROS generation, and induced autophagy by
regulating the PI3K/Akt/mTOR signaling pathway in THP-1
macrophages, peritoneal macrophages, and derived foam cells
(Kou et al., 2017). BBR activated Sirt1 via the nicotinamide
adenine dinucleotide synthesis pathway to promote transcription
factor EB nuclear translocation and deacetylation, which in turn,
triggered autophagy in peritoneal macrophages (Zheng et al., 2021).
BBR reduced plaque area and alleviated inflammation in
atherosclerosis rats with damp-heat syndrome via promoting
LC3-II protein expression and inhibiting P62 protein expression.
3-methyladenine, an inhibitor of autophagy, significantly
aggravated atherosclerosis progression (Ke et al., 2020).

Vascular Smooth Muscle Cells
VSMCs play a critical role in atherosclerosis progression. The
aberrant proliferation and migration of VSMCs promote
extracellular matrix formation in atherosclerosis plaque areas
(Doran et al., 2008; Chistiakov et al., 2015). Studies confirmed
that BBR could suppress the proliferation and migration of
VSMCs to attenuate atherosclerosis.

Angiotensin II and heparin-binding epidermal growth factor
were enormously inhibited by BBR via delaying or partially
inactivating the Akt signaling pathway, which inhibited the
proliferation and migration of VSMCs (Lee et al., 2006).
Lysophosphatidylcholine induced VSMCs proliferation and
migration, which triggered the intimal thickening in
atherosclerosis lesions. BBR inhibited lysophosphatidylcholine-
stimulated VSMCs proliferation and migration via suppression
of ROS generation and ERK1/2 signaling pathway (Cho et al.,
2005). BBR inhibited platelet-derived growth factor (PDGF)-
induced VSMCs growth via activation of AMPK/p53/p21Cip1

signaling pathway and suppressed PDGF-stimulated migration
via inhibition of Ras, Cell Division Cycle 42, and Rac Family
Small GTPase 1 (Liang et al., 2008). Mechanical injury-induced
VSMCs growth was prevented by BBR treatment through mitogen-
activated protein kinase/ERK activation, early growth response
gene, c-Fos, Cyclin D1, and PDGF subunit A expression, protein
disulfide isomerase activation as well as phosphorylation of MAPKs
(Liang et al., 2006;Wang et al., 2020a). BBR disrupted the binding of
p27, p21 with S-phase kinase-associated protein-2, and induced G0/
G1 phase arrest, which attenuated the proliferation of A7r5 induced
by PDGF (Liu et al., 2011). Liu et al. found that BBR exerted anti-
migratory properties in humanVSMCs, possibly by downregulating
MMP-2/9 and urokinase-type plasminogen activator and inhibiting
AP-1 and NF-κB signaling pathways (Liu et al., 2014). BBR
treatment dose-dependently inhibited VSMCs migration induced
by upregulations of MMP-3 and MMP-9 via decreasing the
phosphorylation of Akt at Ser473 with C. pneumoniae infection
(Ma et al., 2015). HMC05, containing BBR and hesperidin in large
quantities, protected VSMCs against oxidative stress by increasing
NADPH: quinone oxidoreductase-1 gene expression via the
regulation of Ras homolog family member A and/or Ras (Gum
et al., 2014).

Platelets
Impaired regulation of platelet activation/aggregation is a prime
cause of arterial thrombosis, this vital complication of
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atherosclerosis triggering myocardial infarction and stroke
(Schafer and Bauersachs, 2008). The platelet activation and
apoptosis would induce vascular occlusions and
atherothrombotic events. BBR could inhibit these events by
suppressing platelet aggregation and superoxide production via
regulating NADPH oxidase, aldose reductase, and glutathione
reductase in platelets with excess glucose. In addition, BBR
inhibited platelet adhesive property and apoptosis induced by
high glucose (Paul et al., 2019). BBR significantly inhibited
rabbit platelet aggregation by suppressing the synthesis of
thromboxane A2 (Huang et al., 2002). Molecular docking
studies indicated that BBR interacted with thrombin by
hydrogen bond and π-π interactions. Direct binding studies,
competitive binding assay, and platelet aggregation assay
demonstrated that BBR was a thrombin inhibitor showing
direct activity in inhibiting platelet aggregation (Wang et al., 2017).

BERBERINE REDUCED
ATHEROSCLEROSIS BY AFFECTING GUT
MICROBIOTA
The gut microbiota and its metabolites play a critical role in
atherosclerosis development (Mantziaris and Kolios, 2019).
Trimethylamine (TMA), produced by gut microbiota, was
converted to trimethylamine-N-oxide (TMAO) via flavin-
containing monooxygenase form 3 (FMO3) in the liver
(Schiattarella et al., 2017; Mantziaris and Kolios, 2019; Tang
et al., 2019). It has been found that the BBR treatment reduced
high-fat diet feeding-induced FMO3 expression and altered the
composition of gut microbiota (Shi et al., 2018). The synthesis of
TMA and TMAOwere inhibited remarkably in choline-fed ApoE-/-

and C57BL/6J mice by BBR via suppressing choline-to-TMA
conversion. However, a slight increment was observed in chow-
fed mice, indicating that BBR might decrease TMA production by
gut microbiota only when the choline was overdosed (Li et al.,
2021). There was a piece of evidence that BBR directly changed the
bacterial community composition and function by reducing
Clostridium spp. and subsequently activated farnesoid X receptor
signaling (Tian et al., 2019). BBR treatment markedly increased
Akkermansia spp. abundance in HFD-fed ApoE-/- mice,
contributing to the anti-atherosclerotic properties of BBR (Zhu
et al., 2018). In line with those findings, replenishment with
Akkermansia significantly reduced atherosclerosis induced by a
high-fat diet by attenuating the aortic and systemic metabolic
inflammatory response (Li et al., 2016). A previous study
revealed that BBR stimulated the gut bacteria-derived
polyamines and enhanced mucin secretion in the colon of mice,
exhibiting Akkermansia-promoting effects (Dong et al., 2021).
According to the study of Wu et al., the abundance of Alistipes,
Allobaculum, Blautia, Roseburia, and Turicibacterwere significantly
increased, and the abundance of Bilophila was altered after BBR
treatment. Thus, themetabolism of lipid, glycan and the synthesis of
short-chain fatty acids were promoted and the production of
TMAO was reduced (Wu et al., 2020).

CONCLUDING REMARKS

Herbal medicines represent indispensable roles in new drug
discovery, and they are relatively safe since herbs have been
used for thousands of years in clinical practice. The
atheroprotective effects of BBR have been explored during the
past decades. We reviewed its anti-atherosclerotic effects from the
perspective of molecular targets. Numerous evidences suggested
that BBR had great therapeutic potential to attenuate
atherosclerosis through lipid modification, anti-inflammatory,
anti-oxidant, anti-apoptosis, anti-proliferative, anti-platelet
aggregation, and gut microbiota modulatory activities. Among
them, anti-inflammatory was the dominant factor. BBR
significantly inhibited the expression of inflammatory factors
and adhesion molecules, thus played anti-inflammatory role
both in macrophages and endothelial cells.

Although a lot of knowledge has been gained in
understanding the BBR-mediated atheroprotective potential,
there are numerous questions ahead. The poor aqueous
solubility and low dissolution of BBR lead to low oral
bioavailability (< 1%) and have limited its clinical application
(Liu et al., 2010). However, the poor bioavailability of BBR and
its favorable atheroprotective effects are not contradictory. On
the one hand, poorly absorbed BBR remained inside the
gastrointestinal tract for a long time. It interacted
comprehensively with the gut microbiota, which contributed
to the anti-atherosclerosis effects of BBR by regulating the gut
microbiota. On the other hand, BBR could convert into multiple
metabolites. Many metabolites have anti-atherosclerotic effects,
some metabolites showed even more potent anti-atherosclerotic
effects than BBR (Cho, 2011; Cao et al., 2013; Wu et al., 2014;
Zhou et al., 2014; Ning et al., 2015). In addition, various
approaches have been explored to enhance its oral
bioavailability (Mujtaba et al., 2021). BBR-trapped solid lipid
nanoparticles and micelles had shown anti-hyperlipidemic and
anti-atherosclerosis effects in animals (Ma et al., 2020b; Sailor
et al., 2021). Some BBR analogs and derivatives also exhibited
anti-atherosclerosis properties (Feng et al., 2017a; Feng et al.,
2017b). Our understanding of BBR has been deepening by
chemical, pharmacological, and system biological approaches
(Liu et al., 2013). Especially, with the help of network
pharmacology, computer-assisted molecular docking and
genomic, and metabolomic profiling approaches, novel anti-
atherosclerosis mechanisms/targets of BBR will be identified. In
short, BBR could be a promising candidate for atherosclerosis
management.
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GLOSSARY

Akt AKT serine/threonine kinase

AMPK adenosine monophosphate-activated protein kinase

BBR berberine

CCR-2 C-C chemokine receptor 2

EMPs endothelial microparticles

eNOS endothelial nitric oxide synthase

ERK extracellular signal-regulated kinase

HDL high-density lipoprotein

HUVECs human umbilical vein endothelial cells

ICAM-1 intercellular adhesion molecule-1

IL-8 interleukin-8

IL-1β interleukin-1β

IL-6 interleukin-6

LDL-C low-density lipoprotein cholesterol

LDLR low-density lipoprotein receptor

LPS lipopolysaccharide

MAPK mitogen-activated-protein kinase

MCP-1 monocyte chemoattractant protein-1

MMP-9 matrix metalloprotease-9

NADPH nicotinamide adenine dinucleotide phosphate

NF-κB nuclear factor κB

NOS nitric oxide synthase

oxLDL oxidized low-density lipoprotein

PCNA proliferating cell nuclear antigen

PDGF platelet-derived growth factor

PI3K phosphatidylinositol 3 kinase

ROS reactive oxygen species

SR scavenger receptors

TC total cholesterol

TG triglyceride

TMA trimethylamine

TMAO trimethylamine-N-oxide

TNF-α tumor necrosis factor-alpha

VCAM-1 vascular cell adhesion molecule-1

VMSCs vascular smooth muscle cells

WHO World Health Organization
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