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Abstract: Embryo implantation is a highly synchronized bioprocess between an activated 

blastocyst and a receptive uterus. In mice, successful implantation relies on the dynamic 

interplay of estrogen and progesterone; however, the key mediators downstream of these 

hormones that act on blastocyst competency and endometrium receptivity acquisition are 

largely unknown. In this study, we showed that the expression of osteopontin (OPN) in 

mouse blastocysts is regulated by ovarian estrogen and uterine micro-environment. OPN 

mRNA is up-regulated in mouse blastocyst on day 4 of pregnancy, which is associated 

with ovarian estrogen secretion peak. Hormone treatment in vivo demonstrated that OPN 

expression in a blastocyst is regulated by estrogen through an estrogen receptor (ER). Our 

results of the delayed and activated implantation model showed that OPN expression is 

induced after estrogen injection. While estrogen treatment during embryo culture in vitro 

showed less effect on OPN expression, the tubal ligation model on day 3 of pregnancy 

confirmed that the regulation of estrogen on OPN expression in blastocyst might, through 

some specific cytokines, have existed in a uterine micro-environment. Collectively, our 

study presents that estrogen regulates OPN expression and it may play an important role 

during embryo implantation by activating blastocyst competence and facilitating the 

endometrium acceptable for active blastocyst. 
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1. Introduction 

In mammals, embryo implantation occurs in a limited time known as the window of implantation, 

specifically, the time after ovulation and the full formation of the corpus luteum [1]. The maternal 

hormones from ovaries, including estrogen and progesterone are known as the principle hormones in this 

process [2]. According to the respective secretion level during the menstrual cycle or estrous cycle, it is 

widely believed that progesterone is essential for embryo implantation in almost all the mammals 

studied. The estrogen secreted during proliferative phase is mainly responsible for endometrial 

epithelium proliferation, whereas the function of estrogen secreted in the luteal phase was 

species-specific [3,4]. In species including monkey, rabbit and hamster, progesterone alone is sufficient 

for implantation, while it remains indistinct whether implantation requires ovarian estrogen in humans 

and primates [5,6]. In mice, the secretion of progesterone is stimulated by mating behavior and the 

formation of corpora luteum, and gradually increases during the progress of pregnancy, while the 

ovarian estrogen has two secreted peaks at the proestrous phase and pre-implantation phase on day 4 of  

pregnancy (day of vaginal plug as day 1). The delayed implantation model could be induced by 

ovariectomy on the morning of day 4 before the estrogen secretion peak, the embryo will enter into a 

quiescent state which could be maintained for few days under the condition of continuing progesterone 

treatment. Subsequently, if estrogen is appended, embryo implantation could be activated 24–48 h after 

progesterone priming [7]. In contrast, embryo implantation will occur appropriately if the ovariectomy is 

performed after the estrogen secretion peak [8]. Such a delayed-activated implantation model 

demonstrated that pre-implantation estrogen mainly interacts with its receptor α (ERα) and directs 

successful implantation in a progesterone primed endometrium. ERα expression peaks on day 5 of 

pregnancy suggest that ERα might regulate implantation [9]. Additionally, the finding that ER protein 

was localized in mouse blastocyst during implantation [10] indicates that estrogen may directly regulate 

the gene expression in blastocyst via binding to ERα. 

In mammals, embryo implantation begins with apposition, attachment and adhesion between uterine 

luminal epithelium (LE) and conceptus trophoblast. Several studies have identified that blastocyst 

adhesion to and invasion into uterine endometrium require the existence of extra cellular matrix (ECM) 

which including fibronectin and OPN [11,12]. OPN, a member of ECM protein family, contains a 

Gly-Asp-Ser (RGD) sequence that binds to cell surface integrins to promote cell-cell attachment and 

cell spreading [13]. OPN protein is expressed at a high level in uterine epithelium during mid-secretory 

phase, decidual tissues and invading cytotrophoblst in humans [14,15], and the OPN/integrin αvβ3 

complex has been identified as a marker of distinguishing receptive from non-receptive endometrium 

in clinical practice [16]. The study in pigs and sheep illustrated that the complexes of OPN and integrin 

subunits were constitutively expressed on trophectoderm and at the apical surface of uterine LE and 

uterine glandular epithelium (GE) during early pregnancy, to induce adhesion between LE and 

trophoblast and stimulate the cytoskeletal reorganization [17,18]. In mice, OPN mRNA was localized 

in uterine GE on day 4 and luminal epithelium on day 5 of pregnancy [19], as well as the immune cells 
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surrounding the decidual cells during early pregnancy [20]. It is suggested that OPN plays an important 

role in mouse pregnancy, for the OPN-deficient mice display decreased pregnancy rate during 

mid-gestation without any abnormality in embryo number, suggesting peri-implantation pregnancy 

loss, and OPN expression in LE may provides a connection for conceptus to LE [21]. Chaen’s group [19] 

proposed that OPN secreted from uterine endometrial gland on day 4 is involved in adhesion complex 

assembly and responsible for blastocyst adhesion competence. However, Botquin’s group 

demonstrated the increase of OPN expression in mouse blastocyst compared to morula using in situ 

hybridization, in which the OPN mRNA is localized in inner call mass (ICM) on day 4 of pregnancy. 

However, the specific regulatory mechanism remains unknown [22].  

Although it is well known that blastocyst activation and uterine receptivity establishment rely on 

ovarian estrogen secretion, the specific mechanism and concrete signal pathways by which estrogen 

facilitates blastocyst activation and adhesion to endometrium remain unknown. Here we demonstrated 

that OPN expression in mouse blastocyst is regulated by ovarian secreted estrogen together with uterine 

micro-environment. It is conceivable that estrogen may regulate blastocyst activation, adhesion, and 

uterine receptivity through up-regulating the mediator of OPN in blastocyst.  

2. Results and Discussion 

2.1. Results  

2.1.1. Increase of OPN Expression Corresponds to Ovarian Estrogen Surge 

OPN mRNA expression in mouse embryos on day 3 and 4 was quantitated by real-time PCR. 

Compared with the mRNA from the embryos collected on day 3, OPN mRNA expression was 

significantly up-regulated on day 4. OPN mRNA expression in blastocysts from 12:00 and 20:00 was 

much higher than that at 08:00, the time when estrogen surge occurs (Figure 1A).  

In immunofluorescence protein localization experiments, increase of OPN protein expression was 

observed on day 4 periodically in mouse blastocysts, but not obvious on day 3 (Figure 1B(a–c)). The 

fluorescence intensity of blastocysts collected from 12:00 (Figure 1B(g–i)) and 20:00 (Figure 1B(j–l)) 

was greater than that from 08:00 (Figure 1B(d–f)). These findings demonstrated that OPN mRNA and 

protein are highly expressed in mouse blastocyst on day 4, specifically, the OPN expression pattern 

corresponds to the secretion pattern of ovarian estrogen. 

2.1.2. Ovarian Estrogen Is Necessary for Up-regulating OPN Expression in Mouse Blastocyst 

Because OPN was strongly expressed in blastocysts between and after ovarian estrogen secreted 

surge, steroids treatment was performed to examine whether OPN expression is regulated by estrogen 

in vivo. Mice were treated with estrogen (estradiol-17β, 17β-E2), 4-Hydroxyestradiol (estrogen 

metabolite, 4-OH-E2) and estrogen receptor α (ERα) antagonist (ICI 182,780) at 07:00 on day 4 by s.c. 

injection, respectively. Blastocysts were collected at 20:00 on day 4 for detecting the OPN expression. 

Our real-time PCR results showed that OPN mRNA expression is up-regulated by injecting estrogen at 

a dose exceeding physiological concentration (oil injection group). 4-OH-E2, an estrogen metabolite 

which could provide estrogenic activity, also increased OPN mRNA expression in mouse blastocysts. 



Int. J. Mol. Sci. 2013, 14 14507 

 

 

In contrast, ICI 182,780, an estrogen antagonist which could competitively bind to ERα, did not 

increase OPN mRNA level in blastocysts (Figure 2A).  

Figure 1. The expression and localization of osteopontin (OPN) in mouse blastocysts at the 

different phase of ovarian estrogen surge. (A) Real-time PCR detects the relative expression 

of OPN mRNA in mouse blastocysts collected from day 3 and day 4 at 08:00, 12:00 and 

20:00 (* p < 0.05); (B) Representative embryonic immunofluorescence from day 3 (a–c) and 

day 4 at 08:00 (d–f), 12:00 (g–i) and 20:00 (j–l) by laser confocal microscopy, OPN and 

nuclei were stained with FITC (green) and PI (red), respectively.  

To detect OPN protein expression in blastocysts, immunofluorescence experiment is performed. As 

shown in Figure 2B(d–f and g–i), the fluorescence intensity of blastocysts collected from  

estrogen (Figure 2B(d–f)) and 4-OH-E2 (Figure 2B(g–i)) treated groups was stronger than control  

group (Figure 2B(a–c)), while in the ICI 182,780 treated group, there was no fluorescence signal of 

OPN protein detected in blastocysts (Figure 2B(j–l)). These results from above indicated that ovarian 

estrogen regulates OPN expression, probably through ERα in vivo, and exogenous estrogen or estrogen 

metabolite were able to further up–regulate OPN expression.  

To further verify whether or not estrogen regulates OPN expression in blastocysts, the delayed and 

activated implantation model were utilized to detect OPN expression in dormant and activated 

blastocysts. Real-time PCR results showed that OPN mRNA expression is detected in activated 

blastocysts rather than dormant blastocysts (Figure 3A). Immunofluorescence results showed that the 

fluorescence intensity of activated blastocysts (Figure 3B(d–f)) is much higher than dormant  

blastocysts (Figure 3B(a–c)). Our delayed and activated implantation model supports the proposition 

that OPN expression in blastocysts needs the induction of estrogen. 
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Figure 2. The expression and localization of OPN in mouse blastocysts from steroids 

treatment models. (A) Real-time PCR detects the relative expression of OPN mRNA in 

mouse blastocysts collected from steroids treatment models (* p < 0.05); (B) Representative 

embryonic immunofluorescence from steroids treatment models by laser confocal 

microscopy: oil injection group (a–c), E2 injection group (d–f), 4-OH-E2 injection  

group (g–i), ICI 182,780 injection group (j–l), OPN and nuclei were stained with  

FITC (green) and PI (red), respectively. 

Figure 3. The expression and localization of OPN in mouse blastocysts from delayed and 

activated models. Ovariectomy was performed at 08:30–09:00 on day 4 of pregnancy, 

progesterone was injected to maintain the status of delayed implantation from days 5 to 7, 

dormant and activated blastocysts were collected before and 12 h after estrogen injection. 

(A) Real-time PCR detecting the relative expression of OPN mRNA in mouse blastocysts 

collected from delayed and activated model (* p < 0.05); (B) Representative embryonic 

immunofluorescence from delayed (a–c) and activated (d–f) model by laser confocal 

microscopy, OPN and nuclei were stained with FITC (green) and PI (red), respectively. 
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2.1.3. Ovarian Estrogen Induced OPN Expression Is Uterine Micro-Environment Dependent 

To further study the regulation mechanism of OPN expression, morula collected from day 3 of 

pregnancy were cultured in vitro, estrogen was added in cultural medium to detect its influence on OPN 

expression in in vitro cultured blastocysts. Compared with the blastocysts collected from day 4 in vivo, 

the OPN mRNA expression was down-regulated in in vitro cultured blastocysts with or without exposed 

to estrogen (Figure 4A). These data led to a hypothesis that estrogen’s effect on OPN expression requires 

some factors or signal pathways existed in uterine micro-environment. To verify this hypothesis, we 

used tubal ligation model to examine whether the uterine micro-environment is essential for OPN 

expression in blastocysts in vivo. Under the condition of normal ovarian estrogen secretion, mouse 

oviducts were ligatured at 16:00 on day 3. Compared with blastocysts collected from day 4 at 20:00, 

OPN mRNA expression in blastocysts flushed from oviducts at the same time was down-regulated 

(Figure 4A), indicating that estrogen may regulate OPN expression in blastocyst indirectly which needs 

the uterine micro-environment. OPN protein expression in blastocysts from in vitro culture and tubal 

ligation model was examined by immunofluorescence (Figure 4B), which further support the 

quantitative results of mRNA expression level. 

Figure 4. The expression and localization of OPN in mouse blastocysts from in vitro 

cultured and tubal ligation models. (A) Real-time PCR detects the relative expression of 

OPN mRNA in mouse blastocysts collected from in vitro cultured and tubal ligation model 

(* p < 0.05); (B) Representative embryonic immunofluorescence from in vitro cultured and 

tubal ligation model by laser confocal microscopy: the in vivo blastocysts on day 4 were 

taken as positive control (a–c), in vitro cultured with oil group (d–f), in vitro cultured with 

E2 group (g–i), tubal ligation (j–l), OPN and nuclei were stained with FITC (green) and  

PI (red), respectively. 

 

  



Int. J. Mol. Sci. 2013, 14 14510 

 

 

2.2. Discussion  

Blastocyst activation is a committed step for successful implantation, by which blastocyst hatches 

from zona pellucida and acquires the competency of adhesion and invasion. At the same time, the uterine 

endometrium needs to transform to a spatiotemporally compatible environment where is favorable for 

blastocyst implantation [5]. Successful implantation begins with the process of apposition, adhesion, 

attachment and invasion between implantation-competent blastocysts and receptive uterus, and a group 

of adhesion molecules, including integrins, selectins, cadherin family [23–25]. Among them, integrin 

family are glycoprotein and multi-functional with ability to bind to RGD sequence which existed in 

extracellular ligands including fibronectin, OPN and others [26], to mediate cellular motility and 

adhesion. The integrin αvβ3, αvβ1 and α4β1 expressed during implantation window in humans and pigs 

could promote cell-cell attachment and spreading through bridging the bilateral ligand receptors on 

blastocysts and uterine epithelial cells [27].  

OPN is a well-known ECM protein and cytokine contains RGD sequence, by which it could bind to 

integrin receptors expressed in cell surface and mediate cell adhesion, migration and differentiation [28]. 

It has been accepted that OPN-αvβ3 complex is a marker of uterine receptivity and implantation  

window [29], and large-scale transcriptomic approaches showed that OPN might participate in 

blastocysts-uterine epithelium interaction in humans and mice [16]. In pig, OPN mRNA is expressed by 

uterine LE and GE, but not by conceptus trophoblast, while OPN protein is present in uterine LE, GE 

and trophoblast, in vitro study illustrated that OPN binding to integrin receptors could induce 

cytoplasmic reorganization and focal adhesion in porcine uterine LE and conceptus trophoblast  

cell [18]. OPN is linked to the establishment and maintenance of pregnancy in ewes [30] and  

humans [31]. OPN mRNA is expressed in mouse blastocyst and specially localized in ICM on day 4 of 

pregnancy, but not the trophoblast [22]. In the mouse uterus, OPN mRNA is primarily localized in GE 

and weakly expressed in LE on day 4 [19]. Our quantitative results showed an increased level of OPN 

mRNA in mouse blastocyst compared to morula, while OPN proteins were localized in both ICM and 

trophoblast cells. As a secreted glycoprotein, OPN is existed in GE, LE and uterine lumen, indicating 

that the OPN protein found at trophoblast cells was of either uterine origin or ICM origin, and possibly 

involved in blastocyst-uterine interaction.  

Previous studies suggested that progesterone and estrogen are the dominant controllers during 

embryo implantation [32,33]. In domestic ruminants, estrogen and progesterone secretion during 

peri-implantation period could induce the secretion of histotroph from GE to support embryo 

development and regulate the expression of molecules in LE to mediate embryo adhesion and 

implantation [34,35]. In mice, the activation of blastocyst and uterine receptivity will be induced by the 

cooperation of estrogen and progesterone on day 4 [36]. Among them, estrogen may play a key role in 

determining the duration of implantation window by the transient estrogen secretion surge on day 4 [37]. 

The blastocyst implantation occurs at the midnight of day 4. After that, gravid corpus luteum keeps on 

secreting progesterone which is required for decidualization, placentation and maintenance of 

pregnancy [38]. Estrogen secretion surge merged between 09:00 to 12:00 on day 4 [39], studies found 

that plentiful molecules expressed in uterine epithelium were estrogen-responsiveness, and have 

influence on the interaction between blastocyst and uterus [40], including leukemia inhibitory  

factor (LIF) [41], signal transducer and activator of transcription 3 (STAT3) [42].  
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Our results demonstrated that OPN mRNA and protein expression level was up-regulated on day 4 in 

mouse blastocysts, which is associated with ovarian estrogen secretion surge, suggesting that OPN is an 

estrogen-induced gene which might relate to adhesive and invasive capacity of blastocysts. Here we 

found that OPN expression in blastocysts was up-regulated at 12:00 and 20:00 compared to 08:00 before 

ovarian estrogen surge. Enhancing the OPN expression induced by exogenous estrogen and 4-OH-E2 

indicates that OPN expressed in blastocysts is estrogen dependent. ICI 182,780 is an antagonist that 

competes with estrogen for ERα binding. The inhibition of OPN expression in mice injected with ICI 

182,780 suggests that estrogen regulate blastocyst OPN expression via ERα. These data strongly argue 

that estrogen regulates OPN expression in mouse blastocysts. Delayed and activated implantation model 

provided a comprehensive description that estrogen is indispensable for blastocyst activation and uterine 

receptivity competency. The dormant blastocysts we collected before estrogen activation manifested as 

OPN expression inhibited, while OPN expression was up-regulated after estrogen treatment as expected. 

These results synthetically illustrated that OPN expression in blastocysts is closely associated with 

ovarian secreted estrogen on day 4.  

In general, it has been thought that estrogen was not essential for decidualization and placentation in 

mice since mice performed with ovariectomy on day 5 of pregnancy are able to maintain pregnancy 

under the condition of progesterone supplement. However, Amrita’s group demonstrated that pregnant 

uterus could synthesize estrogen through de novo synthesis pathway, and decidualization may be 

compromised if uterine aromatase activity was inhibited [8]. In our study, OPN expression in blastocysts 

collected at 20:00 was higher than 12:00, part of reason might be that uterus synthesized estrogen has 

influence on OPN continuing expression. In order to studying the regulation manner of estrogen on OPN 

in blastocysts, we cultured morula till to blastocysts in vitro. Our experimental design is based on a 

hypothesis that estrogen could act directly on the embryos because of the presence of ER mRNA and 

protein in pre-implantation mouse embryos [10,43]. Beyond our expectation, compared to blastocyst 

formed in vivo, the OPN mRNA expression was down-regulated in in vitro cultured blastocysts, even 

with the supplementation of estrogen in culture medium. We deduced the possible reason for this might 

be that estrogen regulates OPN expression in blastocysts through the factors or signal pathways that 

exist in the uterus, rather than directly. We additionally established a tubal ligation model for supporting 

this conjecture. In our ligation model, the embryos were stagnated in oviducts on day 3, subsequently 

collected from oviducts at 20:00 on day 4, by which the blastocysts formed without uterine environment 

but with normal physiological estrogen in vivo were obtained. Quantification detection confirmed that 

OPN expression of blastocysts continuing existed in oviducts was restrained compared to “uterus 

checked-in” blastocysts in vivo. Taken together, excluding the canonical pathway that estrogen acts on 

blastocysts directly by binding to ER, estrogen is also likely to regulate the blastocyst competency 

indirectly via uterine micro-environment. However, the specific factors and signals involved need to be 

further investigated. These findings suggested that the regulation of blastocyst OPN expression by 

estrogen requires uterine micro-environment. However, the analysis of endometrial secretions 

contributing to peri-implantation events is too difficult for us to undertake noninvasively.  

Recently, several studies focused on uterine secretomic analysis and found that some contents of 

secretions might play a pivotal role in embryo-endometrial cross-talk. The uterine LE and GE secrete 

proteins and nutrients into uterine lumen for embryo development, pregnancy recognition and 

implantation [44]. The micro-environment of uterine fluid which contains an abundance of nutrients, 
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proteins, lipids and cytokines may participate in initiating implantation. Hannan’s work verified that 

vascular endothelial growth factor (VEGF), contained in endometrial secretions, could enhance 

blastocyst outgrowth and increase endometrial epithelia cell adhesion [45]. Clinical research found that 

leukemia inhibitory factor (LIF) level was decreased in the uterine flushing fluid of patients with 

adenomyosis [46]. Exosomes, the nanoparticles (30–150 nm in diameter) released from cells, can 

transfer small mRNAs and miRNAs to cells at distant sites through extracellular environment [47]. 

There were evidences proved that some exosomes, released from endometrial epithelium and 

contained specific miRNAs, could be transferred into blastocysts or epithelial cells to facilitate 

implantation [48]. OPN is secreted from uterine GE into uterine lumen immediately before and during 

embryo attachment, and OPN protein is present at the apical surfaces of both uterine LE and conceptus 

trophoblast. Studies found that OPN binds to intergrins expressed on LE and trophoblast cells in vitro 

to initiate integrin activation and outside-in signaling [17]. OPN is one histotroph in uterine flushings 

from humans and many domestic animals during early pregnancy [19,49]. Based on recent results, 

binding of OPN to integrin receptors on trophoblast cells not only stimulates adhesion and migration, 

but possibly has the effect on trophoblast proliferation [44]. Therefore, the localization of OPN protein 

in trophoblast cells may facilitate its proliferation, adhesive and invasive ability. 

3. Experimental Section  

3.1. Animal and Treatments 

Sexually mature mice (Kunming White outbred strain, 6–8 weeks) maintained in a controlled 

environment (14 h light and 10 h dark cycle). All animal procedures were approved by the Institutional 

Animal Care and Use Committee of Wuhan University.  

Female mice were super-ovulated by an injection of 7.5 IU of PMSG (Lizhu Company, Guangzhou, 

China) followed by 7.5 IU of hCG (Lizhu Company, Guangzhou, China) 48 h later. After hCG 

treatment, the mice were mated with fertile males of the same strain to induce normal pregnancy (the day 

of vaginal plug is the day 1 of pregnancy). 

Embryo collection and culture: on days 3 and 4, pregnancy was confirmed by recovering embryos 

from oviducts or uteri, blastocysts were collected by flushing the uterine horn at the different stage of 

ovarian estrogen secretion surge (08:00, 12:00 and 20:00 on day 4) and prepared for the following 

experiments. For in vitro embryo culture, embryos at morula stage were collected by flushing the 

oviducts with PBS, and cultured in single step medium (Irvine Bio. Inc., Irvine, CA, USA) under 

mineral oil (Sigma-Aldrich Inc., St. Louis, MO, USA) at 37 °C, 5% CO2 for 24 h to blastocyst stage. For 

oviducts ligation treatment, mouse oviducts were ligatured by 6–0 silk thread at the joint part of 

uteri-oviduct under ether anesthesia at 16:00 on day 3 to make the embryos detained in oviducts, then the 

embryos were collected at 20:00 on day 4.  

For steroids treatments, pregnant mice were treated with estradiol-17β (25 ng/mouse, Sigma-Aldrich 

Inc., St. Louis, MO, USA), 4-OH-E2 (50 ng/mouse, Sigma-Aldrich Inc., St. Louis, MO, USA) and ICI 

182,780 (1 mg/mouse, AstraZeneca, London, United Kingdom) at 07:00 on day 4 by s.c. injection, 

respectively, pregnant mice were accepted sesame oil (Sigma-Aldrich Inc., St. Louis, MO, USA) as 

negative control. For in vitro embryo culture, estradiol-17β dissolved in ethanol was supplemented in 
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medium, controls received ethanol only. For delayed and activated implantation model, pregnant mice 

were ovariectomized under ether anesthesia at 08:30–09:00 on day 4 of pregnancy. Delayed 

implantation was maintained by daily s.c. injection of progesterone (1 mg/mouse, Sigma-Aldrich Inc.,  

St. Louis, MO, USA) on days 5–7. To terminate delayed implantation, progesterone-primed 

delayed-implantation mice were treated with estradiol-17β (25 ng/mouse, s.c.) on day 7. The blastocysts 

from delayed and activated mice were collected before or 12 h after estrogen treatment, respectively. For 

in vivo steroids treatment and model building, each group included five pregnant mice, for normal 

morula and blastocyst collection, as well as in vitro embryo culture, each group collected at least 100 

embryos, and all the experiments will be repeated for three times. 

3.2. RNA Extraction and Real-Time PCR  

Mouse embryos were collected for total RNAs extraction using mRNA Capture Kit (Boehringer 

Mannheim, Germany) according to the manufacturer’s recommendations, total mRNA from blastocyst 

were reverse transcribed into cDNA by RNA PCR Kit (AMV) Ver.3.0 (TaKaRa Bio Inc, Tokyo, Japan).  

For real-time PCR, cDNA was amplified using a SYBR Premix Ex Taq kit (TaKaRa Bio Inc, Tokyo, 

Japan) on the Rotor-Gene 3000A system (Corbett Research, Mortlake, Victoria, Australia). The 

conditions used for real-time PCR were as follows: 95 °C for 10 s, followed by 45 cycles of 95 °C for  

5 s and 60 °C for 34 s. All reactions were run in triplicate. The corresponding primer sequences were 

used for real-time PCR. Gapdh served as internal control. Primer sequences used in real-time PCR for 

OPN were 5-CACTCCAATCGTCCCTAC-3 and 5-AGACTCACCGCTCTTCAT-3, for Gapdh were 

5-GTTGTCTCCTGCGACTTCA-3 and 5- GGTGGTCCAGGGTTTCTTA-3. Data from real-time PCR 

were analyzed using the 2−ΔΔCt method. The significance of difference between two groups was assessed 

by Student’s t-test. The multiple comparison was performed with Tukey’s ANOVA. p < 0.05 was 

considered statistically significant.  

3.3. Indirect Immunofluorescence  

For indirect immunofluorescence, the mouse blastocysts were fixed in 4% paraformaldehyde 

solution for 30 min at 4 °C, washed in PBS 3 times, and treated with 1% triton X-100 (Sigma-Aldrich 

Inc., St. Louis, MO, USA) for 20 min at room temperature. After rinsed with PBS, the blastocysts were 

blocked with 5% bovine serum albumin (Sigma-Aldrich Inc., St. Louis, MO, USA) for 30 min at 37 °C, 

followed by incubation with mouse monoclonal OPN antibody (1:100 dilution, Santa Cruz Inc., Dallas, 

Texas, USA) or rabbit Ig G (1:100 dilution, Santa Cruz Inc., Dallas, Texas, USA) at 4 °C overnight. 

Then the blastocysts were incubated with FITC -conjugated Goat anti-Mouse Ig G (PIERCE, Rockford, 

IL, USA) for 1 h at 37 °C followed by three final two-minute PBS washes before being counter stained 

with PI (Sigma-Aldrich Inc., St. Louis, MO, USA), the signal was detected by laser confocal microscopy 

(LEICA, Solms, Germany). 

4. Conclusions  

In summary, our studies identified that the expression of OPN in mouse blastocyst is regulated by 

estrogen, partially through the cytokines or some other pathways existing in the uterine 
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micro-environment. We supposed that OPN expression in blastocysts was, at least, partly involved in 

blastocyst activation to make them obtain the ability of adhesion and invasion, which is dependent on 

ovarian secreted estrogen. Although OPN is an estrogen responsiveness gene, the concrete regulation of 

estrogen on OPN expression is not direct but requires the uterine micro-environment. The possible 

pathway might be that estrogen activated some cytokines or OPN ligands through combining with its 

receptor, ERα. Since the OPN is associated with implantation competency of blastocysts, it is better to 

further study the specific regulatory mechanism on OPN expression. 
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