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Collagen IV (Col-IV) is a major component of basement
membranes, a specialized form of extracellular matrix that
enabled the assembly of multicellular epithelial tissues. In
mammals, Col-IV assembles from a family of six a-chains (a1–
a6), forming three supramolecular scaffolds: Col-IVa121, Col-
IVa345, and Col-IVa121–a556. The a-chains are encoded by six
genes (COL4A1–6) that occur in pairs in a head-to-head
arrangement. In Alport syndrome, variants in COL4A3, 4, or
5 genes, encoding Col-IVa345 scaffold in glomerular basement
membrane (GBM), the kidney ultrafilter, cause progressive
renal failure in millions of people worldwide. The molecular
mechanisms of how variants cause dysfunction remain obscure.
Here, we gained insights into Col-IVa345 function by deter-
mining its evolutionary lineage, as revealed from phylogenetic
analyses and tissue expression of COL4 gene pairs. We found
that the COL4AC1|2D gene pair emerged in basal Ctenophores
and Cnidaria phyla and is highly conserved across metazoans.
The COL4AC1|2D duplicated and arose as the progenitor to the
COL4AC3|4D gene pair in cyclostomes, coinciding with
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emergence of kidney GBM, and expressed and conserved in
jawed vertebrates, except for amphibians, and a second dupli-
cation as the progenitor to the COL4AC5|6D gene pair and
conserved in jawed vertebrates. These findings revealed that
Col-IVa121 is the progenitor scaffold, expressed ubiquitously in
metazoan basement membranes, and which evolved into
vertebrate Col-IVa345 and expressed in GBM. The Col-IVa345

scaffold, in comparison, has an increased number of cysteine
residues, varying in number with osmolarity of the environ-
ment. Cysteines mediate disulfide crosslinks between proto-
mers, an adaptation enabling a compact GBM that withstands
the high hydrostatic pressure associated with glomerular
ultrafiltration.

Collagen IV (Col-IV) is a principal component of basement
membranes, a specialized form of extracellular matrix that
enabled the genesis and evolution of multicellular epithelial
tissues (1, 2). In pioneering studies of the glomerular basement
membrane (GBM) of canine and bovine kidneys, Col-IV was
identified as a novel collagen and shown to be structurally
altered in diabetic kidney disease (DKD) (3–9). It was first
characterized as a supramolecular network of triple helical
protomers composed of a1 and a2 chains (10, 11). In subse-
quent studies of the GBM in Goodpasture’s disease (GP) and
Alport syndrome (AS; Fig. 1A), four additional chains were
discovered, a3–a6 (Fig. 1B) (12–20). The chains are encoded
by six genes (COL4A1–COL4A6), which are located in gene
pairs (COL4AC1|2D, COL4AC3/4D, and COL4AC5/6D), in a head-
to-head arrangement on three different chromosomes
(Fig. 1D) (21, 22). In mammals, the a-chains coassemble into
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Figure 1. Collagen IV (Col-IV)-related kidney diseases, protomer, and gene organizations in mammals. A, represents characteristic images of GBM
abnormalities in three major diseases: Goodpasture’s disease, an autoimmune disorder, which is diagnosed based on the linear immunofluorescent GBM
staining; Alport syndrome, a genetic disorder, where GBM is split with a characteristic basket weaving; diabetic nephropathy, a common complication of
diabetes, where GBM is dramatically thickened. In each of these pathologies, Col-IV is affected. B, six protein chains of Col-IV are produced in mammals.
These six chains assemble into trimeric complexes referred to as protomers. The N- and C-terminal 7S and noncollagenous (NC1) domains mediate end-to-
end homomeric interactions between protomers generating the different Col-IV scaffolds. Both 7S–7S interprotomer tetramers and NC1–NC1 interprotomer
dimers are covalently crosslinked. The Col-IVa345 protomer encodes multiple Cys residues, most of which (15) are found within the triple helical domain of
alpha 4 chain, which likely form lateral crosslinks between different Col-IVa345 collagen domains. The evolution of the cysteine residues is discussed later in
this article. C, the head-to-head arrangement of the three COL4A gene pairs found in mammals is shown. Their human chromosomal location is indicated,
and the distances between their transcriptional start sites is shown. GBM, glomerular basement membrane.

Evolutionary origin and diversification of the COL4 genes
heterotrimers, called protomers, of three distinct molecular
compositions: a121, a345, and a565, which in turn assemble
into three distinct supramolecular scaffolds, referred to as Col-
IV121, Col-IVa345, and Col-IVa121–a556 (23, 24).

The Col-IVa121 scaffold is a ubiquitous component of
mammalian basement membranes. For example, in the
nephron, this scaffold occurs in the GBM, mesangial matrix,
and basement membranes of Bowman’s capsule, tubules, and
capillaries (Fig. 2) (25, 26). The scaffold confers tensile strength
and acts as a tether for diverse macromolecules, including
2 J. Biol. Chem. (2025) 301(5) 108496
laminin, nidogen, proteoglycans, and growth factors, forming
the supramolecular complexes that interact with cell surface
receptors (2, 27–29). Disrupting this scaffold causes basement
membrane destabilization and tissue dysfunction in early
mouse development (30). Genetic defects of the Col-IVa121

scaffold cause Gould syndrome, porencephaly, and HANAC
syndrome in humans (31–33).

Conversely, the Col-IVa345 scaffold, encoded by COL4AC3/
4D and COL4AC5/6D gene pairs, has a restricted tissue distri-
bution in the lens capsule, retina, inner ear, testis, and kidney



Figure 2. Collagen IV (Col-IV) scaffolds of the mammalian kidney glomerulus. A, three distinct supramolecular Col-IV scaffolds, noted as Col-IVa121, Col-
IVa345, and Col-IVa121–a556, comprise the mammalian kidney glomerulus. Scaffolds are assembled from three different triple-helical protomers having three
molecular compositions of a-chains: a121, a345, and a565. Protomers are characterized by a 7S domain at the N terminus, a long collagenous domain of
Gly-Xaa-Yaa (GXY) repeats of �1400 residues with interruptions in the GXY repeats, followed by a noncollagenous (NC1) domain at the C terminus of
approximately �230 residues. Scaffold assembly steps include dimerization of NC1 trimers and tetramerization of 7S trimers (10). In addition to these
interactions, Col-IVa121 scaffold also possesses lateral associations with formation of supercoils (11). The Col-IVa121 scaffold is a component of the basement
membranes surrounding tubules, arterioles, and Bowman’s capsule. It is also found within the mesangial space. Uniquely, Bowman’s capsule contains the
heteroscaffold of Col-IVa121–a556. The glomerular corpuscle consists of looped capillaries lined with fenestrated endothelial cells, the glomerular basement
membrane (GBM), and podocytes. The Col-IVa345 scaffold is the major component of GBM; it is reinforced by disulfide bonds, which form lateral crosslinks
between protomers. B, mutations in any of the COL4A3, A4, or A5 genes that encode the Col-IVa345 scaffold cause Alport syndrome. Known disease variants
are mapped onto the predicted protein structures as yellow circles. Disease variants cause either the assembly of defective protomers or their complete
absence of assembled protomers. AA, afferent arteriole; DT, distal tubule; EA, efferent arteriole; MS, mesangial space; PT, proximal tubule.

Evolutionary origin and diversification of the COL4 genes
(34). In the nephron, Col-IVa345 is the major component of the
GBM, a critical morphological feature that functions as an
ultrafilter of proteins (Fig. 2) (25, 26, 34). In GP, affecting
thousands of people worldwide, autoantibodies target neo-
epitopes in the Col-IVa345 scaffold causing rapidly progressive
renal failure (19, 35–41). In DKD, affecting millions of people,
this scaffold is also involved in the thickening of the GBM
morphology that is associated with progressive kidney failure.
In AS, affecting millions of people, currently over 5000 genetic
variants occur in the COL4A3, COL4A4, and COL4A5 genes
(according to the ClinVar database (42)) (15, 43–47). Variants
cause either loss of scaffold from the GBM or assembly of a
defective scaffold, causing proteinuria and progression to
kidney failure (26, 48). A knowledge of how the Col-IVa345

scaffold functions at the molecular level is critical to under-
standing the pathogenesis of GP, DKD, and AS, thus providing
a framework for the development of therapies.

Here, we sought to gain insights into Col-IVa345 function by
determining its evolutionary lineage with the Col-IVa121

scaffold, as evinced from phylogenetic analyses, gene synteny,
J. Biol. Chem. (2025) 301(5) 108496 3



Evolutionary origin and diversification of the COL4 genes
and tissue expression of COL4 gene pairs. The recent avail-
ability of a plethora of high-quality genome assemblies pro-
vided an approach to trace the evolutionary emergence of
COL4 gene pairs. The findings revealed that Col-IVa121 scaf-
fold is the progenitor, expressed ubiquitously in basement
membranes in all animals, and that evolved into vertebrate
Col-IVa345 scaffold with expression mainly in the GBM. The
Col-IVa345 scaffold differs from Col-IVa121 by an increased
number of lateral disulfide crosslinks, indicating an evolu-
tionary adaptation that enabled the assembly of a compact
GBM that withstands the high hydrostatic pressure associated
with glomerular ultrafiltration.
Results

Phylogenetic analysis of the evolutionary lineage of COL4
gene pairs

We sought to determine the evolutionary lineage of the
COL4 gene pairs, using the approach of comparative genomics
and syntenic relationships. DNA sequence is conserved within
orthologous and paralogous genes, which allows evolutionary
relationships between genes to be determined. Analogously,
gene content of chromosomes, called synteny, is also
conserved even across large evolutionary distances (49, 50).
Moreover, gene order and orientation, collinearity, is often
conserved in microsyntenic blocks. Microsyntenic conserva-
tion can provide information about the origin of gene families
following speciation and chromosomal duplication. Impor-
tantly, recent advances in sequencing technology have facili-
tated the analysis of gene order and locus structure in diverse
species (51). These advances have been accompanied by im-
provements and standardization in the presentation of genome
structure that facilitates an informatics approach to decipher
the arrangement and genetic lineage of the COL4 gene family.

Prior studies (21, 52, 53) established that the six mammalian
COL4 genes are arranged in head-to-head pairs, noted as
COL4AC1|2D, COL4AC3|4D, and COL4AC5|6D gene pairs
(Fig. 1C). We searched diverse genomes across metazoa for
each of these gene pairs. First, we found the COL4AC1|2D gene
pair to be conserved across metazoans, with only a few ex-
ceptions in the Protosome lineage (Fig. 3). In the nematode
clade, for example, the COL4A1 and COL4A2 genes (in Cae-
norhabditis elegans, the genes emb-9 and let-2) occur as single
and unlinked loci. In other examples, the planarians have
multiple copies of single and unlinked COL4 genes, and
Owenia fusiformis has both the COL4AC1|2D gene pair and a
COL4 single gene. Other Protostomes, for example, Schisto-
soma mansoni, have gene arrangements similar to that in
Ctenophores in which the COL4 loci include a total of four
COL4 genes with each set arranged head to tail and a
COL4AC1|2D gene pair positioned adjacent to a single COL4
gene. Second, we found that the COL4AC3|4D gene pair
emerged in hagfish and lamprey lineages and was conserved in
all vertebrates, except for amphibians. Third, the COL4AC5|6D
gene pair emerged in cartilaginous fish and is conserved in all
vertebrates (Fig. 3). Collectively, our findings indicate that the
COL4AC1|2D gene pair is the progenitor of vertebrate
4 J. Biol. Chem. (2025) 301(5) 108496
COL4AC3|4D and that either COL4AC1|2D or COL4AC3|4D is the
progenitor of the COL4AC5|6D gene pair.

We propose a plausible path of how diverse COL4A1 and A2
gene arrangements arose in Protostomes (Fig. S1). The gene
duplication events, resulting in multiple copies of the COL4
gene pairs as found in Adineta vega, may also lead to loss of
one of the COL4C1|2D pairs either through incomplete gene
duplications or accumulation of missense or nonsense alleles
in redundant COL4 genes. This may result in the presence of
the original COL4AC1|2D gene pair and one or more COL4
single copy genes, such as observed in Capitella teleta. The
COL4AC1|2D gene pair could, finally, be lost in some species
resulting in two, or more, single copies of the COL4 gene as
observed in C. elegans. While other evolutionary paths may be
possible, this gene duplication hypothesis is consistent with an
ancient and conserved COL4AC1|2D gene pair, and its ancestral
role in the emergence of vertebrate COL4AC3|4D and the
COL4AC5|6D gene pairs.

We next sought to identify and analyze microsyntenic
blocks of the COL4 genes to gain additional evidence for a
genetic linkage between COL4AC1|2D and COL4AC3|4D and a
linkage between COL4AC1|2D or COL4AC3|4D and the
COL4AC5|6D gene pair. A microsyntenic block containing each
of the three vertebrate COL4 gene pairs and the IRS gene
family was previously noted, wherein an IRS paralog exists in
close proximity to each of the three COL4 gene-pair paralogs
(Fig. 4) (54). This finding prompted us to further identify the
order and conservation of genes neighboring the COL4 gene
pairs as an approach for determining genetic linkages.
Microsynteny of COL4AC1|2D gene pair in vertebrate evolution

We identified the synteny for the COL4AC1|2D gene pair in
diverse species (Fig. 5) and found an extensive conservation of
neighboring gene order. For example, in all mammals exam-
ined, the five genes on either side of the COL4AC1|2D gene pair
are absolutely conserved in order and orientation. Reptiles
have near identical syntenic gene order, whereas birds have a
chromosomal rearrangement 50 of the MYO16 locus. We next
investigated the COL4AC1|2D locus in amphibia. Extant
amphibia consist of three orders: Salienta (frogs and toads),
Caudata (salamanders and newts), and Caecilians. Notably,
amphibian genomes tend to be very large, making genome
assembly and, thus, microsyntenic block analysis difficult
because of contig fragmentation. In the salamander genome,
the COL4AC1|2D containing contig is small, limiting micro-
synteny analysis; however, in the conserved synteny of the
COL4AC1|2D locus to other vertebrates is clear. The oldest
extant group of tetrapods with a well-described genome is the
Coelacanth whose genome also shows conserved micro-
synteny, essentially identical to that found in mammals. Thus,
in tetrapods, the COL4AC1|2D microsyntenic block is highly
conserved.

We next investigated whether this synteny was conserved
within fishes (Fig. 5). Teleosts, which exhibit extraordinary
diversity in ecology, behavior, and morphology, may show
more diversity, which may be more revelatory of the origins of
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Figure 3. An evolutionary lineage of COL4A genes that gave rise to the appearance of the COL4AC3|4D and COL4AC5|6D gene pairs by gene
duplication in vertebrate animals. The eukaryotic cladogram with selected species showing evolution of the COL4A gene pair family mapped onto the
National Center for Biotechnology Information Taxonomy (79). The cladogram is rendered using PhyloT v2 and iTOL v6 (76). Animal silhouettes in this and
subsequent figures are downloaded from PhyloPic.

Evolutionary origin and diversification of the COL4 genes
this synteny group; however, we found that in diverse teleost
groups, the core of the COL4AC1|2D microsyntenic region was
well conserved. In cartilaginous fishes, there is a significant
deviation from the microsynteny: the region 30 of COL4A1
diverged from that observed in other vertebrate groups.
However, the microsyntenic block to the region 30 of COL4A1
occurs nearby on the same chromosome, which suggest that
through a chromosomal break and inversion, the microsynteny
was lost but synteny was retained. This result suggests that a
chromosomal break and inversion proximal to the COL4A1 30

region occurred distinguishing the Chondrichthyes (cartilagi-
nous fishes) and Osteichthyes (bony fishes and their
descendants). Together, these findings reveal a highly
conserved syntenic block of genes containing the COL4AC1|2D
gene pair, which was maintained throughout jawed vertebrate
evolution.
Microsyntenies of COL4AC3|4D and COL4AC5|6D gene pairs in
vertebrate evolution

We identified a microsyntenic region for the COL4AC3|4D
gene pair and found extensive conservation throughout jawed
vertebrate (Gnathostome) evolution (Fig. 6A). Within the
tetrapod lineage in mammalian, reptilian, and avian genomes,
J. Biol. Chem. (2025) 301(5) 108496 5
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Evolutionary origin and diversification of the COL4 genes
the genes flanking COL4AC3|4D are well conserved forming a
microsyntenic block (Fig. 6A). This conservation is retained in
the Coelacanth and cartilaginous fishes, though is less
conserved in teleosts. Strikingly, the IRS paralog associated
with COL4AC3|4D is found in a different orientation and gene
order throughout this lineage compared with the COL4A gene
pair when compared with COL4AC1|2D. While IRS2 is found
downstream of COL4A1, IRS1 is found downstream of
COL4A4 and the RHBDD1 gene intervenes between COL4A4
and IRS1.

Surprisingly, the syntenic analyses revealed that the
COL4AC3|4D gene pair was deleted in amphibian genomes
(Fig. 6A). The deletion was precise, retaining the neighboring
genes, IRS1 and RHBDD1, which are 30 to COL4A4 in other
vertebrates and MFF and MRPL44, which are 30 to COL4A3 in
other vertebrates (Fig. 6B). The caecilian genome has a novel
single exon protein coding transcript that was detected in the
small gap between RHBDD1 and MFF, but there is no clear
insertion of functional DNA at this locus compared with those
found in both more basal tetrapods (Coelacanth) and more
advanced tetrapods (reptiles and mammals). In contrast, larger
insertions are observed at the locus in other amphibian classes.
Notably, COL4AC3|4D gene pair was absent in other
Amphibian orders. Notably, this precise deletion of the
COL4AC3|4D gene pair occurs in species that otherwise have
quite large and expanded genomes. Parenthetically, this
finding of a naturally occurring double gene knockout pro-
vided a strategy in a companion article (25) to gain insights
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into critical molecular features the Col-IVa345 scaffold that
confer function to the GBM.

We next identified the microsyntenic block containing the
COL4AC5|6D gene pair. The COL4AC5|6D loci in mammalian
genomes differs distinctly from both COL4AC1|2D and
COL4AC3|4D, which have microsyntenic blocks that are nearly
identical (Fig. 7). The IRS4 locus is found downstream and
encoded by the opposite strand from COL4A5 compared with
IRS and COL4A1, suggesting that the duplicated syntenic
block, which generated these paralogies, underwent rapid
rearrangements following duplication. The decreased conser-
vation of the syntenic regions surrounding COL4AC5|6D is
most pronounced in the Teleosts, which have quite reduced
extents of synteny conservation. Collectively, these results
reveal that jawed vertebrates have a well-conserved syntenic
block surrounding the COL4AC1|2D, COL4AC3|4D, and
COL4AC5|6D gene pairs.
Analysis of microsynteny for lineage of COL4 gene pairs in
deuterostomes

We next sought to analyze the microsyntenic blocks to gain
any corroborative evidence for COL4AC1|2D to be the pro-
genitor for COL4AC3|4D and to determine whether COL4AC1|
2D or COL4AC3|4D is the progenitor of the COL4AC5|6D gene
pair. Early deuterostomes (tunicate, lancelet, and starfish) have
only a single pair of COL4A genes, corresponding to COL4AC1|
2D gene pair and without conserved synteny (Fig. 8). Synteny of
NALF2

{

e sequences from selected and diverse jawed vertebrates were examined
ientations were identified as for Figure 2. Note that the synteny is not well
ecific whole-genome duplication. Note the presence of the ANKRD46 gene
und downstream of COL4A2, suggesting that these genes share a common
g COL4AC5|6D.



Figure 8. COL4A gene locus evolution in the deuterostomes. The microsyntenic regions at each COL4AC1|2D gene pair (boxed) from selected species are
shown. In deuterostome, the first species to have synteny beyond the COL4AC1|2D gene pair is the hagfish, which is also the first species to demonstrate
duplication of the COL4AC1|2D gene pair into COL4AC3|4D. Lampreys demonstrate increased regional synteny as well as two COL4A gene pairs. Note the
presence of paralogs of FARP, BOK, IPO5, and STK25 in lampreys and hagfish that is retained in mammals, albeit at a more distal position on the linkage
group. Gnathostomes, except amphibia, show all three COL4A gene pairs.

Evolutionary origin and diversification of the COL4 genes
COL4A genes first appears in hagfish and lamprey, each of
which have two COL4 gene pairs, COL4AC1|2D and COL4AC3|
4D. In lamprey, both COL4 gene pairs are adjacent to an IRS
paralog, as seen in jawed vertebrates. However, in hagfish, one
COL4 gene pair has an IRS paralog adjacent, whereas the other
does not. In hagfish, there is an additional synteny conserva-
tion in the form of the MYO16 and NYAP2 genes, which lie
adjacent to each IRS paralog and downstream from the COL4A
gene pair. This is a highly similar gene arrangement to those
found in the COL4AC1|2D and COL4AC3|4D synteny groups.
This result strongly suggests an evolutionary orthology be-
tween the cyclostome COL4 gene pair adjacent to MYO16 and
the vertebrate COL4AC1|2D as well as a similar relationship
between the cyclostome COL4 gene pair, which is adjacent to
NYAP2 and the vertebrate COL4AC3|4D. Between the last
common ancestor of cyclostomes and jawed vertebrates, the
COL4AC3|4D gene pair became inverted, moving the NYAP2-
IRS genes downstream from COL4A4 rather than down-
stream from COL4A3 as seen in the cyclostomes. We note also
the presence of the genes SLC5A7, FARP2, and BOK down-
stream of the lamprey COL4A2 gene and STK26, FARP1, and
IPO5 downstream of the COL4A4 gene. Paralogs of these
genes also appear downstream of COL4A2 and COL4A4 in the
vertebrate genome, albeit several Mbp further downstream of
the COL4A loci.

Collectively, the syntenic analyses reveal that cyclostomes,
hagfish and lamprey, have two pairs of COL4 genes, corre-
sponding to COL4AC1|2D and COL4AC3|4D gene pairs in
vertebrate, and devoid of COL4AC5|6D. In contrast, shark has
six COL4 genes that correspond to vertebrate COL4AC1|2D,
COL4AC3|4D, and COL4AC5|6D gene pairs. Thus, the COL4AC1|
2D gene pair duplicated first in cyclostomes and evolved into
the COL4AC3|4D gene pair. Secondarily, in shark, a duplication
of the COL4AC1|2D or the COL4AC3|4D gene pair gave rise to
COL4AC5|6D in shark; the identity of which pair was not
apparent from the microsynteny.

Analysis of amino acid sequences for lineage of COL4 gene
pairs

We sought to obtain further evidence for lineage of gene
duplications from a phylogenetic analysis of the amino acid
sequences of the six a-chains, which coemerged in shark. The
analysis for full-length a-chains across metazoans (Fig. S2) and
their cognate NC1 domains (Fig. S3) reveal that shark a3 and
a5 chains most closely related to the a1 chain. In contrast, the
shark a4 and a6 chains related to the a2 chain. These findings
suggest that COL4AC1|2D is the progenitor for both the
COL4AC3|4D and COL4AC5|6D gene pairs.

Expression of COL4 gene pairs in hagfish and shark kidneys

The conservation of COL4 gene pairs across metazoans
posits the question of whether the COL4AC1|2D and COL4AC3|
4D gene pairs in hagfish and the COL4AC1|2D, COL4AC3|4D, and
COL4AC5|6D gene pairs in shark are expressed and incorpo-
rated into the kidney. At the time this study began, genomic
data for these species were unavailable. Therefore, to probe
this question, we isolated total RNA from both hagfish and
J. Biol. Chem. (2025) 301(5) 108496 9
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dogfish (shark) kidneys and performed next-generation RNA-
Seq. De novo assembly of the dogfish transcriptome was per-
formed and used to design specific primers to PCR COL4A
transcripts, which were subsequently sequenced to confirm the
transcriptomics results. We found that at least three COL4A
transcripts (corresponding at the protein level to the Col-IV
a1, a2, and a3 or a4 chains) were expressed in hagfish kid-
ney, whereas all six transcripts (corresponding to the a1–a6
chains) were expressed in dogfish kidney (Supporting
information).

We determined whether the Col-IV a1–a6 chains were
incorporated into hagfish and dogfish kidney in the form of
supramolecular scaffolds. We used the well-established
method of characterization of the noncollagenous NC1 hex-
amers from the scaffolds, as direct evidence for scaffold or-
ganization (55). NC1 hexamers were excised by collagenase
digestion, purified by size-exclusion chromatography, and
characterized by SDS-PAGE. The electrophoresis patterns
were similar to that of mammalian hexamer by the presence of
NC1 dimer and monomer subunits, revealing scaffold
expression in both hagfish and shark (29, 56) (Fig. 9A).

To determine which a-chains were incorporated into shark
kidney, we identified the a-chain origin of the NC1 hexamer
subunits. The analysis was performed by using two-
dimensional nonequilibrium pH gel electrophoresis (2D-
NEPHGE) on kidney and lens tissues. Kidney hexamer was
labeled with the Cy3 fluorescent dye and lens hexamer with
Cy2. The fluorescent-labeled hexamers were mixed and
resolved by 2D-NEPHGE (Fig. 9B). The lens and kidney pat-
terns were distinct, revealing tissue-specific differences in the
expression of a-chains. Individual spots on the gels were
excised and analyzed with high-resolution LC–MS/MS. A
custom dogfish protein database, based on the transcriptomics
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data, was used to identify a-chain identity of each spot
(Figs. S4, S9). The results show that all six Col-IV a-chains
(a1–a6) were expressed in shark kidney whereas only the a5
and a6 chains in lens. The scaffold compositions of these
multiple a-chains remain unknown, but they do not include
the Col-IVa345 scaffold in shark kidney as described in a
companion article (25).
Evolutionary changes in the number of cysteine codons in the
COL4AC3|4D gene pair

In prior studies, we found that Col-IVa345, the principal
component of GBM, is highly crosslinked by disulfide bonds in
comparison to the Col-IVa121 scaffold (57). Specifically, the
number of cysteine residues is very large in the a3 and a4
chains, in comparison to the other Col-IV a1, a2, a5, and a6
chains. We speculated that disulfide crosslinks are a key
structural feature that confers mechanical strength to the
GBM as well as to protect against proteolysis (57). To gain
insights into the role of cysteine residues, we investigated the
phylogenetic distribution of their codons in the COL4 gene
pairs.

We identified a significant increase in the cysteine codons in
the COL4AC3|4D gene pair, compared with COL4AC1|2D and
COL4AC5|6D (Fig. 10A), and also a very large variation in
numbers of codons among diverse species (Fig. 10B). The
variance occurred both within and between clades (Fig. 11A)
and specifically when vertebrates were classified by their
environment rather than their clade (Fig. 11B). A statistically
significant difference was identified within the teleost group
when they were classified by the salinity of their environment
(Fig. 11B). Fish in freshwater environments have increased
cysteine content compared with those found in estuarine and
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Figure 10. Cysteine content is increased in COL4AC3|4D gene pairs. A, both COL4AC1|2D and COL4AC5|6D encode similar numbers of cysteine residues per
gene pair, whereas the COL4AC3|4D gene pair encodes an increased number of cysteine residues in diverse vertebrates. B, comparison of the cysteine codon
count per gene pair in diverse vertebrate species is not correlated with clade.
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marine environments. Notably however, this difference in
cysteine content is not present in the cyclostomes (Fig. 10A).

We next determined whether there was a pattern to the
change in cysteine abundance that may relate to function.
When the cysteine codons were plotted on the predicted open
reading frame of the COL4A4 gene, we found that the variable
cysteine residues were scattered throughout the region of the
collagenous domain (Fig. 11C, and Fig. S5). The increase in
cysteine content was most notable in the C-terminal half of the
collagenous domain. At the protein level, the abundance of
cysteine residues is a distinguishing feature of the triple-helical
protomers that assemble into the Col-IVa345 scaffold, in
comparison with the Col-IVa121 scaffold (Fig. 1D). Notably,
catfish has the largest number of cysteine residues in a Col-
IVa345 protomer, suggesting a key adaptation enabling GBM
function in freshwater animals.
Discussion

In our previous work, we found that Col-IV is a primordial
component of basement membranes that enabled the assembly
of a fundamental architectural unit for the genesis and evo-
lution of multicellular tissues (1). Also, we found that the
structural domains of vertebrate Col-IV protomers, described
in Figure 2, are conserved across metazoans. Moreover, the
pairwise arrangement of COL4 genes also appeared to be
conserved, based on the analysis of a limited number of spe-
cies, but the phylogeny and identity of gene pairs remain
unknown.

Here, we sought to extend these phylogenetic analyses to
determine the emergence and genetic lineage of the COL4
gene family, with an emphasis on those encoding the Col-
IVa345 scaffold. We anticipated this strategy would provide
insights into structure–function relationships of the Col-
IVa345 scaffold that enabled the GBM to function as an
ultrafilter of proteins. We found that the COL4AC1|2D gene
pair emerged in basal Ctenophores and Cnidaria phyla and is
highly conserved across metazoans (Fig. 12). The COL4AC1|2D
duplicated and arose as the progenitor to the COL4AC3|4D gene
pair in cyclostomes, coinciding with emergence of kidney
GBM, and expressed and conserved in jawed vertebrates,
except for amphibians, and a second duplication as the pro-
genitor to the COL4AC5|6D gene pair and conserved in jawed
vertebrates. These findings revealed the genetic emergence
and expression of the Col-IV a1 and a2 chains that assemble
into the Col-IVa121 scaffold and incorporate ubiquitously in
metazoan basement membranes. Moreover, Col-IVa121 is the
progenitor scaffold that evolved into vertebrate Col-IVa345

scaffold and incorporated mainly in the GBM of mammals
(Fig. 13). In a companion article, we found that the emergence
of the Col-IVa345 scaffold enabled the assembly of a compact
GBM that functions as the primary ultrafilter of proteins in
mammals (25).

In prior studies, we found that Col-IVa345, the principal
component of GBM, is highly crosslinked by disulfide bonds in
comparison to the Col-IVa121 scaffold (Fig. 14) (57). We
speculated that disulfide crosslinks are a key structural feature
that confers mechanical strength to the GBM as well as to
protect again proteolysis. Intriguingly, in the present study, we
found that the Col-IVa345 scaffold has an increased number of
cysteine residues in comparison to Col-IVa121, which mediate
disulfide crosslinks between protomers in lateral associations
and supercoils (11), and which vary in number with the os-
molarity of the environment. The GBM is the only known
basement membrane in which there is bulk flow of liquid
rather than diffusion across the membrane. This bulk flow,
J. Biol. Chem. (2025) 301(5) 108496 11



Figure 11. Cysteine content in COL4AC3|4D gene pair varies by animal habitat. A, cysteine count in teleosts found in different osmolarity habitats
(freshwater, pale blue; estuarine, teal; and marine, dark blue). Freshwater fishes have increased cysteine content compared with marine and estuarine fishes.
B, cysteine count in diverse fishes including teleosts and cartilaginous fishes confirming the increased cysteine counts in freshwater fishes generally. C, map
of the cysteines (red pins) on the COL4A4 reading frame from humans and diverse fishes. Collagen-encoding domains are colored boxes and noncollagenous
domains are indicated by lines, 7S and noncollagenous (NC1) domains are indicated at the N termini and C termini, respectively. D, cysteines mapped to the
protomer for human, estuarine shark, and freshwater catfish Col-IVa345. Odd numbered COL4A genes are mapped above, and even numbered COL4A genes
are mapped below the protomer schematic. Cysteines in the NC1 domain are known to form disulfide bonds that stabilize the domain and are not shown
(80, 81).

Evolutionary origin and diversification of the COL4 genes
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Figure 12. COL4A gene evolutionary history in multicellular animals. A, hypothesized gene duplication events resulting in generation of the COL4AC3|4D
and COL4AC5|6D with the apparent last common ancestors at each step indicated. B, highly schematic cladogram of each duplication event (indicated by the
letters A, B, and C) and each gene pair indicated by the color of the gene pair. The X indicates the loss of the COL4AC3|4D gene pair observed in extant
amphibians.

Evolutionary origin and diversification of the COL4 genes
associated with glomerular ultrafiltration, places high hydro-
static pressure (58) on the GBM. In freshwater teleost, such as
catfish and zebrafish living in low osmolarity environments,
there is high liquid flux across the GBM, compared with ma-
rine animals in high saline environments. Thus, the increase in
cysteine content likely confers additional mechanical strength
to GBM to withstand high hydrostatic pressure. This envi-
ronmental adaptation in disulfide crosslinking pinpoints a role
for Col-IVa345 scaffold in the GBM versus Col-IVa121, wherein
Col-IVa345 having an increased number of crosslinks enabled
the assembly of a compact GBM that withstands the high
hydrostatic pressure in mammals (Fig. 14) (25).

It is noteworthy that the GBM of terrestrial amphibians is
devoid of the Col-IVa345 scaffold (25). The terrestrial envi-
ronment, rather than freshwater, required quite distinct water
retention mechanisms, suggesting that Col-IVa345 scaffold was
counterproductive. Unlike most vertebrates in which the
glomerular filtrate drains from Bowman’s space into the
proximal tubule, the amphibian glomerular filtrate drains into
the coelom (59) and the coelomic fluid then passes into the
nephron tubule. Such an anatomical arrangement increases
the surface area available for protein and electrolyte absorp-
tion, perhaps obviating the need for high fluid flow across the
GBM and the necessity for a compact GBM. Instead, am-
phibians adapted the slit diaphragm as the primary ultrafilter
of proteins.
Experimental procedures

Next-generation RNA-Seq

Transcriptomes used in this study were sequenced at the
Vanderbilt Technologies for Advanced Genomics Core Fa-
cility (VANTAGE). The Illumina TruSeq mRNA Sample
Preparation Kit was used to convert the mRNA in 100 ng of
total RNA into a library of template molecules suitable for
subsequent cluster generation and sequencing on the Illu-
mina HiSeq 2500 using the rapid run setting. The pipeline
established in VANTAGE was followed and is briefly
described later. The first step was a quality check of the
input total RNA by running an aliquot on the Agilent
Bioanalyzer to confirm RNA integrity. The Qubit RNA
fluorometry assay was used to measure sample concentra-
tions. The input-to-library prep was 100 ng of total RNA
(2 ng/ml). The poly-A containing mRNA molecules were
concentrated using poly-T oligo-attached magnetic beads.
Following purification, the eluted poly(A) RNA was cleaved
into small fragments of 120 to 210 base pair (bp) using
divalent cations under elevated temperature. The cleaved
RNA fragments were copied into first-strand complementary
DNA (cDNA) using SuperScript II reverse transcriptase and
random primers. This step was followed by second-strand
cDNA synthesis using DNA Polymerase I and RNase H
treatment. The cDNA fragments then went through an end
repair process, the addition of a single “A” base, and then
ligation of the Illumina multiplexing adapters. The products
were then purified and enriched with PCR to create the final
cDNA sequencing library. The cDNA library then undergoes
quality control by running on the Agilent Bioanalyzer HS
DNA assay to confirm the final library size and on the
Agilent Mx3005P qPCR machine using the KAPA Illumina
library quantification kit to determine concentration. A
2 nM stock was created, and samples were pooled by
molarity for multiplexing. From the pool, 12 pmoles were
loaded into each well for the flow cell on the Illumina cBot
for cluster generation. The flow cell was then loaded onto
the Illumina HiSeq 2500 utilizing v3 chemistry and HTA
1.8. The raw sequencing reads were processed through
CASAVA-1.8.2 for FASTQ conversion and demultiplexing.
The Illumina chastity filter was used, and only the PF
(passfilter) reads are retained for further analysis. De novo
assembly of transcriptomes was performed using Velvet/
Oases and Trinity software packages with default settings
(60–62). The accuracy of de novo assembly was checked in a
parallel next-generation RNA-Seq experiment using RNA
from mouse PFHR9 cells. De novo assembled transcripts
were used to generate BLAST databases to search for
J. Biol. Chem. (2025) 301(5) 108496 13



Figure 13. Evolutionary emergence of collagen IV (Col-IV) a3 through a6 chains coincides with kidney appearance followed by GBM morpho-
logical transition upon emergence of Col-IVa345. A, this architectural unit of epithelia tissues is characterized by a layer of apical/basal-polarized cells that
are laterally connected by tight junctions between plasma membranes, which are basally anchored via integrin receptors embedded in plasma membranes
to a basement membrane suprascaffold. In turn, this architectural unit served as the building block that enabled the formation and evolution of epithelial
tissues, the ever-increasing complexity and size of organisms, and for the expansion and diversity of the animal kingdom. Col-IV triple helical protomers, a
principal component of basement membranes, was a primordial innovation in early metazoan evolution that enabled the transition to multicellularity and
the evolution of epithelial tissues in metazoa (1). B, genome duplication events led to appearance of COL4AC3|4D and then COL4AC5|6D. Animals have two or
more chains of Col-IV generating the Col-IVa121 scaffold. In cyclostomes, the a3 and a4 chains first appeared; and a5 and a6 appeared later in cartilaginous
and bony fishes. Emergence of COL4AC3|4D coincides with the appearance of the glomerulus, which generates a high volume of filtrate, which is processed
by the nephron tubule. However, the mammalian GBM morphology and ultrafilter function are only found in vertebrates that evolved to have Col-IVa345

scaffold (25). GBM, glomerular basement membrane.

Evolutionary origin and diversification of the COL4 genes
Col-IV hits using tblastn (63) with e-value cutoff set to
10−15. Multiple sequence alignments and conserved domain
searches were performed with the Geneious v5-6 software
(Biomatters).

Cloning of hagfish and dogfish COL4A

To confirm accuracy of hagfish and dogfish COL4A, cDNA
sequences obtained from RNA-Seq–based sequences, we
performed a series of RT–PCR cloning experiments using
primers designed to NGS-detected COL4A candidates. RNA
was prepared using the QIAGEN One-Step RT–PCR Kit, and
14 J. Biol. Chem. (2025) 301(5) 108496
PCR products were cloned using the QIAGEN PCR Cloning
Kit.

Isolation, purification, and analysis of Col-IV NC1 hexamers

Tissues were frozen in liquid nitrogen, pulverized in a
mortar and pestle, and then homogenized in 2.0 ml g−1

digestion buffer and 0.1 mg ml−1 Worthington Biochemical
bacterial collagenase and allowed to digest at 37�C, with
spinning for 24 h. LC purification of solubilized NC1 varied by
species based on protein yield. All ctenophore NC1s were
purified by gel-exclusion chromatography (GE Superdex 200



Figure 14. Reinforcement of collagen IV (Col-IV)a345 scaffolds in the mammalian GBM by disulfide-mediated crosslinks between protomers. A, the
Col-IVa121 scaffold schematically represented on the left is a component of the basement membranes surrounding kidney tubules (PT), efferent and afferent
arterioles (EA and AA), and Bowman’s capsule. It is also found in the mesangial space (MS). The Col-IVa345 scaffold shown on the right is the principal
component of the GBM. This scaffold is reinforced by multiple disulfide bonds (S-S bonds highlighted in cyan) between protomers. B, rotary shadowing
electron microscopy images of Col-IVa345 scaffold, isolated from bovine kidney glomeruli (right), and the same scaffold after reduction of the disulfide
bonds (left). Upon reduction of lateral disulfide crosslinks, the scaffold dissociates into protomers, which are dimerized through their noncollagenous (NC1)
domains (57). GBM, glomerular basement membrane.
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10/300 GL). For reduction and alkylation of Col-IV NC1
hexamers, fractions containing high–molecular-weight com-
plex from size-exclusion chromatography were concentrated
by ultrafiltration and reduced in Tris-buffered saline buffer
with various concentrations of DTT. After incubation for
30 min at 37�C, samples were alkylated with twofold molar
excess of iodoacetamide for 30 min at room temperature in the
dark. After mixing with SDS loading buffer, samples were
heated for 5 min in a boiling water bath and analyzed by
nonreducing SDS-PAGE. Collagenase-solubilized NC1 hex-
amers were analyzed by one-dimensional SDS-PAGE in 12%
bis-acrylamide minicells with Tris–glycine–SDS running
buffer. Sample buffer was 62. 5 mM Tris–HCl, pH 6.8, 2% SDS
(w/v), 25% glycerol (w/v), and 0.01% bromophenol blue (w/v).
Western blotting of SDS-dissociated NC1 hexamer was
developed with JK-2, rat monoclonal antibody (kindly pro-
vided by Dr Yoshikazu Sado, Shigei Medical Research Insti-
tute. All Western blotting was done with Thermo-Scientific
SuperSignal West Femto chemiluminescent substrate and
digitally imaged with a Bio-Rad GelDoc system. Two-
dimensional NEPHGE electrophoresis was performed ac-
cording to the original protocol developed (64) with slight
modifications developed in Hudson laboratory and used suc-
cessfully to separate NC1 domains of Col-IV (65).
Proteomics

All proteomics experiments were done at Vanderbilt’s
MSRC Proteomics Core facility. Major protein spots from
Coomassie-stained 2D-NEPHGE–separated dogfish Col-IV
preparations isolated from various tissues were cut out of
the gel, and proteins were identified and label-free quanti-
fied using MaxQuant (66, 67). The heatmap was created
with heatmapper. ca based on label-free quantification data
(68).

Synteny analysis

Well-characterized genomes were selected from those
appearing in the National Center for Biotechnology Informa-
tion and Ensembl databases (69, 70) and the Axolotl genome
(https://genome.axolotl-omics.org/cgi-bin/hgGateway; assem-
bly ambMex 6. 0-DD), and COL4 gene sequences were iden-
tified based on text and blastp (71) searches. Syntenic genes
were then manually identified, and their orientation and order
on the chromosome annotated and plotted with matplotlib
(72). Protein domains were mapped to their ORFs using the
Conserved Domain Database (73). The COL4 gene phylogeny
was derived from the National Center for Biotechnology In-
formation Taxonomy (74, 75) and plotted using iTOL (76).

Data availability

The shotgun transcriptome from wildtype adult Myxine
glutinosa Atlantic hagfish has been deposited at DDBJ/EMBL/
GenBank under the accession GKQO00000000. The version
described in this article is the first version, GKQO01000000.
The dogfish Transcriptome Shotgun Assembly project has
been deposited at DDBJ/EMBL/GenBank under the accession
GKOS00000000. The version described in this article is the
first version, GKOS01000000. Proteomics data for shark have
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been submitted to the ProteomeXchange, projects
PXD0441912 and PXD042111.

Supporting information—This article contains supporting
information.
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