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ABSTRACT

Protein molecular interaction fields are key deter-
minants of protein functionality. PIPSA (Protein
Interaction Property Similarity Analysis) is a proce-
dure to compare and analyze protein molecular
interaction fields, such as the electrostatic poten-
tial. PIPSA may assist in protein functional assign-
ment, classification of proteins, the comparison of
binding properties and the estimation of enzyme
kinetic parameters. webPIPSA is a web server that
enables the use of PIPSA to compare and analyze
protein electrostatic potentials. While PIPSA can
be run with downloadable software (see http://
projects.eml.org/mcm/software/pipsa), webPIPSA
extends and simplifies a PIPSA run. This allows
non-expert users to perform PIPSA for their protein
datasets. With input protein coordinates, the super-
position of protein structures, as well as the
computation and analysis of electrostatic poten-
tials, is automated. The results are provided as
electrostatic similarity matrices from an all-pairwise
comparison of the proteins which can be subjected
to clustering and visualized as epograms (tree-like
diagrams showing electrostatic potential differ-
ences) or heat maps. webPIPSA is freely available
at: http://pipsa.eml.org.

INTRODUCTION

The interactions of biological macromolecules are critical
to their physiological function and dependent on their
molecular interaction fields. The electrostatic potential is
a molecular interaction field of particular importance for
determining the specificity and kinetics of molecular
binding. PIPSA (Protein Interaction Property Similarity
Analysis) (1) may be used to classify a large number of
proteins according to the similarities or dissimilarities in

their 3D molecular interaction fields, such as the electro-
static potential (2,3). Some of the applications of PIPSA
have been to WW domains (4), electron transfer proteins
(5), ubiquitin conjugating enzymes (6), complement control
protein modules (7) and dihydrofolate reductases (8). An
extension of PIPSA is qPIPSA (quantitative PIPSA) (9).
qPIPSA enables the kinetic parameters of a set of enzymes
sharing the same function to be related to the molecular
interaction field, e.g. the electrostatic potential, at a
functional region of the protein. Such a comparison may
enable estimation of unknown kinetic parameters for an
enzymatic reaction and thereby assist in the modeling and
simulation of biochemical pathways (9,10).

webPIPSA allows the user to perform PIPSA to compute
and compare the electrostatic potentials of a set of
structurally related proteins. Other web servers such as
PCE (http://bioserv.rpbs.jussieu.fr/PCE) (11) and PFplus
(http://pfp.technion.ac.il) (12) also allow the calculation of
protein electrostatic potentials. PFplus was designed to
extract and display the largest positive electrostatic patch
on a protein surface. These web servers, however, only
allow the calculation of electrostatic potentials for single
proteins. webPIPSA on the other hand permits calculation
of the electrostatic potentials of a large number of proteins
and performs an all-versus-all pairwise comparison of the
electrostatic potentials around the entire protein and,
optionally, over a user-predefined region.

webPIPSA can first superimpose the protein structures
by a least-squares fitting procedure. The electrostatic
potentials are then computed on a grid by solution of the
linearized finite-difference Poisson–Boltzmann equation
using the UHBD (13) or APBS (14) software. The simi-
larity or dissimilarity of the electrostatic potential of each
pair of proteins in the dataset is quantified for a user-
defined region by means of similarity indices and distance
measures. The proteins can be clustered according to the
relations between their electrostatic potentials. The results
are displayed as an epogram (tree-like diagram based on
electrostatic differences) and a colored matrix view. The
results can be used for the classification of the proteins
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according to their interaction properties or for the
correlation of the molecular interaction fields with
functional properties of the proteins.

webPIPSA USAGE

The input required for using webPIPSA is a set of protein
coordinate files in PDB format. These can be either
(i) user-supplied or (ii) specified by PDB identifier code in
the RCSB. The user-supplied structures can be either
experimentally determined or generated by comparative
modeling techniques using, for example, MODELLER
(15) or SWISSMODEL (16) or structures from the respec-
tive databases, such as MODBASE (17). An example
dataset consisting of triosephosphate isomerases from
various species (9) is provided on the web server and
described in detail below.

After the structures have been uploaded, the user can
choose whether to use the UHBD (13) or the APBS (14)
software to calculate the electrostatic potentials. Example
input files for UHBD and APBS are given in the online
documentation for webPIPSA. At this point, the user is
asked to provide an email address to be notified when the
PIPSA calculation has been completed. The user receives
an email with a link to the results page displaying the heat
map and a clustered epogram. The email also provides a
link to the results directory on the web server containing
intermediate and additional results such as the potential
grid files and the complete PIPSA output. A description of
how to visualize electrostatic potential grids from the
results directory is given in the online documentation.

Figure 1 shows part of the results pages for the example
case. Triosephosphate isomerases from 12 different species
are clustered according to the all pairwise distances
between electrostatic potentials using a color code from
red (small distance) to blue (large distance). Proteins with
similar electrostatic properties are clustered on the top and
left side of the graph. The proteins are assigned to a user-
defined number of clusters according to their electrostatic
potential similarities. The number of clusters can be
specified by selecting from a drop down box at the bottom
of the result page. Here, triosephosphate isomerases from
12 species form four subclusters in a comparison of the
electrostatic potentials around the whole protein surface.
The type of distance measure [Hodgkin similarity index
(18), Carbo similarity index or average potential differ-
ences (9)] displayed in the heat map can also be selected
from a dropdown box. The distance matrix may also be
viewed with the proteins in their input order, without
clustering.

webPIPSA WORKFLOW

An illustration of the workflow in webPIPSA is given in
Figure 2. After the upload of the protein structures is
complete, the user can choose to superimpose the
structures using one of two different methods. The first
method, called ‘sup2pdb’, starts with one structure (the
template) and subsequently does a pairwise sequence
alignment (19) between this template structure and

the remaining coordinate files. The structures are then
superimposed according to the respective alignments.
Since the outcome of this algorithm depends on the
choice of protein template, in the second option,
‘optimized sup2pdb’, every coordinate file is considered
as a template for superimposing the others. Then the most
successful superposition based on the maximum number
of matched structures and minimal root mean square
deviation (RMSD) of the superimposed structures is
selected. For a large number of protein structures,
however, this second option can be time consuming.
The next step in the workflow is to add polar hydrogen

atoms to the protein structures using WHATIF (20).
Hydrogen atom positions are assigned by optimizing the
hydrogen-bond network. Standard protonation states at
pH 7 are assumed for all residues except for histidine
which can be treated as singly or doubly protonated.
For the superimposed set of coordinate files, electro-

static potentials are computed automatically using a set of
default parameters assuming an ionic strength of 50mM
and a temperature of 300K. UHBD or APBS can be
used to solve the linearized Poisson–Boltzmann equation
(LPBE) treating the protein as a low dielectric with
partial atomic charges embedded in a homogeneous high
dielectric continuum representing the solvent.
The electrostatic potentials of all the structures are then

compared using PIPSA. First, the potentials in the
complete protein surface skins are compared. The protein
surface is defined by using a probe of radius 2 Å. The skin
extends out from the protein surface with a thickness of
3 Å. Additionally, the user can specify spherical regions
within which the electrostatic potentials in the skin are
compared. A spherical region can, for example, encom-
pass an enzyme’s active site. The Cartesian coordinates of
the center of the sphere and its radius should be input by
the user. This option can therefore only be used when the
uploaded input structures have already been superim-
posed. Several spherical protein regions can be specified
and compared separately. Each region is given a name for
later identification.
The PIPSA software is used to calculate Hodgkin and

Carbo similarity indices of the protein electrostatic
potentials as well as average electrostatic potential
differences (the difference in electrostatic potentials in
kcalmol�1 e�1 of two proteins divided by the number of
grid points in the comparison region where the two
protein skins overlap) described in (9). The similarity
indices range from �1 (anti-correlated potential), through
0 (uncorrelated) to +1 (identical potentials). These values
are converted into distances given by sqrt(2� 2�SI) where
SI is the respective similarity index. These distances thus
range from 0 (identical) to 2 (anti-correlated potentials).
The clustering analysis and generation of tree-like
diagrams (epograms) on the results page are performed
using the statistical program R (21). For visualization
purposes, the resulting distance matrix is presented as a
heat map and as an epogram. Both the heat map and
epogram representations allow the fast identification of
inter-protein relations and classifications for a large set of
proteins.
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The results are presented on a series of tabs. One tab
is given for the analysis using the entire protein skin and
additional tabs are used for each spherical region specified
for analysis by the user. A further tab has a Java applet
with the AstexTM viewer (22) to allow the user to visually
check the superposition of the protein structures as well as
the positioning of the spherical regions used for focused
comparisons of the electrostatic potentials.

webPIPSA EXAMPLE

As an example, the dataset studied in reference (9) is
provided on the web server for download. These structures
of triosephosphate isomerase (TPI) from 12 different
species are already superimposed (five of them are shown
in Figure 2). The example shows how their electrostatic

potentials in the vicinity of the active site can be analysed
and related to enzymatic kinetic parameters. Electrostatic
interactions contribute to ligand–enzyme binding and
to enzyme catalysis. For example, they have been shown
to affect the rate of ligand binding, the affinity of ligand
binding and the stability of the transition state. Whether
a relation between electrostatic potential differences
and kinetic parameters or binding affinities exists in a
particular case under study depends on the relative
contribution of electrostatic interactions to these quan-
tities and the consistency of the structural and the kinetic
or thermodynamic experimental data.

After the upload of the protein coordinates using
an applet, one can request comparison of the electros-
tatic potentials in specific regions. For the triosephosphate
isomerase example, regions may be selected as follows

Figure 1. Screenshot of part of the results page for the example provided on the webPIPSA web server for the comparison of the electrostatic
potentials of triosephosphate isomerases from 12 different species. The colored matrix (heat map) is shown with color coding corresponding to the
distances calculated from the Hodgkin similarity indices for the electrostatic potentials. Enzymes from species with highly similar electrostatic
potentials, such as human, rabbit and chicken, are clustered together (second subcluster from top/left).
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(with the Cartesian coordinates of the center and the
radius of a sphere in Å given):

(i) the substrate binding site (Region_Km: 1.07, 4.06,
21.11, 15) where the electrostatic potential correlates
with substrate Km values, and

(ii) the active site (Region_kcat_Km: 8.15, 3.54, 34.83, 15)
where the catalytic turnover occurs and the
electrostatic potential influences enzymatic kcat/Km

values (9).

The electrostatic potentials are computed for the entire
proteins using UHBD. For restricting the region of

comparison in case (i), a spherical region of radius 15 Å
around W168 is chosen (shown as a transparent yellow
sphere in Figure 2). This residue is part of the flexible loop
region of the TPIs which closes over the active site when
the substrate binds. A comparison of the similarity of the
electrostatic potentials (measured by the Hodgkin SI) in
this region for the five model proteins is shown on the
bottom right corner of Figure 2. The five enzymes form
two subclusters: TPIs from chicken, human and rabbit
form one subcluster, whereas yeast and Escherichia coli
form a distinct second subcluster. This is in agreement
with the different substrate Km values for the two

Figure 2. Schematic overview of the workflow employed in webPIPSA. The protein structures are a subset of the triosephosphate isomerases in the
example analysis provided on the web server. The region for comparison of the electrostatic potential can be selected after upload of the coordinate
files (the substrate binding site in the example given). Polar hydrogen atoms are added to the coordinate files using the WHATIF program.
Electrostatic potential grids are calculated using the UHBD or APBS software. PIPSA is used to compare the electrostatic potentials and to calculate
a distance matrix. These distances are used to cluster the proteins according to the relations between their electrostatic potentials and the clustering is
displayed in a tree-like diagram, an epogram.
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subclusters: TPIs from chicken, human and rabbit possess
lower Km values (0.47mM, 0.49mM and 0.43mM,
respectively) and yeast and E. coli exhibit significantly
higher Km values (1.22mM and 1.03mM, respectively).
For a thorough discussion, see ref. (9). Thus, the
electrostatic potential differences in the TPI loop region
can be used as a fingerprint for classifying TPIs from
various species. Such a PIPSA analysis can provide
insights that are complementary to and not apparent
from a protein sequence-based analysis.

TECHNICAL OVERVIEW

webPIPSA is implemented using Java servlets and Java
server pages (JSP) running on tomcat 5 (http://tomcat.
apache.org). The workflows with significant computa-
tional components are implemented as ant scripts (http://
ant.apache.org) and are launched from a Java messaging
server (JMS, http://activemq.apache.org). This architec-
ture allows the separation of the tomcat web server from
the computationally demanding workflows. The user is
informed about the current state of the workflow by
messages sent from the ant script via the messaging server.
All data are stored on the file system and may be removed
after 2 weeks without further notice.

CONCLUSIONS AND OUTLOOK

Currently, webPIPSA provides a description and catego-
rization of the electrostatic potential differences between
the input protein structures. It does not include all the
features of the downloadable PIPSA software which can
be used to analyze other types of molecular interaction
field and to select conical as well as spherical regions.
These features are planned to be added in future
developments of webPIPSA. In addition, it is planned to
add tools to webPIPSA to enable the user to study the
relations between protein molecular interaction fields and
enzymatic kinetic parameters, as in qPIPSA (9). On the
other hand, webPIPSA is much more user-friendly and,
therefore, accessible to non-experts. It also has additional
analysis features such as the simultaneous display of
colored heat maps and epograms as well as protein
structure visualization with the AstexTM viewer.
Feedback concerning webPIPSA is encouraged and

should be sent to mcmsoft@eml-r.villa-bosch.de.
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