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Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung
cancer. However, the molecular mechanisms mediating the progression of these diseases remain
unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure,
by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue
from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days,
and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253
phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure
group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day
exposure group, and peroxiredoxin-1 (OSF3) and spectrin b chain brain 1 (SPTBN1), in both groups.
Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were signif-
icantly differentially expressed between the control and exposed groups. The identified phospho-
proteins were classified according to their biological functions. We found that the identified
proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morpho-
genesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3
and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the
mechanisms of tobacco smoke-induced diseases.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Smoking is a risk factor for various lung diseases, including
chronic obstructive pulmonary disease (COPD) [1–4] and lung can-
cer [4–7]. Many studies have attempted to clarify the molecular
mechanisms responsible for the induction and progression of these
diseases [8]; however, these mechanisms have not yet been fully
elucidated. Moreover, while many studies have demonstrated that
accumulation of repeated tobacco-related cell injury is involved in
the pathogenesis of these diseases [9,10], few reports have investi-
gated the effect of acute smoke exposure [11,12]. In animal models,
short-term exposure to tobacco smoke has been shown to cause
activation of various pathways and processes [13], such as immu-
nity [14,15], response to oxidative stress [16,17], somatic muta-
tions, gene expression [18–23], and epigenetic mechanisms
[16,24]; it is thought that these pathways may also be activated
in response to short-term tobacco smoke exposure in humans.
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Fig. 1. Panel A: schematic of the nose-only, flow-past inhalation exposure chamber
system. Panel B: schematic of the exposure system. This system removes the
exhaled smoke and suppresses the effect of secondhand smoke (right).
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In order to elucidate the molecular mechanisms associated with
tobacco smoke exposure, approaches focusing on the induction of
toxic changes during disease induction and progression, such as
cell proliferation [25], chronic inflammation [26,27], and inhibition
of apoptosis [28], have been considered previously. Moreover, bio-
markers induced in lung cancer [29], COPD [30], and diseases
caused by exposure to environmental toxic substances have been
investigated actively in recent years, because such factors were
expected to provide effective tools for the early diagnosis, preven-
tion, and cure of these diseases. cDNA microarrays have also been
applied to identify markers related to tobacco smoke [31,32]. How-
ever, information on mRNA expression alone is not enough to elu-
cidate the underlying regulatory mechanisms. For example, when
tobacco smoke causes inflammation of the lung, the signal trans-
ducer and activator of transcription 3 (STAT3) is phosphorylated
by interleukin (IL)-6 and translocates into the nucleus, where it
regulates transcription. Despite its usefulness, cDNA microarray
analysis cannot be used to analyze such events.

However, functional changes in proteins are often regulated by
post-translational modifications, such as phosphorylation. There-
fore, proteomic methods, which are able to detect protein expres-
sion and post-translational modifications that are crucial to
biological events, can be particularly useful for the detection of
functional molecules. Proteomic approaches facilitate identifica-
tion of markers for early diagnosis of diseases. In contrast to other
research methods that identify individual genes, proteins, or path-
ways, proteomic methods provide a more systematic perspective,
which can enrich our understanding of pulmonary diseases related
to tobacco smoke exposure. Proteomic approaches can be used to
identify and track cell signaling pathways; this can play an impor-
tant role in estimating biological changes that occur in human dis-
eases. However, changes in specific signaling pathway components
in response to toxic substances have not yet been clarified. There-
fore, it is important to establish new methods for detecting
changes in regulatory systems, proteins making up these systems,
and post-translational modifications, such as phosphorylation, of
such proteins in the tissues of animals and humans.

Therefore, in the current study, we sought to use proteomic
methods to clarify the nuclear phosphoproteins involved in signal-
ing pathways induced by short-term tobacco smoke exposure,
representing the acute phase response, in the mouse, by using a
nose-only, flow-past inhalation exposure chamber system to best
mimic human exposure [33,34]. We established a novel strategy
for eluting and purifying nuclear phosphoproteins, and analyzed
these proteins by mass spectrometry. Our analysis provided
insights into the proteins activated in the acute phase response
to tobacco smoke exposure and may lead to identification of novel
tobacco smoke exposure-related biomarkers.

2. Materials and methods

2.1. Animals and tobacco smoke exposure conditions

Mice were treated according to the Japanese National Animal
Welfare Regulations, and the study protocol was approved by the
Animal Care and Use Committee of Kumamoto University. A total
of 32 male ICR mice weighing 45–50 g each (age: 10 weeks) were
used. Mice were obtained from Japan SLC, Inc. (Shizuoka, Japan).
They were housed in a room illuminated for 12 h (lights on
07:00–19:00) and kept at 22 ± 2 �C during the experiment. Food
(CE2, CLEA Japan, Inc., Tokyo, Japan) and water were freely avail-
able. Mice were divided into 4 groups: 1-day exposure, 1-day con-
trol, 7-day exposure, and 7-day control (n = 8 mice per group).

To expose the mice to tobacco smoke, a nose-only, flow-past
inhalation exposure chamber system was used. The system con-
sists of 3 parts: a tobacco smoke generator (SCIREQ Inc., Montreal,
Canada), exposure chamber (CR Equipment S.A., Gland, Switzer-
land), and an air filtering system and compressor (NES-1000;
SHINTECHNO, Fukuoka, Japan) (Fig. 1A). Compared to conventional
systems, this nose-only, flow-past system suppresses the effects of
secondhand smoke (Fig. 1B). The exposure experiment was con-
ducted in an iteration process; tobacco smoke was puffed in the
mouse’s muzzle and the mouse inspired the smoke, and then
exhaled the smoke. The exhaled smoke (and the rest of the smoke)
was removed by the vacuum system. Mice were exposed to
tobacco smoke in a chamber for 30 min once a day, for 1 or 7 days.
Twenty-four University Kentucky 3R4F cigarettes for animal
tobacco exposure experiments were burned per day and each cig-
arette was puffed 10 times. Control mice were held in mouse hold-
ers and were exposed to room air for the same duration as mice in
the tobacco smoke exposure groups.

2.2. Sample preparation

For morphological studies, 4 mice in each group were sacrificed
by intraperitoneal injection of pentobarbital, and the lung tissues
were isolated and fixed with 4% phosphate-buffered paraformalde-
hyde. Tissues were embedded in paraffin and sections were stained
with hematoxylin and eosin (HE) stain.

For proteomic studies, 4 mice in each group were sacrificed
within 1 h after the last exposure. The right lung was used for pro-
tein extraction, and the left lung of mice in the 7-day control and
tobacco smoke exposure group was used for immunostaining.
After perfusion with phosphate-buffered saline (PBS) containing
protease and phosphatase inhibitors, lung tissue was isolated.
The left lung was kept frozen at �80 �C; thin sections were pre-
pared and subjected to immunofluorescence staining. To enrich
for nuclear proteins, the lung tissue from the right lung was
homogenized on ice in elution buffer from a nuclear protein disso-
ciation kit (Thermo Scientific Pierce, Rockford, IL, USA). The
homogenate was vortexed for 15 s, followed by a 10-min incuba-
tion on ice. After adding cytosolic elution buffer, the homogenate
was vortexed for 5 s, followed by a 1-min incubation on ice. The
homogenate was then centrifuged at 15,000 rpm for 5 min, and
the supernatant was removed as the cytosolic protein extract.



Fig. 2. Changes in phosphorylation of STAT3 at tyrosine 705 (pSTAT3-Tyr705) as
assessed by Western blotting. The panel shows the immunoreactive bands of
pSTAT3-Tyr705. Lane 1: cytosolic fraction of control mice, Lane 2: cytosolic fraction
of tobacco smoke exposed mice, Lane 3: nuclear fraction of control mice, Lane 4:
nuclear fraction of tobacco smoke exposed mice. b-Actin was used as a loading
control.
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The pellet was vortexed in nuclear dissociation buffer for 15 s
every 10 min, for 40 min in total. The extract was again centrifuged
at 15,000 rpm for 10 min, and the supernatant, including nuclear
proteins, was collected. Nuclear proteins were digested with tryp-
sin prior to peptide elution. To selectively isolate phosphopeptides,
polymer-based metal ion affinity capture (PolyMAC; Tymora Ana-
lytical Operations, LLC, West Lafayette, IN, USA) was used. The
nuclear peptide extracts were allowed to react with TiO2-coated
magnetic capture beads to isolate phosphopeptides [35]. After agi-
tation, of the beads, nuclear phosphopeptides were eluted. The
samples were resolved in Trifluoroacetic acid (TFA) (0.1% TFA/2%
methyl cyanide (MeCN)/DW) and analyzed by electrospray ioniza-
tion (ESI)-TRAP.

2.3. Western blotting

For confirmation of protein phosphorylation, the cytosolic pro-
tein extracts and nuclear eluates of the 7-day control and exposure
groups were used for Western blotting. The respective cytosolic pro-
tein extracts and nuclear eluates from 4 mice in each group were
mixed, electrophoresed on polyacrylamide gels, and transferred to
polyvinylidene fluoride membrane (GE Healthcare UK Ltd., Little
Chalfont, England); the membrane was then blocked with Tris-buf-
fered saline (pH 7.4) containing 0.1% Tween 20 (Wako, Osaka, Japan)
and 5% skim milk. The membrane was then incubated with a pri-
mary rabbit antibody against phosphorylated STAT3 (Tyr705; Cell
Signaling Technology, Inc., Boston, MA, USA) and a primary mouse
antibody against b-actin (Sigma–Aldrich, St. Louis, MO, USA) for
12 h and washed with Tween-TBS. Next, the membrane was incu-
bated with horseradish peroxidase (HRP)-conjugated secondary
antibodies (GE Healthcare) against mouse or rabbit IgG for 1 h,
and washed with Tween-TBS. Immunoreactivities to antibodies
were visualized using an enhanced chemiluminescence system
(PerkinElmer, Inc., Winter Street Waltham, MA, USA).

2.4. Mass spectrometry

The samples were analyzed by mass spectrometry (MS). The
l-HPLC/NSI-MS/MS system was comprised of an Advance Nano
UHPLC (Michrom Bioresources Inc., Auburn, CA, USA) for high-per-
formance liquid chromatography (HPLC), HTS-PAL auto sampler
(CTC Analysis, Zwingen, Switzerland), and mass spectrometer
(amaZonTM ETD, Bruker, Billerica, MA, USA). The samples were
loaded onto a reverse-phase column (Zaplous column C18, 3 lm
0.1 mm ID � 150 mm; AMR Inc., Tokyo, Japan) for separation, and
nuclear phosphoproteins were identified as described below.

2.5. Data analysis

Investigation of all MS/MS data was performed using the MAS-
COT search engine (Matrix Science, Ltd., London, UK) against the
Swiss-Prot database. The data obtained from 4-protein digests
were examined against the other mammalian subsets of the
sequences. The MS/MS data search was performed using the Mus
musculus (mouse) subsets of sequences. We searched the database
in view of fixed modifications on cysteine residues (carbamidom-
ethyl, +57 Da), variable modifications on methionine residues
(oxidation, +16 Da), serine/threonine residues (phosphorylation),
and tyrosine residues (phosphorylation). The peptide and fragment
mass tolerances were set to ±1.2 Da and ±0.6 Da, respectively.

2.6. Immunostaining

Among the candidate nuclear proteins identified by MS, we
focused on OSF3 and spectrin b chain, and performed immunoflu-
orescence staining for these molecules in order to confirm the
expression pattern and localization. Control and tobacco exposure
lung tissues were embedded with OCT compound. Frozen sections
of 10-lm thickness were prepared. After activation, lung tissue
sections were blocked with 1% bovine serum albumin for 30 min,
and were washed 3 times with PBS before being incubated with
primary antibodies, diluted at 1:1000, for 2 h. After washing with
PBS 3 times, sections were incubated with secondary antibodies,
diluted at 1:100, for 1 h. Immunoreactive signals were detected
using Alexa488 fluorescent dye from the tyramide signal amplifi-
cation kit (T20922; Life Technologies, Carlsbad, CA, USA). DAPI
was diluted with the mounting agent, and this DAPI-containing
mounting agent used to seal the lung tissue. Immunoreactive
fluorescent signals were observed using an epifluorescence micro-
scope system (Olympus, Tokyo, Japan). An anti-OSF3 antibody
(AB41906; Abcam, Cambridge, UK) and an anti-SPTBN1 antibody
(19722-1-AP, Protein Tech Group. Inc., Chicago, IL, USA) were used
as primary antibodies in this study.

3. Results

3.1. Translocation of phosphorylated STAT3 to the nucleus after
tobacco smoke exposure

Previous studies have shown that exposure to tobacco smoke
activates inflammatory signaling pathways; for example, in
response to tobacco smoke, cytoplasmic STAT3 is phosphorylated
by tyrosine-protein kinase2 (JAK2) and translocates into the
nucleus, where it functions as a transcription factor [36]. Therefore,
we used detection of phosphorylated STAT3 (pSTAT3-Tyr705) to
indicate that nuclear proteins were properly purified and that the
tobacco smoke exposure was effective. As expected, Western blot-
ting analysis using an anti-pSTAT3-Tyr705 antibody demonstrated
an increase in pSTAT3-Tyr705 in the nuclear fraction of mouse lung
homogenates after exposure to tobacco smoke (Fig. 2).

3.2. Histological changes induced by tobacco smoke exposure

In order to verify that the tissues were modified after exposure
to tobacco smoke, we observed HE-stained lung tissues, including
the trachea, terminal tracheal, and alveoli, of the tobacco smoke
exposed mice. These results showed hyperplasia of the tracheal
tract epithelium (Fig. 3A), prominent Clara cells (Fig. 3B), and accu-
mulation of inflammatory cells in the alveoli (Fig. 3C).

3.3. Biological functional analysis of identified nuclear
phosphoproteins

Purified nuclear phosphoproteins were analyzed by MS (Figs. 4
and 5). Nuclear phosphopeptides that were expressed specifically
in each group, as well as across groups, were identified (Fig. 6). A
total of 253 phosphoproteins were identified in this experiment



Fig. 3. Micrographs of lung tissues obtained from control mice and mice exposed to tobacco smoke for 7 days. Panel A shows the tracheal epithelium of a control mouse (left)
and a mouse exposed to tobacco smoke for 7 days (right; magnification 400�). Arrows indicate hyperplasia of the epithelium. Panel B shows terminal bronchiole. Arrows
indicate prominent Clara cells. Panel C shows the alveoli. Arrows indicate macrophages.
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(data not shown). Among them, 21 proteins were commonly
expressed in the 1-day and 7-day exposure groups. Additionally,
70 proteins were identified as 1-day exposure-specific proteins,
while 49 proteins were identified as 7-day exposure-specific pro-
teins (Fig. 7).

The identified phosphoproteins were analyzed semi-quantita-
tively in silico by ProteoIQ software, and a heat map of the proteins
was constructed to show the differential expression of proteins in
each group. A total of 33 proteins showed significantly different
expression between control and exposure groups. Ten nuclear
phosphoproteins were specifically expressed in the 1-day exposure
group, 8 in the 7-day exposure group, and 13 were specifically
expressed in both the tobacco smoke exposed groups. Additionally,
expression of 2 phosphoproteins was detected specifically in the
control groups (Fig. 8).

The identified phosphoproteins were classified according to
biological function using ProteoIQ software. This revealed that
the differentially expressed proteins were related to inflammation,
regeneration, repair, proliferation, differentiation, morphogenesis,
and response to stress and nicotine. After 1 day of tobacco smoke
exposure, the number of detected proteins that were related to
induction and morphogenesis increased significantly. Additionally,
the expression of the mitochondrial import inner membrane trans-
locase subunit Tim9 (TIM), FACT complex subunit SPT16
(FACTp140), Huntingtin-interacting protein 1 (HIP1), proteins that
function in development, transcription, and cell differentiation,
were induced by 1 day of exposure to tobacco smoke.
In the 7-day exposure group, the number of detected proteins
related to differentiation and response was increased. Among them
were AFABP, keratin type 2 cytoskeletal 8 (K8), and 60s ribosomal
protein L10E (60s-RP), which respond to inflammatory factors,
such as IL-4, IL-6, or tumor necrosis factor (TNF), and induce cell
differentiation and morphogenesis. OSF3 and septin-7, which were
detected in both of the exposure groups, play crucial roles in the
cell cycle, proliferation, and mitosis. Expression of aldehyde dehy-
drogenase, mitochondrial (ALDH2), was also detected in both
exposure groups.

3.4. Nuclear localization of OSF3 and SPTBN1

We examined the immunostaining for OSF3 and SPTBN1 in the
lung tissue. OSF3 and SPTBN1 were highly expressed in the expo-
sure groups compared to the control groups. These results corre-
sponded to the result of MS analysis, which indicated that these
proteins were expressed specifically in the exposure groups. More-
over, co-immunostaining with DAPI, a nuclear stain, indicated that
OSF3 and SPTBN1 were localized in the nucleus. This demonstrates
that nuclear proteins were appropriately purified using our
method (Fig. 9).

4. Discussion

Using our novel proteomic analysis approach, we found that
ALDH2, SPTBN1, OSF3, and pre-RNA processing factor 19 (PRP19)



Fig. 4. MS/MS data of the AP-2 complex subunit alpha-2 peptide as a representative
phosphoprotein detected in this study. Panel A shows one of the MS/MS spectra
used to identify the m/z 1199 ion-trap peak as a fragment of the AP-2 complex
subunit alpha-2 peptide AVDLLYAMCDR. Spectra were obtained by LC–MS/MS. b++,
y++: divalent ion, b0, y0: –H2O, y⁄: –NH3.

Fig. 5. Spectrum of the detected peptides (A: 1-day control group in blue and 1-day expos
Blue arrows indicate control-specific peaks and red arrows indicate tobacco exposure-s
retention time, which has a linear relationship with the molecular mass of the protein. (Fo
to the web version of this article.)

Fig. 6. Venn diagram showing protein profile overlaps between each group. The
area of each circle is proportional to the number of identified proteins.
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showed increased expression in the tobacco smoke exposure
groups. This is the first study to report these proteins as tobacco
smoke exposure-related markers. ALDH2 has previously been
shown to be expressed at high levels in the liver, heart, kidneys,
and muscles of mice, and at low levels in most other tissues, in
response to nicotine [37]. We did observe increased expression of
ALDH2 in response to tobacco smoke exposure in this study;
ALDH2 expression could be induced to protect cells from cell death
related to the generation of reactive oxygen species (ROS), since
this protein has been reported to attenuate hyperoxia-induced cell
death [38]. Spectrin b chain has been shown to mediate TGF-b sig-
naling [39], and in a study using heterozygous knockout mice [40],
TGF-b has been shown to function in sustaining alveolar cell mem-
branes. This implies that the expression of SPTBN1 may have been
increased in order to repair and regenerate impaired lung tissue.
OSF3 is induced by ROS to function as an antioxidant protein
[41,42] and protects cells from oxidant-mediated damage to DNA
ed group in red; and B: 7-day control group in blue and 7-day exposed group in red).
pecific peaks. The vertical axis indicates intensity, and the horizontal axis indicates

r interpretation of the references to color in this figure legend, the reader is referred



Fig. 7. Pie charts representing the biological functional classification of identified
proteins in each group. Identified proteins were classified using ProteoIQ software.
The area of each circle is proportional to the number of proteins identified in each
group.

Fig. 8. Heat map of phosphoproteins exhibiting differential expression after exposure
ProteoIQ software. ‘‘Identified phosphoproteins’’ represents the list of protein names det
MS.
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[43,44]. Thus, OSF3 may have been upregulated in order to protect
lung cells from being damaged by oxidants generated in response
to tobacco smoke. PRP19 has been shown to function in the repair
of DNA double-stranded breaks [45], suggesting that its enhanced
expression may be related to the repair of DNA that has been dam-
aged by toxic substances in tobacco smoke, particularly ROS.
Expression of heat shock protein 75 kDa (TRAP1) was increased
in the 7-day exposure group, and TRAP1 has been shown to func-
tion in moderating inner cell accumulation of ROS, protecting cells
from damage by ROS and inhibiting apoptosis [46]. Thus, the
tobacco smoke exposure-related molecules detected in the present
study may have been induced to protect against cell injury.

Our proteomic analysis also revealed an increase in the expres-
sion of annexin in both 1- and 7-day exposure groups and an
increase in the expression of K8 and K18 in the 7-day exposure
group. Previous studies have reported the upregulation of annexin
and K8 in lung tissue of rats exposed that had been exposed to
tobacco smoke [47]. Annexin has been demonstrated to play a role
in mediating the anti-inflammatory effects of glucocorticoids [48],
which suggests that annexin could function in suppressing inflam-
mation induced by tobacco smoke exposure. K8 and K18 have been
shown to be phosphorylated under conditions of heat stress [49]
and cell cycle arrest at G2/M transition [50]. Phosphorylation of
K18, in particular, modulates the S and G2/M phases of cell cycle
to tobacco smoke. The table shows the result of semi-quantitative analysis using
ected by MS. The number in each cell indicates the number of peptides detected by



Fig. 9. Micrographs of the immunofluorescently stained lung tissues obtained from control and mice exposed to tobacco smoke for 7 days. Panel A shows micrographs of
DAPI staining (left), OSF3 staining (center), and the merged image (right). Panel B shows micrographs of DAPI staining (left), SPTBN1 staining (center), and the merged image
(right; magnification 400�).
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in relation to filament reorganization [51]. Phosphorylation of K18
during mitosis is reported to regulate its binding to 14-3-3 protein,
one of the proteins found to exhibit a high expression level in the
exposure groups in this study. Therefore, upregulation of
phosphorylated K8 and K18 may have resulted from activation of
a signaling pathway involved in cell cycle arrest and cell injury
repair in response to tobacco smoke exposure. Additionally, K8
and K18 have been reported to bind to the cytoplasmic domain
of TNF receptor 2 (TNFR2), which moderates the c-Jun NH2-termi-
nal kinase (JNK) signaling pathway and inactivates nuclear
factor-kappa B (NF-jB) [52]. Therefore, K8 and K18 may have been
upregulated in order to moderate JNK signaling and to suppress
inflammation and apoptosis. In contrast, another study in rats that
had been exposed to tobacco smoke for 5 days reported that the
intensity of staining for JNK in epithelial cells in lung parenchyma
and for protein kinase C-a (PKC-a) in macrophages were increased,
suggesting that PKC-a is activated by exposure to tobacco smoke
and leads to the activation of NF-jB through the activation of
JNK [53]. In addition, another study has reported increased expres-
sion of JNK and ERK2 following prolonged (over 1 month) exposure
to tobacco smoke [54]. Upregulation of ERK1/2 has also been
reported in the rat lung following a 5-day exposure to tobacco
smoke [55]. Furthermore, AFABP, which we found to be increased
in the 7-day exposure group, activates the NF-jB signaling path-
way in macrophages and causes inflammation [56]. Considering
the above changes in phosphoprotein expression, the following
events occur in response to tobacco smoke: (1) during the acute
phase, the expression of proteins that cause inflammation, such
as AFABP in alveolar macrophages, was increased; (2) as inflamma-
tion was exacerbated, another signaling pathway could be acti-
vated to moderate inflammation, and annexin and other proteins
related to the moderation of inflammatory pathways were
increased.

The expression of HIP1 and FACTp140 was increased specifically
in the 1-day exposure group. Over-expression of HIP1 can induce
cellular apoptosis [57], which suggests that some lung cells dam-
aged by tobacco smoke underwent cell death accompanying
increased HIP1 expression. FACTp140 is known to play a crucial
role in transcription and DNA replication [58]. The observed
increase in FACTp140 expression likely indicated that this protein
was induced in order to enhance cell proliferation and to allow
the repair of lung tissue damaged by tobacco smoke exposure.

Compared with the control groups, the expression of serine pro-
tease P100 (p100) was down-regulated in the 1- and 7-day expo-
sure groups. P100 has been reported to interact with STAT6 and
regulate IL-4 signaling [59]. IL-4 is known to cause asthma and
allergy in the lungs [60]. In addition, MAPK3, which functions in
the activation of the JNK signaling pathway, exhibited decreased
expression in tobacco-exposed groups in the present study [61].
Therefore, our results demonstrated that many complex and con-
tradictory phenomena function simultaneously during short-term
exposure to tobacco smoke. Some proteins could protect cells from
being damaged by toxic tobacco smoke substances, particularly
ROS, and from cell death induced by tobacco smoke exposure. At
the same time, severely damaged cells undergo apoptosis. During
the repairing phase, cell proliferation is induced in order to heal



Fig. 10. Proposed signaling pathways and associated proteins identified as being
activated by tobacco smoke exposure in this study.
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damaged tissue, or due to hyperplasia. Therefore, down-regulation
of these molecules suggested that many complex signaling path-
ways were involved in the cellular response to tobacco smoke
exposure.

In conclusion, here, in order to investigate the effect of tobacco
smoke exposure in the acute phase, we analyzed nuclear phospho-
proteins extracted from murine lung tissue after exposed of mice
to tobacco smoke for 1 or 7 days. We found that most of the pro-
teins detected by the present proteomic study are associated with
signaling pathways related to inflammation, repair, regeneration,
proliferation, differentiation, morphogenesis, and response to
stress and nicotine, as indicated in Fig. 10. These molecules are
potential markers of short-term tobacco smoke exposure.
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