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Intercropping between sugarcane and soybean is widely used to increase crop yield
and promote the sustainable development of the sugarcane industry. However, our
understanding of the soil microenvironment in intercropping systems, especially the
effect of crop varieties on rhizosphere soil bacterial communities, remains poor.
We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9
(ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field
interplanting experiments. These two cultivars of sugarcane have good drought
resistance. Rhizosphere soil samples were collected from the two intercropping systems
to measure physicochemical properties and soil enzyme activities and to extract total
soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere
bacterial community was significantly different between the two intercropping systems.
Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria,
increasing the available nitrogen content by 18% compared with that with ZZ1.
In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere
environment than ZZ1, thus providing favorable conditions for sugarcane growth. These
results provide guidance for the sugarcane industry, especially for the management of
sugarcane and soybean intercropping in Guangxi, China.

Keywords: sugarcane, nitrogen-fixing bacteria, intercropping, network analysis, rhizosphere

INTRODUCTION

Intercropping is simultaneous cultivation of two or more crops in the same field (Esnarriaga
et al., 2020). Compared with monocropping, intercropping increases the efficiency of resource
utilization and yield, which greatly improves the fertility of agricultural land (Wang Y. et al., 2018).
Intercropping commonly involves co-cultivation of soybean and grasses, which increases crop yield
through enhanced rhizosphere interaction, improved soil microecology, and increased number
of soil microorganisms and enzyme activities (Zhou et al., 2019). Intercropping alters microbial
community structure and activity and thereby affects carbon and nitrogen dynamics (Luo et al.,
2016; Lian et al., 2018). Lian et al. (2019) reported that sugarcane and soybean intercropping
increases microbial diversity in rhizosphere soil and is widely used to stabilize yield and reduce
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nitrogen leaching. Solanki et al. (2017) demonstrated that
sugarcane intercropping with soybean increases the abundance
of soil nitrogen-fixing bacteria and the activity of dehydrogenase.
Zhang et al. (2021) showed that intercropping systems changed
soil microbial numbers and enzyme activities, which in turn
regulated genes involved in nitrogen cycle, phosphorus cycle and
organic matter turnover. In addition, soybean—related nitrogen
fixation improves soil fertility and field ecological conditions,
which are beneficial to sugarcane in intercropping systems (Lian
et al., 2018), and stimulate nitrogen fixation by the microbiome
of legumes (Li et al., 2013).

Microbial communities play an important role in every
biogeochemical cycle; are key factors in many ecosystem
processes; obtain mineral nutrients such as nitrogen, phosphorus,
and sulfur from the soil; and are major contributors to plant
growth (Delgado-Baquerizo et al., 2017; Jacoby et al., 2017).
By breaking down organic matter, they maintain soil fertility
and support sustainable plant growth and productivity (Itelima
et al., 2018). Plant growth-promoting rhizobacteria intensify
plant growth and affect plant development through a variety
of mechanisms, such as formation of iron carriers, phosphate
solubilization, biological nitrogen fixation, and production and
activation of 1-amino-cyclopropane 1-carboxylic acid deaminase
(Xun et al., 2015; Goswami et al., 2016). Biological nitrogen
fixation is one of the most important ecological and agricultural
benefits of plant–bacterial interaction. The bacterial nitrogenase
complex reduces atmospheric N2 to ammonia (NH3), a form
that is easily absorbed by plants (Rilling et al., 2018). Therefore,
recruitment of nitrogen-fixing bacteria in symbiotic or non-
symbiotic relationships helps host plants obtain nitrogen directly
from the atmosphere to meet their nutritional needs (Matos
et al., 2021). Some free-living bacterial genera (such as nitrogen-
fixing genera) can colonize different plant niches, such as the
rhizosphere and endosphere, thereby promoting the nitrogen
requirements of non-legumes (Bhattacharyya and Jha, 2012). In
addition, phenotypic traits such as root structure affect microbial
recruitment and colonization (Saleem et al., 2018). Zhao et al.
(2020) demonstrated that sugarcane of different genotypes
established different rhizosphere bacterial communities, which
was speculated to be related to variation of root exudates.

Sugarcane planting area in Guangxi is an important planting
region in China, accountings for 60% of the country’s total
sugarcane production and 69% of the country’s total sugar
production (Rukai and Zhaonian, 2010). Drought has become
the main limiting factor of sugarcane production in this region
because of its unique geographical location, uneven distribution
of rainfall, and imperfect irrigation facilities (Liu Y. et al.,
2020). Therefore, there is an urgent need to breed new drought-
resistant and high-yielding sugarcane varieties to improve
sugarcane yield. “Zhongzhe” ZZ1 and ZZ9 are two new sugarcane
cultivars selected and bred by the State Key Laboratory for
Conservation and Utilization of Subtropical Agro-bioresources
(Yin et al., 2020). These two cultivars have great advantages in
terms of yield and a potential to replace the currently planted
sugarcane varieties (Zhang et al., 2019). Previous studies have
found differences in water use efficiency between ZZ1 and
ZZ9 (Araus et al., 2020), which may also be present during

soybean intercropping. The rhizosphere bacterial community
structure and nitrogen use in intercropping systems of soybean
and these two varieties are largely unknown. In the present
study, we evaluated the relationships between the two sugarcane
cultivars, ZZ1 and ZZ9, and soybean in intercropping systems
through rhizosphere bacterial community diversity analysis,
rhizosphere bacterial relative abundance analysis, and correlation
network analysis as well as other bioinformatics analysis. The
aim of this study was to address the following questions: (1)
Does rhizosphere microbial community structure differ between
intercropping systems of ZZ1 and ZZ9? (2) Will ZZ1 and ZZ9
enrich nitrogen–fixing bacteria when intercropped with soybean?
(3) Which of the two sugarcane–soybean intercropping systems
will form a more compact rhizosphere soil environment? This
study will provide new ideas for the efficient utilization of
sugarcane fields and the green development of the sugarcane
planting industry.

MATERIALS AND METHODS

Plants and Field Experimental Design
The study was conducted in the summer of 2018 in Fushun Quli
(107◦31′–108◦06′ E, and 22◦17′ –22◦57′ N) at a feed breeding
farm of the Guangxi University. The average annual temperature
in the region was 21.3◦C. The annual total radiation was 108.4
Kcal/cm, the annual average sunshine time was 1,693 h, and the
frost-free period was 346 days. The annual rainfall in the entire
region ranged from 1,050 to 1,300 mm. The soil of the long-term
sugarcane field was laterite and had the following characteristics:
pH 5.15, organic matter 19.47 g/kg, total nitrogen 0.84 g/kg,
total phosphorus 2.98 g/kg, total potassium 7.11 g/kg, alkaline
hydrolyzed nitrogen 136 mg/kg, available phosphorus 83 mg/kg,
and available potassium 77.1 mg/kg. Two new cultivars, ZZ1
and ZZ9, of the sugarcane cultivar Zhongzhe developed and
cultivated in the State Key Laboratory for Conservation and
Utilization of Subtropical Agro-bioresources were used in this
study. Both cultivars originated from the same parents (Roc
25 × Yunzhe 89-7) (Yin et al., 2020). We used the local
soybean cultivar GUIZAO2. This high-yielding cultivar was bred
locally in Guangxi for its drought resistance, adaptation to
local climate, and shade tolerance. The variety is suitable for
intermediate cultivation with sugarcane and is widely used in
Guangxi (Huaizhu et al., 2004). Three monoculture (ZZ1, ZZ9,
and GUIZAO2) and two intercropping patterns (ZZ1–soybean
and ZZ9–soybean) were established, each comprising three plots
as replicates (30 m × 42 m). The experimental plots were
planted with 12 rows of sugarcane alternating with 12 rows of
soybeans at 1.2 m distance (Supplementary Figure 1). Standard
agricultural practices for sugarcane planting were followed for
field management activities, including irrigation, fertilization,
weeding, and pest control.

Soil Sample Collection and Analysis of
Physicochemical Properties
The agronomic characters of sugarcane were measured before
harvest, plant height was measured by a steel tape, representative
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plants were selected from each plot, and the plant height of 20
plants was measured to calculate the average plant height. Plant
weight was measured using a weighing balance, according to the
empirical formula: single stem weight = plant height × stem
diameter × 0.785/1,000. Sugar content was measured using
a refractometer (BRIX30, Leica, Bannockburn, IL), and stem
weight and sugar content were measured simultaneously with
plant height. The roots of each plant were dug out and the
loosely attached soil was removed by manual shaking, whereas
the rhizosphere soil was collected from the surface of the
roots (Wang C. et al., 2018). We collected the rhizosphere
soil samples from sugarcane roots in ZZ1 monoculture plots
(mono_sug1), ZZ9 monoculture plots (mono_sug9), from ZZ1
and ZZ9 sugarcane roots near the soybean side (inter_sug1
and inter_sug9, respectively), and from soybean roots near
the ZZ1 and ZZ9 sugarcane sides (inter_soy1 and inter_soy9,
respectively). Six sugarcane and six soybean rhizosphere soil
samples were collected from each experimental plot randomly.
The roots were shaken vigorously to remove loose soil. The six
soil samples from each were then mixed, and plant residues
and stones were removed by sieving through a 2 mm sieve.
Each soil sample was divided into three parts, which were
then used for DNA extraction, determination of environmental
factors, and determination of soil enzyme activity. The soil
used for DNA extraction and enzyme activity determination
was temporarily stored in a refrigerator at 4◦C, while the soil
used for soil environmental factor determination was air dried
at room temperature (25–28◦C) and stored in a sealed bag
at room temperature. Soil organic carbon (SOC) and available
phosphorus (AP) levels were measured as previously described
(Soon and Abboud, 1991; Zhaolei et al., 2017). The soil was
extracted with 2 M KCl, and the contents of NH4-N and NO3-
N in the filtrate were analyzed using a flow-solution analyzer
(Flowsys, Ecotech, Germany). Dissolved nitrogen (DON) and
total nitrogen (TN) levels were estimated using a TOC/TN
analyzer (Multi N/C 2100 (S); Analytik Jena GmbH, Germany).
Levels of soil enzymes were measured using kits for soil urease
(S-UE), soil sucrose (S-SC), soil catalase (S-CAT), and soil acid
phosphatase (S-ACP) (Wang et al., 2014; Hou et al., 2020).
The analysis of each soil sample was repeated three times with
0.5 g per replicate.

DNA Extraction, Amplicon Generation,
and High-Throughput Sequencing
DNA was extracted from the samples using an E.Z.N.A Soil
DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, United States).
The concentration and purity of the extracted DNA were
measured using a NanoDrop One spectrophotometer (Thermo
Fisher Scientific, MA, United States). A 50 µL PCR reaction
mixture, contained 25 µL of Premix Taq (Takara Biotechnology,
Dalian Co., Ltd., Dalian, China), 1 µL each primer (10 mM),
and 3 µL template DNA (20 ng/µL), was prepared. The
amplification was conducted in a Biorad S1000 Thermal Cycler
(Bio-Rad Laboratories, CA, United States) under the following
thermal cycling conditions: initial denaturation at 94◦C for
5 min, followed by 30 cycles of denaturation at 94◦C for

30 s, annealing at 52◦C for 30 s, extension at 30◦C for 30
s. and final extension at 72◦C for 10 min. The primers used
were nifH-F (AAAGGYGGWATCGGYAARTCCACCAC) and
nifH-R (TTGTTSGCSGCRTACATSGCCATCAT) (Rösch et al.,
2002). The DNA library was constructed using an Illumina
TruSeq DNA Sample Preparation Kit (Illumina, San Diego,
CA, United States). The Illumina HiSeq2500 platform was used
for high-throughput sequencing of the nifH genes (Guangdong
McGinn Biotechnology Co., Ltd., Guangzhou, China), and the
sequences have been deposited in the NCBI database1 with
accession number PRJNA657992.

Statistical and Bioinformatics Analysis
Statistical data of soil environmental factors, soil enzyme
activities and crop agronomic traits were compared and analyzed
using analysis of variance and multiple comparisons using
SPSS22.0 (SPSS, Chicago, IL, United States). The raw reads were
processed using QIIME2 v.2019.1.0 with DADA2 plug-in to filter
low-quality reads, reconstruct the amplicon sequence variants
(ASVs), and to generate a feature table for ASV count. In the mass
filtering step, the dataset was truncated to a read length of 270–
250 bp for forward and reverse reads (all other parameters were
set to default values). After mass filtering, the bacterial taxonomy
was assigned to the ASV feature table using the naive Bayesian
Q2 feature classifier implemented in QIIME2. The data were used
for taxonomic classification against the SILVA 132 database for
16S rRNA (Quast et al., 2012) and the nifH sequence database
(Gaby and Buckley, 2014).

Alpha diversity was analyzed using QIIME2 to assess the
complexity of biodiversity in the sample and was represented
by R (V3.6.3). Sample diversity was estimated by determining
the Chao1 and Shannon indices. At the ASV level, we examined
the observed differences in species richness among the three
sample types (ZZ1, ZZ9, and GUIZAO2 monocropping) and
between the two intercropping patterns (ZZ1–soybean and
ZZ9–soybean). Beta diversity analysis was used to assess the
differences in sample complexity. For general analysis, the filtered
ASV sequence number of each bacterial taxon was normalized
using the Bioconductor software package EDGER (version 3.8.5)
(Hartman et al., 2018). We used R software and a Local
Perl script to create sample removal heat maps based on the
UniFrac removal matrix. Principal coordinate analysis (PCoA)
was used to show differences in species composition of the
microbial community. We examined the effects of sample types
and intercropping patterns on community dissimilarity using
permutational multivariate analysis of variance. In addition,
Pearson’s correlation analysis was used to determine the
relationship between alpha diversity and environmental factors
and Mantel test was used to examine the relationship between
beta diversity and environmental factors. Mantel tests, heatmaps,
PCoA, redundancy analysis (RDA), and network analysis were
performed using the “vegan” package in R v3.6.3 (Bargaz et al.,
2017; Zheng et al., 2019).

The randomForest program in the randomForest package
(Grömping, 2009) was used to determine the main prokaryotic

1http://www.ncbi.nlm.nih.gov
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indicators of soil microbial community differences in the two
intercropping systems by classifying the randomForest model
(Jiao et al., 2018). The mean decrease gini values of the variables
were used to estimate the relative importance of prokaryotic
indicators in determining soil microbial communities, with
higher mean decrease gini values indicating that these variables
(i.e., the corresponding prokaryote classification) are more
important (Grömping, 2009).

Co-occurrence Network Analysis
The soil and root bacterial communities were further evaluated
by determining the Spearman rank correlation coefficients
for all bacterial pairs and the topological network attributes.
This includes the total number of network nodes (ASVs),
the total number of edges (representing the connections
between nodes that are significantly positively correlated between
ASVs), and the degree of concurrency (the number of direct
correlations with nodes). Spearman rank correlation analysis
was performed to evaluate the association between all bacterial
ASV pairs. We calculated the network properties mentioned
above and, in order to investigate the community structure in
the rhizosphere networks, we identified the network modules
from the substructures of nodes whose group edge densities
were higher than those between them (Chun et al., 2020).
Microbial taxa that reappeared with other taxa in microbial
coexistence networks were considered ecologically significant
and were thought to play an important role in the microbiome
(Agler et al., 2016; van der Heijden and Hartmann, 2016;
Hartman et al., 2018).

RESULTS

Comparison of Nitrogen-Fixing Microbial
Diversity Between Two Intercropping
Patterns
Alpha diversity results showed no significant difference in
the Chao1 index between the two intercropping patterns.
The Shannon index of inter_soy and inter_sug of the two
intercropping patterns was higher than mono_sug, and
the difference was more significant in the ZZ9–soybean
intercropping pattern (Figure 1A). Pearson’s correlation analysis
of the alpha diversity and environmental factors revealed that
the Chao1 index of ZZ9 was negatively correlated with more
environmental factors than that of ZZ1 (Figure 1B). The
correlation degree of Chao1 index with S-CAT, S-SC, SOC,
NH4-N, DON, and S-ACP was significantly different between
the two intercropping systems. In terms of Shannon index, ZZ9
was positively correlated with significantly greater number of
environmental factors than ZZ1, and it had a higher positive
correction in AP, TN, SOC, NH4-N, S-ACP, and DON than ZZ1
(Figure 1B). Beta diversity analysis was based on weighted and
unweighted UniFrac, reflecting the differences in the bacterial
community structure of each treatment (Figure 2A). Under the
unweighted condition, the distance between the components
(inter_soy, inter_sug, and mono_sug) in the two intercropping

patterns was not large, and the community differences between
the inter_soy, inter_sug, and mono_sug in ZZ1–soybean
intercropping system was not obvious. In the ZZ9–soybean
intercropping system, the community structure of inter_soy and
inter_sug was obviously different from that in mono_sug and
significantly different from those in the ZZ1 interculture system
(Figure 2A). These differences were mainly influenced by ASV1
(Burkholderia), ASV4 (Desulfopila), ASV16 (Aquabacterium),
ASV22 (Clostridiales unclassified), and ASV23 (Aquabacterium).
Under weighted UniFrac, considering the effect of population
abundance, the differences between composition of the
components in the two intercropping patterns were obvious
(Figure 2A). In the ZZ1–soybean intercropping system, the
difference between inter_sug and mono_sug components was
small, and both were significantly different from that of inter_soy.
In the ZZ9–soybean intercropping system, the composition of
inter_soy, inter_sug and mono_sug was significantly different.
The difference between the two intercropping patterns was
mainly influenced by ASV1 (Burkholderia), ASV4 (Desulfopila),
ASV12 (Terrimicrobium), ASV16 (Aquabacterium), and
ASV32 (Methylocystis). The Mantel test of beta diversity and
environmental factors showed that, without weighting, the
diversity indices of ZZ1 and ZZ9 were significantly different
in correlation with SOC, NH4-N, and DON, with ZZ9 being
highly significant in these three environmental factors. After
weighting, the two intercropping patterns were mainly differed
in correlation with TN and S-SC, and ZZ9 exhibited a very
significant difference in TN (Figure 2B).

Nitrogen-Fixing Bacterial Community
Changes and Their Relationship With
Environmental Factors
Changes in bacterial community composition in the two
intercropping patterns at the phylum level were analyzed.
In the ZZ1–soybean intercropping system, the relative
abundance of Spartobacteria in inter_sug1 was significantly
higher than that in mono_sug1, whereas the relative
abundance of Gammaproteobacteria decreased. In the ZZ9–
soybean intercropping system, the relative abundance of
Betaproteobacteria and Gammaproteobacteria were significantly
higher and that of Alphaproteobacteria was significantly lower
in inter_sug9 than in mono_sug9 (Figure 3A). Similarly, the
relative abundance of Alphaproteobacteria was higher and that
of Betaproteobacteria was lower in inter_sug9 than in inter_sug1.
We used RDA to explore the correlation between bacterial
composition and environmental factors. The first two axes of
RDA accounted for 51.8 and 21.9% of the total data variation
(Figure 3B). In the ZZ1 intercropping system, the community
structures of mono_sug1 and inter_sug1 were more similar to
those of inter_soy1; the main influencing factors were AP and
SOC, and the difference was attributed to Enterobacterales,
Desulfobacterales, Clostridiales, and Rhodospirillale. The
community structure of each component was significantly
different in ZZ9 intercropping system. The differences between
inter_soy9 and inter_sug9 were mainly influenced by AP,
Clostridiales, Rhodospirillales, and Desulfobacterales. The
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FIGURE 1 | (A) Bacterial alpha-diversity measurements of represented by Chao 1 and Shannon indexes in each pattern. F = Fisher’s F-ratio. p = p-value. Different
letters next to the bars represent significant differences between the measured indices. (B) Pearson correlation analysis of alpha diversity and environmental factors
showed positive correlation in blue and negative correlation in red.

differences between inter_sg9 and mono_sug9 were mainly
derived from S-SC and S-CAT, and were strongly correlated
with Rhizobiales and Burkholderiales. The differences between
1inter_sug and 9inter_sug were mainly influenced by S-SC
and S-CAT, and were strongly related to Rhizobiales and
Burkholderiales.

The correlation heat map of different phyla with
environmental factors showed a significantly positive correlation
of Rhizobiales with S-UE, NO3-N and S-CAT, in addition, there
was a significantly positive correlation in Syntrophobacterales
and DON (Figure 4A). Based on the constructed random
forest model, the mean decrease in Gini identified Rhizobiales,
Desulfovibrionales, and Nevskiales as the three most important
orders in microbial communities (Figure 4B). In addition,
Rhizobiales and Burkholderiales had high relative abundances
in each component.

Co-occurrence Network Analysis
The co-occurrence network analysis of ASVs in the two
intercropping patterns identified the same modules, namely,

Module1 (M1), Module2 (M2), and Module3 (M3). However, the
modules in the ZZ9–soybean intercropping system were more
closely related and exhibited more ASV associations than those
in the ZZ1 intercropping system (Figure 5A). The correlation
heat map between each module and environmental factors in
the two intercropping patterns showed that in the ZZ1–soybean
intercropping system, M1 was significantly negatively correlated
with AP, and significantly positively correlated with S-CAT; M2
was significantly negatively correlated with AP, and positively
correlated with S-CAT; and M3 was significantly positively
correlated with S-SC (Supplementary Figure 3). In the ZZ9–
soybean system, M3 was significantly positively correlated with
TN; M1 and M3 were significantly negatively correlated with
NH4-N, SOC, and DON; and M2 was significantly negatively
correlated with NH4-N. Supplementary Figure 2 showed the
values of the intra and inter-module connectivity of the two
intercropping patterns. Almost all connectors and module
hubs, considered keystones, existed in the network of ZZ9,
while their number in ZZ1 was very small. Analysis of the
number of ASVs of each module in the co-occurrence network
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FIGURE 2 | (A) Principal coordinate analyses (PCoAs) using UniFrac distance matrix, to analyze the differences in the diversity of bacterial beta under different
patterns, figure in left side is unweighted, figure in right side is weighted. (B) Mantel test was used to o compare the correlation difference of soil nutrients between
ZZ1 and ZZ9, figure in left side is unweighted, and figure in right side is weighted. P > 0.05 (NS), P < 0.05(*), P < 0.01(**).

FIGURE 3 | (A) Relative abundance of different phyla in each pattern. (B) Distance-based redundancy analysis of different patterns (dot) and environmental factors
(arrows) indicates the dominant communities and influential environmental factors, Pr ≤ 0.001(***), Pr ≤ 0.01(**), * Pr ≤ 0.05(*).

showed that, in the ZZ1–soybean intercropping system, the
numbers of ASVs contained in M1, M2, and M3 modules
were not high, with Alphaproteobacteria being dominant in M1

(Figure 5B). M2 mainly contained ASVs in mono_sug1 and
was dominated by Betaproteobacteria. In M3, ASVs were mainly
in inter_sug1, and Betaproteobacteria and Verrucomicrobia
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FIGURE 4 | (A) Pearson correlation heat maps of environmental factors and relative abundances of the 20 most abundant bacterial genera in rhizosphere soil
samples. (B) Top 10 bacterial genera and their mean decrease in Gini, which is a measure of characteristic correlation. The higher the index of mean decrease Gini,
the more important the bacterial genera are.

FIGURE 5 | (A) Significant correlation of co-occurrence network visualization (ρ > 0.7, P < 0.001; In ZZ1 and ZZ9 communities, bacterial ASVs were represented by
a gray line. Dots represent an ASV, and ASVs are colored according to their association with different cropping systems (gray ASVs are insensitive to variety
differences). The size of the dots reflects the association between ASVs and other ASVs, and the more associated ASVs the larger the dots are (B) cumulative
relative abundance in different cropping systems, and different colors represent different phyla.
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were dominant. In the ZZ9–soybean intercropping system,
three modules contained a large number of ASVs, and M2
mainly corresponded to inter_sug9, which contained a large
number of Alphaproteobacteria and Verrucomicrobia. The
ASVs in M3 were mostly from inter_soy9 and contained a
large number of Alphaproteobacteria, Betaproteobacteria, and
Deltaproteobacteria.

Comparison of Nutrients, Enzymes, and
Agronomic Traits in the Field
Compared with mono_sug1, inter_sug1 increased cane weight,
plant height, and sugar content, but the differences were not
significant. Compared with mono_sug9, plant height, cane
weight, and sugar content of inter_sug9 were significantly
increased. The promoting effect of ZZ9–soybean intercropping
on the three agronomic traits was more significant than that of
intercropping with ZZ1 (Table 1). The results of the analyses
of soil environmental factors and enzyme activities showed that
inter_sug9 had higher enzyme activities than inter_sug1, and
S-CAT, S-UE, and S-SC and the contents of TN and NO3-N
were also higher in inter_sug9 than in inter_sug1 (Table 2).
ZZ9 had a stronger correlation with sugarcane agronomic traits,
environmental factors, and keystones than ZZ1 (Figure 6).
In ZZ1, sugarcane cane weight was correlated only with AP,
sugar content was correlated only with S-SC, DON was highly
correlated with NH4-N and Spartobacteria incertae sedis, and
NH4-N was highly correlated with Cyanophyceae incertae sedis.
In ZZ9, the correlation between each index was larger than that in
ZZ1. S-UE was highly correlated with cane weight, NO3-N, SOC,
NH4-N, DON, and S-CAT, whereas S-SC was strongly correlated
with Rhodobacterales and Nevskiales.

DISCUSSION

The Two Intercropping Patterns Formed
Different Rhizosphere Bacterial
Community Structures
The Shannon index of inter_soy and inter_sug of the two
intercropping systems was significantly higher than that of
mono_sug (Figure 1A), suggesting that the intercropping of
sugarcane and soybean improved the diversity of rhizosphere
bacteria (Li and Wu, 2018). It is worth noting that the Shannon
index of the ZZ9–soybean intercropping pattern was significantly
higher than that of the ZZ9 monocropping. One possible

TABLE 1 | Agronomic characters of sugarcane.

Sample name Plant height (mm) Cane weight (kg) Sugar content %

inter_sug1 267.50 ± 3.04b 1.91 ± 0.09b 21.78 ± 0.81b

inter_sug9 322.83 ± 1.76a 2.31 ± 0.10a 24.53 ± 0.60a

mono_sug1 263.17 ± 13.71bc 1.17 ± 0.48b 20.87 ± 1.02b

mono_sug9 244.17 ± 7.52c 1.38 ± 0.19c 22.48 ± 0.58a

Pr( > F) <0.01 0.243 0.239

Different letters indicate significant differences (ANOVA, P < 0.05). TA
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FIGURE 6 | The correlation network analysis of agronomic traits, environmental factors and bacterial genera between the two sugarcane cultivars, the thickness of
the line reflects the correlation.

explanation for this significant increase in diversity may be
related to the greater amount and type of root exudates in the
intercropping system than in the monocropping system (Zhou
et al., 2011). The release of these exudates into the rhizosphere
soil increases soil nutrients and provides a substrate conducive
for bacterial growth (Ren et al., 2016; Qiao et al., 2017). ZZ9 was
significantly positively correlated with all environmental factors
except S-UE and NO3-N (Pearson’s correlation coefficients
above 0.5) (Figure 1B), indicating a close correlation between
the rhizosphere bacterial community of ZZ9 and the soil
environment. The complex interaction between the bacterial
community and the environment can establish a stable metabolic
environment for the bacterial community, which is conducive to
nitrogen fixation (Liu H. et al., 2020).

The beta diversity analysis showed that the bacterial
communities of each component under the two intercropping
patterns were significantly different, especially among inter_soy9,
inter_sug9, and other components (Figure 2A). The unique
rhizosphere bacterial community structure produced by ZZ9
intercropping with soybean reflects the strong influence of ZZ9
on the rhizosphere. The effect of plant roots on rhizosphere
bacterial composition has been widely recognized in many plant
species (Lundberg et al., 2012; Peiffer et al., 2013; Edwards et al.,
2015), as well as in sugarcane (Liu et al., 2019). It is worth noting
that the difference in the components of the two intercropping
modes is mainly driven by Rhizobiales, Burkholderiales, and
Desulfobacterales (Figure 2A and Supplementary Table 1),
the orders harboring bacteria with recorded or potential N
cycle function in the soil (Van Der Heijden et al., 2008; Tang
et al., 2018; Nie et al., 2021). The RDA analysis also confirmed
the impact of these bacteria on each component in the two
intercropping patterns (Figure 3B). This rhizosphere effect may
be influenced by the specific root exudates of ZZ9 (Liu Y. et al.,
2020). The rhizosphere soil samples mono_sug1 and mono_sug9
showed significant differences in SOC content (Table 2). The
activity of various soil enzymes was higher in the ZZ9–soybean
intercropping. Soil enzyme activities reflect the rate of soil

nutrient cycling and utilization and may be an indicator of
soil biodiversity, productivity, and potential microbial activities
(Williams and Jochem, 2006). Higher soil enzyme activity
may indicate that more metabolic substrates being released
into the soil (Yi et al., 2018), thus providing richer soil
nutrients environments for bacterial community establishment.
Therefore, we conclude that the difference in rhizosphere
bacterial community structure between the two intercropping
modes is caused by the difference in soil nutrient environment
created by root exudates released by the intercropped plants (el
Zahar Haichar et al., 2008; Berg and Smalla, 2009).

Zhongzhe9–Soybean Intercropping
Pattern Enriches the Nitrogen-Fixing Soil
Bacterial Community
The relative abundance of Alphaproteobacteria in ZZ9–soybean
intercropping was higher than that of ZZ1 intercropping mode
(Figure 3A). Alphaproteobacteria includes a large number
of symbiotic nitrogen-fixing bacteria in soil (Wang et al.,
2019). FixK and FnrN in Alphaproteobacteria regulate the
expression of oxidase, hydrogen uptake, nitrogen metabolism,
heme biosynthesis, and the levels of transcription factors
involved in nitrogen fixation (Tsoy et al., 2016). Interestingly,
the relative abundance of Deltaproteobacteria was higher in
inter_soy9 than in inter_soy1 (Figure 3A). Masuda et al. (2017)
showed that diazotrophs harboring nitrogenase (Nif) can drive
nitrogen fixation and that the taxonomic composition of Nif
transcripts was dominated by Deltaproteobacteria. This suggests
that Deltaproteobacteria plays a key role in nitrogen fixation. The
importance of each order in the present study was estimated by
calculating the mean decrease of Gini index for each order using
the random forest algorithm. The importance of Rhizobiales
was the highest, and the relative abundance of each component
corresponding to the ZZ9 intercropping pattern was higher than
that of ZZ1 intercropping pattern (Figure 4B). The growth-
promoting role of Rhizobiales has been extensively studied
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(Garrido-Oter et al., 2018). By providing precursors of various
nutrients, plant hormones, and essential plant metabolites,
Rhizobiales perform beneficial functions for their hosts, and the
most important function is nitrogen fixation (Ivanova et al.,
2000; Delmotte et al., 2009; Verginer et al., 2010). We found a
significant positive correlation between the activity of Rhizobiales
and S-UE and NO3-N (Figure 4B). Urease can hydrolyze urea
in the soil and convert it into ammonia, which can be used by
plants (Wang et al., 2014), and its activity plays an important
role in the nitrogen cycle (Blagodatskaya and Kuzyakov, 2008).
Recent studies have shown that nitrogen fixation by rhizobia
is not limited to legumes (Pold et al., 2018; Noh et al., 2019),
but is found in other non-leguminous higher plants, including
sugarcane (Zhao et al., 2020). In addition, the relative abundance
of Burkholderiales was high (Figure 4B), and Burkholderiales
have been shown to play an important role in nitrogen input to
newly colonized soils (Ortiz et al., 2020). In the cluster modules
of the co-occurrence network of the two intercropping patterns,
the number of ASVs was greater and Alphaproteobacteria,
Betaproteobacteria, and Verrucomicrobia were more abundant
in the ZZ9 than in the ZZ1 intercropping system (Figure 5B).
These bacteria have a positive effect on nitrogen fixation and
contributed to the significant increase in TN, NO3-N, NH4-N,
and DON contents in the sugarcane rhizosphere of the ZZ9
intercropping system when compared with ZZ1 system (Table 2
and Supplementary Figure 3; Kämpfer et al., 2008; Khadem et al.,
2010; Stein, 2018).

Intercropping of Zhongzhe9 With
Soybean Creates a More Compact
Rhizosphere Environment
The results of the alpha diversity analysis confirmed that the
rhizosphere bacterial diversity of the ZZ9 intercropping system
was strongly positively correlated with multiple environmental
factors, including TN, NH4-N, and DON (Figure 1B), and
the bacterial relative abundance was significantly different
between the two intercropping patterns (Figure 3A). These
results indicate that ZZ9 intercropping with soybean established
specific bacterial communities in the rhizosphere soil, where
these bacteria played an important role in changing the
rhizosphere soil microenvironment. This change is closely related
to the production of crop root exudates (Semchenko et al.,
2014). Bacterial colonization in the rhizosphere is related to
root exudates (Lugtenberg and Kamilova, 2009), which act as
signals mediating root–microbial interactions (Ling et al., 2011).
Bacterial communities are affected by root exudates, which alter
soil nutrition, help enrich microorganisms, and promote biofilm
formation or act as chemical stimulants of bacterial growth
(Zhang et al., 2014; Carvalhais et al., 2015; Haldar and Sengupta,
2015). Network analysis has been used to study microbial
symbiosis in many complex environments (Barberán et al.,
2012). Co-occurrence patterns are important for understanding
microbial community structure, and they provide new insights
into the underlying networks of interactions, revealing niche
spaces shared by community members (Wu et al., 2019). In
this study, the ZZ9 intercropping mode established more close
connections among ASVs in the network than ZZ1 (Figure 5A).

Modularity is characteristic of large complex systems (Barabasi
and Oltvai, 2004; Newman, 2006). In a biological network,
highly interconnected species are grouped into a module in
which interactions between species are more frequent and
intensive than that in other members of the community
(Barabasi and Oltvai, 2004). Moreover, many environmental
factors in ZZ9 intercropping mode are closely related to
Rhizobiales, Rhodobacterales and Desulfovibrionales (Figure 6).
Previous studies have suggested that Rhizobiales are the main
promoters of plant nitrogen fixation, root nodules formations
and crop growth (Turan et al., 2019), while Rhodobacterales and
Desulfovibrionales have been shown to contribute to nitrogen
fixation in rhizosphere soil (Blumenberg et al., 2012; Tsoy et al.,
2016). We believe that the intercropping of ZZ9 and soybean
establishes a more compact bacterial environment, in which
the relationships between bacteria and soil environment are
more complex, and the ecosystem is more stable than that
in ZZ1 intercropping pattern (Yang et al., 2018). Weidner
et al. (2015) suggested that high soil microbial diversity is
conducive to positive plant–soil feedback and nitrogen supply
in the soil. Differences in biomass and root morphology among
different varieties of the same species may lead to differences
in microbial diversity and abundance (Hui et al., 2017; Chen
et al., 2019). ZZ9 showed better agronomic traits than ZZ1
(Table 1), which indicated that the sugarcane strains had different
degrees of interaction with soybean in intercropping. Plant–
plant interactions shape the ecosystem structure by changing the
community composition (Kardol et al., 2010). The intercropping
of ZZ9 and soybean improved the nutrient environment
of rhizosphere soil, formed a different bacterial community
from that in ZZ1–soybean intercropping system, and further
enriched Rhizobiales, Rhodobacterales, and Desulfovibrionales,
the orders with a positive effect on nitrogen fixation ultimately
improving the absorption and utilization of nitrogen by plants
(Liu Y. et al., 2020).

CONCLUSION

This study described the differences in bacterial community
diversity and composition between sugarcane cultivars ZZ1 and
ZZ9 and soybean, as well as their effects on soil environmental
factors and agronomic traits of the sugarcane crops. Using
the 16S rRNA sequencing data, we found that the bacterial
community structure of the ZZ9–soybean intercropping system
was significantly different and highly diverse compared with
that of the ZZ1 intercropping system. In addition, in the
sugarcane-soybean intercropping system, ZZ9 accumulated more
nitrogen-fixing bacteria, and had a closer relationship with the
soil environment than ZZ1. Therefore, the interaction between
ZZ9 and legumes can potentially promote efficient agricultural
production, which is of great significance to the sugarcane
industry in Guangxi, China. In addition, our findings will be
helpful to the design of intercropping systems and the selection
of the best varieties, to enrich the bacterial community structure
and create an environment conducive to crop growth, thus
maximizing crop yield.
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