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Abstract: We study discrete-time quantum walks on generalized Birkhoff polytope graphs (GBPGs),
which arise in the solution-set to certain transportation linear programming problems (TLPs). It
is known that quantum walks mix at most quadratically faster than random walks on cycles, two-
dimensional lattices, hypercubes, and bounded-degree graphs. In contrast, our numerical results
show that it is possible to achieve a greater than quadratic quantum speedup for the mixing time
on a subclass of GBPG (TLP with two consumers and m suppliers). We analyze two types of initial
states. If the walker starts on a single node, the quantum mixing time does not depend on m, even
though the graph diameter increases with it. To the best of our knowledge, this is the first example of
its kind. If the walker is initially spread over a maximal clique, the quantum mixing time is O(m/ε),
where ε is the threshold used in the mixing times. This result is better than the classical mixing time,
which is O(m1.5/ε).

Keywords: quantum walk; transportation problem; generalized Birkhoff polytope; counting; sam-
pling

1. Introduction

The transportation linear programming problem (TLP) is to find the cheapest way
to send a commodity from suppliers directly to consumers to satisfy the demands of the
consumers, restricted to the capacities of the suppliers. It is a fundamental problem in oper-
ations research, management science, and the economics of scarce resources. Besides being
important on its own, it appears as a subproblem in other optimization models [1]. TLP
can be solved efficiently, for example, by the Network Simplex algorithm [2].

The solution-set to TLP, the transportation polytope, induces a graph, the transportation
polytope graph (TPG; also called the transportation polytope skeleton), whose nodes are
a special class of solutions to TLP, some of which are optimal solutions. For this reason,
counting and sampling the vertices of TPG is of interest, and so is the random walk (RW)
on TPG [3]. However, the literature about it is scarce; we are not aware of any study of RW
on TPG other than that in [4].

Along the same line, quantum walks (QWs) on TPG are of interest, because they are
the quantum counterpart of RW and they promise better sampling [5]. We are not aware of
any study of QW on TPG.

Quantum computing has gained much attention nowadays, after quantum supremacy
has been established by Google [6] and recent Chinese experiments [7]. QW [8] can be
efficiently implemented in quantum computers [9] and the main barrier to deliver results
is the accumulation of noise during the computation. The term NISQ computers [10] has
been coined by Preskill to classify the quantum computers that are used nowadays and
will be in use in the near future.
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In this paper, we study the discrete-time QW on a particular family of TPG, the gen-
eralized Birkhoff polytope graph [11], or GBPG for short, with the focus on the quantum
mixing time. To define mixing times, we need the notion of limiting probability distribu-
tion. In the classical case, the limiting distribution is the stationary probability distribution
of a Markov chain, which is always reached on ergodic Markov chains, in the limit of
infinitely many steps. If the graph on which RW takes place is regular, the classical limiting
probability distribution is uniform [12].

In the quantum case, the probability distribution of QW does not converge to a
stationary distribution, and it is necessary to define the notion of average probability
distribution. The average distribution always converges to a quantum limiting distribution,
which depends on the initial state of QW. The quantum mixing time is the number of steps
required to reach or to be ε-close to the limiting distribution.

We analyze coined QW and RW on a subclass of GBPG (TLP with two consumers and
m sources). We do so by simulating both quantum and classical walks numerically to then
determine, through curve fitting, how the mixing time scales with m in both cases. In the
quantum case, this also means finding the limiting distribution.

Our numerical results show that the classical mixing time is O(m1.5/ε). On the other
hand, the quantum mixing time is O(m/ε) if the initial state is localized on a maximal
clique (A clique in a graph is a subset of the set of nodes, such that any two nodes in the
subset are adjacent. A clique is maximal if it is not a proper subset of a clique.) of GBPG.
If the initial state is localized on an arbitrary node, the quantum mixing time is O(1/ε),
which, to the best of our knowledge, is the first example where QW delivers a speedup over
RW for the mixing time that is greater than quadratic. In addition, in this case, the quantum
mixing time, as a function of m, does not increase, even though, as we show later, the graph
diameter increases with it. To the best of our knowledge, this is also the first example of
its kind.

We give asymptotic results by extrapolating our numerical results, based on the
assumption that the overall structure of GBPG remains the same even for large values of m.
Using the amplification technique described in [5], the dependence of the mixing time on ε
can be improved without changing its dependence on m.

The paper is organized as follows. In Section 2, we introduce concepts, terminology,
and results on linear programming, polytopes, and polytope graphs, which we will use
in the remainder of the paper. In Section 3, we describe TLP, and we introduce the
transportation polytope and the generalized Birkhoff polytope. We then define GBPG and
give some of its properties. In Section 4, we define the mixing time of RW on GBPG and
we review discrete-time QW. We then define the average probability distribution and the
mixing time of QW on GBPG. In Section 5, we describe our numerical simulation of QW
and RW on GBPG, and our results on the limiting probability distribution and the quantum
and classical mixing times. In Section 6, we present our conclusions and directions for
further research.

2. Linear Programming Problems, Polytopes, and Polytope Graphs

In this section, we introduce concepts, terminology, and results on linear programming,
polytopes, and polytope graphs, which we will use in the remainder of the paper.

The linear programming problem (LP) is

minimize z = c1x1 + · · ·+ cdxd

s.t.

∑d
j=1 aijxj = bi, i = 1, . . . , r (1)

x1, . . . , xd ≥ 0. (2)

We call z the objective function of LP. The set

P =
{

x ∈ <d : (1) and (2) hold
}
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is the solution-set of LP. When P 6= ∅, we say that LP is feasible. A point x ∈ P is a feasible
solution to LP. A feasible solution to LP that minimizes z (when one exists) is an optimal
solution.

Set P is a polyhedron. In this paper, we will deal exclusively with bounded polyhedra,
so we will assume for the remainder of this section that P is bounded. We call a bounded
polyhedron a polytope.

The 0-dimensional faces of P correspond to a special class of solutions to LP, called basic
feasible solutions (BFS’s). The importance of BFS is that (1) a point in a polytope is a convex
combination of its 0-dimenisonal faces, so a solution to LP is a convex combination of its
BFS’s, and (2) when LP has an optimal solution, at least one of them is a BFS, and any
optimal solution to LP is a convex combination of optimal BFS’s. This result is known as
the Fundamental Theorem of Linear Programming [13]. It means that the search for an
optimal solution to LP can be restricted to searching an optimal BFS. This is the basis of the
celebrated Simplex algorithm [13].

When polytope P is nonempty, we define its graph (also called skeleton) as follows.
The nodes of the graph are the 0-dimensional faces of the polytope (the BFS’s of LP),
and two nodes are adjacent when they are joined by a 1-dimensional face of P . We note
that when P 6= ∅, LP always has an optimal solution.

Different formulations of LP will give different solution-sets, and in the case of
nonempty polytopes, different polytope graphs, possibly with different properties. An im-
portant problem in optimization (of which LP is a special case) is to determine, for different
classes of problems, which formulation leads to a more efficient solution approach or is
more convenient to investigate within a given context.

3. TLP, the Generalized Birkhoff Polytope, and GBPG

In this section, we describe TLP, and we introduce the transportation polytope and
the generalized Birkhoff polytope. We then define GBPG and give some of its properties.

Let m be the number of sources and n the number of consumers. We denote the
sets of sources and consumers asM = {1, . . . , m} and N = {1, . . . , n}, respectively. Let
G = (M,N ;A) be a complete directed bipartite network, with node sets M and N ,
and arc set A =M×N (for an introduction to graph theory and network flows, see [14]).
To simplify notation, arc (i, j) ∈ A is denoted as ij.

Let si > 0 be the capacity of source i ∈ M and dj > 0 the demand of consumer j ∈ N .
Let cij ≥ 0 be the cost of shipping one unit of the commodity from i to j (if arc ij is not
present in a particular instance, we account for this in our model by taking cij = ∞). TLP is

minimize z = ∑ij∈A cijxij

s.t.

∑j∈N xij = si, i ∈ M (3)

∑i∈M xij = dj, j ∈ N (4)

xij ≥ 0, ij ∈ A. (5)

Because TLP is trivial when m = 1 or n = 1, we assume that m, n ≥ 2. We assume without
loss of generality that

∑
i∈M

si = ∑
j∈N

dj,

in which case TLP is feasible. The solution-set to TLP

P = {x ∈ <mn : (3), (4), and (5) hold}
is a polytope, and TLP has an optimal solution.
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Two particularly important special cases of TLP are the generalized Birkhoff linear
programming problem (denoted TLPGB) and the assignment (also called Birkhoff) linear
programming problem. TLPGB is obtained by taking

s1 = · · · = sm = n and d1 = · · · = dn = m. (6)

The assignment linear programming problem is TLPGB with m = n.
As it is formulated, the graph of the solution-set to TLPGB is not regular in general.

However, it is possible to formulate TLPGB in a way that the graph of its solution-set
is regular. This is accomplished by using perturbation to eliminate degeneracy in BFS, see
in [15]. Because it is more convenient to analyze classical and quantum mixing times on
a regular graph, we will adopt this formulation. The feasible-set of TLPGB formulated
without degeneracy will be called generalized Birkhoff polytope and denoted PGB. Its
graph will be called generalized Birkhoff polytope graph (GBPG). The degree of GBPG is
(m− 1)(n− 1). GBPG has the highest number of nodes among all TPGs [16].

TLP was first studied by Hitchcock [17] and Koopmans [18]. Since then, a flood
of research followed, see, for example, in [19–21] and references therein to name just a
few. An active area of research is the properties of the transportation polytope, and the
generalized Birkhoff polytope in particular [11,15,16,22–24].

4. Classical and Quantum Walk, and Their Mixing Times

In this section, we define the classical mixing time of RW on GBPG and we review
discrete-time QW. We then define average probability distribution and the quantum mixing
time of QW on GBPG.

4.1. RW on GBPG

RW on GBPG is described by a sequence of probability distributions {p(t) : t = 0, 1, 2, . . .}
on the nodes of GBPG, and a transition matrix M, obtained from the adjacency matrix of
GBPG, so that p(t + 1) = Mp(t). For n = 2 and m = 4, . . . , 15, the Markov chain on GBPG
is ergodic [12], and we conjecture that this is true for n = 2 and m ≥ 4. In any case, for the
instances we simulate in this paper, p(t) converges to a limit distribution π, regardless of
the initial distribution p(0). As GBPG is regular, π is the uniform distribution.

The classical mixing time is defined to be

τε = min
{

T | ∀t ≥ T,
∥∥p(t)− π

∥∥ ≤ ε
}

, (7)

where the threshold ε is a positive number and
∥∥p(t)− π

∥∥ is the total variation distance of
p(t) and π, given by ∥∥p(t)− π

∥∥ =
1
2 ∑

v∈V
|pv(t)− πv|. (8)

In other words, the mixing time is the minimum number of steps required to the average
distribution to be ε-close to the limiting distribution π. The mixing time is an integer
number. However, note that we obtain the mixing time using curve fitting methods, which
may result in non-integer values.

Despite its importance, very little is known about RW on TPG, GBPG, or the assign-
ment polytope graph, and consequently little is known about enumerating or sampling
their nodes. Dyer [25] showed that it is #P to count the number of nodes of TPG exactly,
even when the number of sources is fixed at 2. Cryan et al. [4] gave a random walk on
TPG that mixes in time nO(m2). Therefore, the random walk mixes rapidly when m is fixed.
Pak [24] showed that RW on the assignment polytope graph mixes in only two steps in the
limit n→ ∞. We are not aware of any results specifically for RW on GBPG.

It is possible to extend the concepts of this and the previous section to define graphs
of other polytopes and RW on them. Besides the aforementioned papers on RW for TPG
and special cases, the only papers on RW on other polytope graphs arising in optimization
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that we are aware of are those in [26,27]. We are not aware of any work on the quantum
walk on the graph of an optimization polytope.

4.2. QW on GBPG
4.2.1. QW

To define a discrete-time coined quantum walk on GBPG, which is a regular graph
with degree D = (m− 1)(n− 1), we employ a Hilbert spaceHD ⊗HN with computational
basis {|a, v〉 : 1 ≤ a ≤ D, v ∈ V}, where V is the node set of GBPG and |V| = N. A generic
state of the quantum walk after t steps is

|ψ(t)〉 =
D

∑
a=1

∑
v∈V

ψa,v(t)|a, v〉,

where ψa,v(t) are the amplitudes, which must be normalized, i.e., ∑a,v |ψa,v(t)|2 = 1 ∀t ≥ 0.
The dynamics of the quantum walk is given by

|ψ(t)〉 = Ut|ψ(0)〉,

where U is the evolution operator defined as

U = S · (C⊗ I).

The coin operator C is a D-dimensional unitary operator, which is usually the Grover
coin with entries Cij = 2/D − δij, where δij is the Kronecker delta. Operator S is the
flip-flop shift operator, whose action on the element |a, v〉 of the computational basis is
S|a, v〉 = |a′, w〉, where w is a node in the neighborhood of v, a is the label of the arc with
tail v and head w, and a′ is the label of the arc with tail w and head v. The initial state
|ψ(0)〉 is usually taken localized on a node v with the coin state uniformly superposed, that
is, |ψ(0)〉 = |u〉 ⊗ |v〉, where |u〉 = ∑D

a=1|a〉/
√

D. In this paper, we also consider initial
states distributed over a maximal clique K, in this case

|ψ(0)〉 = 1√
|K|
|u〉 ∑

v∈K
|v〉.

The dynamics of the quantum walk leads to a probability distribution pv(t) over the
node set v ∈ V, defined as

pv(t) =
D

∑
a=1

∣∣〈a, v
∣∣ψ(t)〉∣∣2, (9)

which means that if one measures the position of the walker after t steps in the computa-
tional basis, the probability of finding the walker at node v is pv(t). In the quantum regime,
the probability distribution does not converge in the limit where the number of steps t goes
to infinity because in the unitary dynamics the state of the walk is quasi-periodic, in the
sense that there is an infinite number of time-steps t1, t2, ... such that the states |ψ(t1)〉,
|ψ(t2)〉, ... are ε-close to the initial state |ψ(0)〉 ∀ε > 0.

4.2.2. Limiting Distribution and Mixing Time

The average probability distribution at time T is defined as

p̄v(T) =
1
T

T−1

∑
t=0

pv(t), (10)

see in [5], which can be experimentally reproduced by repeatedly running the quantum
walk t steps, where t is randomly selected in the range [0, T − 1], and then performing a
position measurement. As the notion of average distribution incorporates measurements,
p̄v(T) evolves stochastically as a function of T.
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Using Equation (9), we obtain

p̄v(T) =
1
T

T−1

∑
t=0

D

∑
a=1

∣∣〈a, v
∣∣ψ(t)〉∣∣2.

The time evolution of p̄v(T) converges to a limiting distribution, which is defined as

π(v) = lim
T→∞

p̄v(T). (11)

Ahoronov et al. [5] give analytical expressions for π(v) in terms of a normalized eigenbasis
|λa,v〉 of the evolution operator. In the non-degenerate case, if |ψ(0)〉 = ∑a,v ca,v|λa,v〉, then
the limiting distribution is

π(v) =
D

∑
a,b=1

∑
v′∈V

∣∣ca,v′
〈
b, v
∣∣λa,v′

〉∣∣2. (12)

Note that usually the limiting distribution depends on the initial condition. Ahoronov et al. [5]
show that quantum walks on Cayley graphs of Abelian groups have uniform limiting
distribution in the non-degenerate case. In this case, the limiting distribution does not
depend on the initial condition. The limiting distributions for the graphs analyzed in this
paper depend on the initial conditions.

As the average probability distribution always converges to a limiting distribution π,
the quantum mixing time is defined as

τε = min
{

T | ∀t ≥ T,
∥∥ p̄(t)− π

∥∥ ≤ ε
}

, (13)

where ε is a positive number and
∥∥ p̄(t)− π

∥∥ is the total variation distance of p̄(t) and π is
given by Equation (8).

There is another time measure, called instantaneous mixing time, which captures the
first instant that the instantaneous probability distribution is ε-close to some reference
probability distribution µ. The instantaneous mixing time is defined as

Iε = min
{

t |
∥∥p(t)− µ

∥∥ ≤ ε
}

, (14)

where p(t) is the quantum probability distribution at time t. One can replace µ by the
uniform probability probability distribution to analyze the time it takes to obtain an
uniform sampling.

In the literature, one finds papers analyzing the quantum mixing time on cycles [5], Cay-
ley graphs [5], hypercubes [28,29], two-dimensional lattices [30], and complete graphs [31].
Upper bounds for the quantum mixing time were obtained in [32,33]. Apers et al. [34]
discuss the simulation of the quantum mixing time by classical Markov chains with added
memory, and concludes that quantum walk speedups are not necessarily diagnostic of
quantum effects. The Ph.D. thesis [35] has an interesting description on how Markov chain
lifting can simulate fast quantum mixing times.

5. Simulation and Numerical Results for RW and QW on GBPG

In this section, we give details of our simulation of RW and QW on GBPG with n = 2
and m = 2, . . . , 15. We first describe how these 14 instances were generated. Then, we
explain how we obtained their classical and quantum mixing times, and how they scale
with m.

5.1. Computational Platform and Instance Generation

The bulk of our computation was performed through the Texas Tech High-Performance
Computing Center. We used the Nocona partition, with an AMD EPYCTM 7702 bench-
marked at 804 TFLOPS using 4 GB of RAM per node, running Linux CentOS version
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8.1. The code used to calculate average limiting distributions and mixing times ran on
Python 3.8.5.

Classical random walks were simulated on GBPG with n = 2 consumers and m =
2, . . . , 15 suppliers, and quantum random walks were simulated on GBPG with n = 2
consumers and m = 2, . . . , 11 suppliers. We used perturbation [15] to generate regular
instances of TLPGB as follows. For all i ∈ M, the values of si were decreased by 1

2m , and the
value of d2 was decreased by 1

2 . The software PORTA [36] was used to compute all vertices
of PGB, and the adjacency matrix for GBPG was built by comparing every pair of vertices
of PGB. They are adjacent in GBPG when exactly m + n− 2 variables have positive entries
in both vertices. Table 1 displays, for each instance of GBPG, the number of suppliers (m),
the number of nodes

N = m
(

m− 1
b(m− 1)/2c

)
,

its diameter (diam.), and spectral gap (1− λ1), where λ1 is the second largest eigenvalue
of the stochastic transition matrix of the graph.

Table 1. Properties of the instances used in the computational tests.

Instance m N diam. 1 − λ1

1 2 2 1 2
2 3 6 3 1/2
3 4 12 3 1/3
4 5 30 5 1/4
5 6 60 5 1/5
6 7 140 7 1/6
7 8 280 7 1/7
8 9 630 9 1/8
9 10 1260 9 1/9
10 11 2772 11 1/10
11 12 5544 11 1/11
12 13 12,012 13 1/12
13 14 24,024 13 −
14 15 51,480 15 −

5.2. Classical Mixing Time

As GBPG is regular, the limiting probability distribution is uniform [12]. Determining
the classical mixing time, employs Equations (7) and (8) by substituting the uniform
probability distribution for πv.

Figure 1 shows the mixing time as a function of the number of sources m for ε between
0.01 and 0.1. When we re-scale the mixing time τε to ετε, all straight lines merge into
one straight line, showing that τε scales as 1/ε for a fixed m. Using the numerical data of
Figure 1, we conclude that τε = O(m1.5/ε). This is an example of a rapidly mixing Markov
chain because τε is polylogarithmic on the number of nodes.

As the diameter of the Birkhoff polytope is O(m), our result for the classical mixing
time is consistent with the lower bound τε ≥ diam/2 described in [37] for any threshold ε.
Our result is also consistent with the upper bound [38]

τε ≤
ln N − ln ε

1− λ1
,

which is equivalent to τε = O
(
m2) for a fixed ε.
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Figure 1. Classical mixing time as a function of the number of sources m for ε from 0.01 to 0.1.

5.3. Limiting Probability Distribution (Quantum Case)

In order to calculate the quantum mixing time, we need to find the limiting distribution
given by Equation (11). In numerical calculations, we usually determine the average
probability distribution p̄v(T) for a large number of steps T so that p̄v(T) is close enough to
the limiting distribution πv. In our numerical simulations, we used T = 107 steps. Figure 2
shows the average probability distribution p̄v(107) of a quantum walk on GBPG for m = 6
(left panel) and m = 7 (right panel). The initial state is localized on the node with label 1,
uniformly distributed over the coin values, that is,

|ψ(0)〉 = 1√
m− 1

m−1

∑
a=1
|a, 1〉. (15)
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Figure 2. Limiting distribution πv of a quantum walk on GBPG for m = 6 (left panel) and m = 7
(right panel), and initial state (15) localized on node 1.

The limiting distribution for m = 6 (m = 7) represents the class of limiting distribu-
tions when m is even (odd). When the initial state is localized on a node with label different
from 1, the limiting distribution is a permutation of the bars of the plots of Figure 2. Note
that two distinct nodes v1 and v2 that have the same distance to the initial position may
have different probabilities πv1 6= πv2 .

Now, we use the symmetries of GBPG to obtain a limiting distribution whose value πv
at node v is uniquely determined as a function of the distance of v to the initial position of
the walker. The instances of the GBPG that we are using have the following properties: (1) if
m is odd, all maximal cliques have size (m+ 1)/2; (2) if m is even, the maximal cliques have
size m/2 or (m/2 + 1); (3) two maximal cliques have no common arcs; and (4) any node is
a common vertex of exactly two maximal cliques. We conjecture that these properties hold
for arbitrary m. In order to obtain a wave function that spreads symmetrically, the initial
state is a uniform superposition of one maximal clique. Suppose that the labels of the nodes
of this maximal clique are 1, ..., d(m + 1)/2e. The initial state is
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|ψ(0)〉 =
√

2√
c

m−1

∑
a=1

dm+1
2 e

∑
v=1
|a, v〉, (16)

where c = m2 − 1 if m is odd and c = (m + 2)(m− 1) if m is even.
Figure 3 shows the limiting probability distribution of a quantum walk on GBPG

for m = 6 (left panel) and m = 7 (right panel) using initial state (16). Note that for odd
m, the limiting distribution is symmetric. In these distributions, if two nodes have the
same distance to the initial clique, then they have the same probability. The reverse is not
necessarily true, for instance, in the right panel of Figure 3, the probability at vertices 137,
138, 139, and 140, which is the maximal clique most distant from the initial clique, is equal
to the probability at the nodes of the initial clique.
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5.4. Quantum Mixing Time

A typical plot of the total variation distance
∥∥ p̄(t)− π

∥∥ as a function of the number
of time steps is depicted in Figure 4. In this plot, the number of sources is m = 7, and the
equation of the fitted straight line is 0.7761/t1.0007. The approximate limiting distribution
is obtained from p̄v(107) and the number of steps runs until 105, which is much smaller
than 107. The plot shows that the behavior of

∥∥ p̄(t) − π
∥∥ as a function of t is approxi-

mately f (t)/t, where f (t) is an oscillatory function with high frequency, short wavelength,
and small amplitude. This behavior is ubiquitous [8,29,30,39]. Figure 4 also shows how
to calculate the mixing time τε for a given threshold ε: τε is the number of steps (as a real
number here) such that the total variation distance is equal to ε. This calculation method
implies that the quantum mixing time we are obtaining is an average value close to the real
mixing time defined in (13).

Figure 4 also depicts the total variation distance
∥∥p(t) − π

∥∥ between the instanta-
neous distribution and the average limiting distribution, which is used to calculate the
instantaneous mixing time Iε. The plot shows that the total variation distance oscillates
around one-eighth with an increasing amplitude as a function of the number of steps.

Figure 5 depicts the quantum mixing time as a function of the number of sources m
for ε from 0.01 to 0.1. To calculate the mixing time, we have used the procedure described
in Figure 4. We have selected an initial state localized on node 1 and we have used the
limiting distributions of Figure 2. The numerical data shows that the mixing time does not
increase when m increases, in fact, there is a downward tendency for m > 8. If we re-scale
τε as ετε, all curves of Figure 5 merge into one curve showing that τε scales as 1/ε for a
fixed m. Then, the numerical data suggests that τε = O(1/ε) and in fact the maximal value
of τε is approximately 0.8/ε. The same result is obtained if we take another localized initial
state with its respective limiting distribution.
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Figure 4. Log-log plot of the total variation distance between the instantaneous and limiting distribu-
tions

∥∥p(t)− π
∥∥ (upper black curve), and between the average and limiting distributions

∥∥ p̄(t)− π
∥∥

(lower blue curve) as a function of time steps for GBPG for m = 7. The equation of the straight line is
0.7761/t1.0007.
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Figure 5. Quantum mixing time as a function of the number of sources m for ε from 0.01 to 0.1.
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The fact that τε does not depend on m is impressive for several reasons. First, the di-
ameter of the GBPG is O(m) and the classical mixing time is O(m1.5/ε), both increase as a
function of m. Second, the speed-up of the quantum mixing time over the classical mixing
time is more than quadratic. Third, the authors of the seminal work in [5] suspected that
quantum walks can mix at most quadratically faster than classical walks, but they were able
to prove this result only for bounded degree graphs (see Section 7 of the work in [5]). Our
numerical result is a strong evidence that the class of graphs GBPG is a counterexample of
their conjecture.

To understand the key role that initial conditions play on the computational complexity
of the mixing time, let us analyze the alternative initial state (16). Figure 6 depicts the
quantum mixing time as a function of the number of sources m for ε from 0.01 to 0.1 for the
initial state (16). To calculate the mixing time, we use the limiting distributions depicted in
Figure 3. The numerical results show that τε ≈ (0.12m + 1.11)/ε. Note that in this case the
mixing time increases when m increases, but the quantum walk still mixes faster than the
classical random walk.

In order to better understand the different behaviors when we use these initial
states, let us focus on the limiting distributions depicted in the right-hand panels of
Figures 2 and 3, which correspond to m = 7. The probability at node 1 in the first case
(Figure 2) is approximately 15% of the probability associated with the initial state at node 1.
When we simulate the limiting distributions for m equal to 9 to 13, we note that the their
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overlap with the initial state increases, while the probability of the limiting distribution at
the most distant node decreases. This means that the limiting distribution is close to the
initial probability distribution. On the other hand, the probability at node 1 of the limiting
distribution in the second case (Figure 3) decreases when m increases, meaning that the
limiting distribution goes farther and farther away from the distribution associated with
the initial state when m increases. The mixing time does not increase in the first case and
must increase in the latter case. This analysis shows that the mixing time may have remark-
ably different behavior for some graph class that has very different limiting distributions
depending on the choice of the initial state. That does not happen with classical random
walks, whose mixing times are linearly lower bounded by the graph diameter.
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Figure 6. Quantum mixing time as a function of the number of sources m for ε from 0.01 to 0.1 using the
alternative initial state (16).
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of m, which reinforces the notion that to sample efficiently from the limiting distribution we need326

to use the average probability distribution and then we need to implement the stochastic dynamics327

implied by the definitions involving averages.328
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Figure 7. Instantaneous mixing time to the limiting distribution as a function of m for ε from 0.06 to 0.4
using the initial state (16).
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Figure 6. Quantum mixing time as a function of the number of sources m for ε from 0.01 to 0.1 using
the alternative initial state (16).

Figure 7 depicts the instantaneous mixing time Iε as a function of the number of
sources m for ε from 0.06 to 0.4. The initial state is distributed on a maximal clique, both to
obtain the limiting distribution and to calculate Iε. The figure suggests that Iε increases
exponentially as a function of m, which reinforces the notion that to sample efficiently from
the limiting distribution we need to use the average probability distribution and then we
need to implement the stochastic dynamics implied by the definitions involving averages.
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6. Conclusions and Directions for Further Research

In this paper, we have analyzed the quantum mixing time of the coined quantum
walk dynamics on a special class of TPG, GBPG, restricted to two consumers. The graphs
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in this class have the maximum number of nodes because the values of the capacities
were modified by a perturbation method and one of the demands in TLP. To enhance our
conclusions, we have also simulated the dynamics of a random walk on the same class of
graphs to obtain the behavior of the classical mixing time. Using numerical experiments,
we have showed that the classical mixing time increases in terms of the number of sources
m as O(m1.5).

Our numerical results suggest that the quantum walk provides a speedup in the time
required for reaching the limiting distribution. With a localized initial state of the walk on
a single node, we have found that the mixing time does not increase with the size of the
graph, specified by the number of sources m. We have noticed that the limiting distribution
in this case is close to the probability distribution of the localized initial state and in fact for
larger values of m the distance between the limiting and the initial distributions decreases.
Moreover, with a uniformly distributed initial state over a maximal clique of the graph,
we observed that the mixing time increases as O(m), which is faster than the classical case.
We have also analyzed the behavior of the instantaneous mixing time and found that the
minimum time that the difference between the instantaneous probability distribution and
the limiting distribution falls within a given error increases exponentially in terms of the
number of sources.

The results of this paper provide promising steps in approaching the problems charac-
terized on polytope graphs. In fact, an analytical approach to the structure of the GBPG
provides a foundation for designing efficient quantum walk-based algorithms, which we
intend to address. We also intend to address the asymmetry between parameters m and
n, as we have noticed that the behavior of the mixing time as a function of n when we fix
m = 2 is different from the case we have analyzed.
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