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Abstract: Oxidative stress and sustained sympathetic over-activity contribute to the pathogenesis of
hypertension. Catheter-based renal denervation has been used as a strategy for treatment of resistant
hypertension, which interrupts both afferent and efferent renal fibers. However, it is unknown
whether selective renal afferent denervation (RAD) may play beneficial roles in attenuating oxidative
stress and sympathetic activity in hypertension. This study investigated the impact of selective RAD
on hypertension and vascular remodeling. Nine-week-old normotensive Wistar-Kyoto rats (WKY)
and spontaneously hypertensive rats (SHR) were subjected to selective renal afferent denervation
(RAD) with 33 mM of capsaicin for 15 min. Treatment with the vehicle of capsaicin was used as a
control. The selective denervation was confirmed by the reduced calcitonin gene-related peptide
expression and the undamaged renal sympathetic nerve activity response to the stimulation of
adipose white tissue. Selective RAD reduced plasma norepinephrine levels, improved heart rate
variability (HRV) and attenuated hypertension in SHR.It reduced NADPH oxidase (NOX) expression
and activity, and superoxide production in the hypothalamic paraventricular nucleus (PVN), aorta
and mesenteric artery of SHR. Moreover, the selective RAD attenuated the vascular remodeling of
the aorta and mesenteric artery of SHR. These results indicate that selective removal of renal afferents
attenuates sympathetic activity, oxidative stress, vascular remodeling and hypertension in SHR. The
attenuated superoxide signaling in the PVN is involved in the attenuation of sympathetic activity in
SHR, and the reduced sympathetic activity at least partially contributes to the attenuation of vascular
oxidative stress and remodeling in the arteries of hypertensive rats.

Keywords: oxidative stress; renal afferents; hypertension; sympathetic activity; vascular remodeling

1. Introduction

Oxidative stress is characterized by either excess oxidants or low antioxidants [1].
One of the major sources of reactive oxygen species (ROS) is a family of NADPH oxidases
(NOXs) including NOX1, NOX2 and NOX4 in vasculature [2–4]. Superoxide may serve as
cell signaling in pathophysiological processes [5], but excessive ROS production leads to
protein oxidation, cell signaling disturbance, proliferation, migration, fibrosis, inflammation
and apoptosis, which are important pathological processes for the vascular remodeling and
dysfunction in hypertension [6–8]. More than that, oxidative stress in the hypothalamic
paraventricular nucleus (PVN) causes sympathetic over-activation [9], and persistently
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excessive sympathetic activity contributes to hypertension and vascular remodeling [10].
Vascular remodeling plays a crucial role in the development of hypertension and related
complications [11].

Sympathetic over-activation is crucial for the development of hypertension and organ
damage [12]. Inhibition of sympathetic activity is a strategy for preventing hypertension
and related complications [13] There is a close relationship between kidney and sympathetic
hyperactivity in chronic kidney diseases and hypertension [14,15]. We have found that
stimulation of renal afferents with capsaicin induces excitatory renal reflex (ERR), leading
to increases in sympathetic activity and blood pressure in normal rats [16]. The ERR is
mediated by angiotensin II and its AT1 receptors in the PVN. Then, the activated AT1
receptors promote NOX-dependent superoxide production [17] and subsequent IL-1β
production in the PVN [18]. The renal afferent activity increases the activity of some PVN
neurons [19], and PVN damage prevented the capsaicin-induced ERR, suggesting that the
PVN is an important integrating center of the ERR [16]. More recently, we have showed
that the ERR in spontaneously hypertensive rats (SHR) was enhanced at the early stage of
hypertension, but attenuated at the later stage of hypertension compared with Wistar-Kyoto
rats (WKY), suggesting that renal afferent activity contributes to excessive sympathetic
activation in SHR, especially in the early stage of hypertension [20].

Renal nerves contain both afferent fibers and efferent fibers. The input from renal af-
ferents to the brain causes sympathetic activation pressor responses [21,22]. Catheter-based
renal denervation is widely used as a strategy for intervention of resistant hypertension,
and the surgery destroys both afferent and efferent renal fibers, which may cause great side
effects [23,24]. Recently, it has been found that unilateral selective renal afferent denervation
(RAD) attenuates sympathetic activity and renal dysfunction in the rats with ipsilateral
ischemic kidney [25], and in the rats with unilateral 5/6 nephrectomy [26]. However, the
effects of RAD were only investigated in the rat model of chronic kidney disease without
the studies in essential hypertension. It is well known that essential hypertension accounts
for more than 95% of the total patients with hypertension. It is still unknown whether
RAD could play beneficial roles in attenuating oxidative stress, vascular remodeling and
hypertension. SHR are the most commonly used rat model of essential hypertension.
The hereditary hypertension model has similarities with human essential hypertension in
terms of pathophysiological process, neuroendocrine changes, clinical course and complica-
tions [27,28]. This study is designed to investigate the effects of renal afferent denervation
on central and vascular oxidative stress, vascular remodeling and hypertension in SHR.

2. Materials and Methods
2.1. Animals

Male WKY and SHR were obtained from the Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China). The experimental intervention was applied to the rats aged
9 weeks. The study was conducted in accordance with the NIH guidelines, and approved
by the Experimental Animal Care and Use Committee of Nanjing Medical University
(No. 1811017-1, 16 October 2020). The criterion for the rats used in this study was that the
systolic blood pressure (SBP) of SHR was higher than 150 mmHg and that of WKY was
lower than 140 mmHg. One SHR’s SBP was lower than this standard and was excluded from
the experiment. The rats were housed in standard polypropylene cages in a temperature-
and humidity-controlled room with a 12/12 h light/darkness cycle, and were allowed free
access to tap water and normal chow. Rats were euthanized by intravenous injection of
pentobarbital sodium (150 mg/kg).

2.2. Renal Afferent Denervation

Either WKY or SHR were randomly divided into the RAD group and the control
group, and were anaesthetized with sodium pentobarbitone (50 mg/kg). The RAD surgery
was performed according to the previous report with a little modification [25,26,29]. There
are some renal nerve fibers or thin renal nerves walking along the renal artery and vein
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in addition to obvious renal nerves. In order to abolish all the renal afferent activity,
capsaicin was applied to the renal nerves, artery and vein. Simply, the rats were kept
prone, and surgery was performed with sterile techniques. Bilateral kidneys were exposed
retroperitoneally via flank incision. The renal artery, vein and nerve were gently isolated
from the connective tissue without damage to the renal nerve. After placing a small piece of
parafilm under the renal artery and vein to prevent the capsaicin exposure to other tissues,
a small piece of gauze soaked in 33 mM of capsaicin solution was wrapped around the renal
artery and vein. Visible renal nerves were painted with 33 mM of capsaicin (MedChem
Express, Monmouth Junction, NJ, USA) solution. Following 15 min of capsaicin exposure,
the gauze and parafilm were removed, and the incision was sutured. The capsaicin was
dissolved in the vehicle composed of 90% normal saline, 5% ethanol, and 5% Tween 80 for
this study. In the control rat, the procedure was similar to that of the RAD rat, except that
the vehicle of capsaicin was used instead of capsaicin solution. The blood pressure of the
tail artery was measured every week, and all other measurements were performed 3 weeks
after the surgery.

2.3. Identification of RAD

RAD reliability was identified by reduced afferent sensory innervation and intact
efferent sympathetic innervation for the kidney. Calcitonin gene-related peptide (CGRP)
protein expression was used as a marker for detecting afferent innervation [30,31]. Chemical
stimulation of white adipose tissue (WAT) elicited sympathetic excitation and pressor
responses called adipose afferent reflex (AAR) [32]. The AAR was evaluated, and renal
sympathetic nerve activity (RSNA) was recorded as we previously reported [33,34]. The
right inguinal WAT was exposed via an inguinal area incision. Four stainless steel tubes
(0.31 mm outer diameter) were inserted into the WAT 3 mm deep below the surface. The
tubes were 4 mm apart from each other and connected to a 4-channel programmable
pressure injector (PM2000B, MicroData Instrument, NJ, USA). Capsaicin (1.0 nmol/µL)
was simultaneously infused into the four sites of the inguinal WAT at a rate of 4.0 µL/min
for 2 min to induce the AAR. The left RSNA response to inguinal WAT stimulation with
capsaicin was used as a parameter to evaluate the undamaged sympathetic response. The
RSNA was amplified with an AC/DC differential amplifier (model 3000; A-M system in
Washington, DC, USA), filtered with a band-pass of 60 to 3000 Hz, and integrated at a time
constant of 100 ms. The signals were recorded with a Powerlab Data Acquisition System
(8/35, ADInstruments, Sydney, NSW, Australia). The RSNA response was expressed as a
percentage change from the baseline.

2.4. Measurement of Blood Pressure and Heart Rate

The blood pressure and heart rate of the tail artery were examined with a noninvasive
computerized tail-cuff system and PowerLab system with data acquisition software (ADIn-
struments, Bella Vista, NSW, Australia) in a conscious state as we previously reported [20].
Before the experiments, the blood pressure of the tail artery was measured in three consec-
utive days to make them accustomed to the environment and the cuff measurement. The
data was obtained by averaging 10 measurements.

2.5. Examination of Plasma Norepinephrine Level and Heart Rate Variability

Both plasma norepinephrine (NE) level and heart rate variability (HRV) were used as
indices of sympathetic activity. Plasma NE level was measured with Commercial ELISA kits
(R&D systems, Minneapolis, MN, USA) according to the manufacturer’s descriptions. HRV
was measured as we recently reported [35]. Simply, HRV analysis was performed according
to an electrocardiograph (ECG) recorded with subcutaneous electrodes of standard II
configuration. HRV was determined by frequency domain as follows: low-frequency (LF)
power: 0.20 to 0.75 Hz; high-frequency (HF) power: 0.75 to 2.50 Hz; very-low-frequency
power (VLF): 0 to 0.20 Hz; total power (TP): 0 to 3.00 Hz. Normalized low frequency (nLF)
is an index of sympathetic activity, and normalized high frequency (nHF) serves as an
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index of parasympathetic activity. The ratio of nLF to nHF represents the sympathetic–
parasympathetic balance [36,37]. The following equations were used to calculate nLF and
nHF: nLF = 100 × LF/(TP-VLF); nHF = 100 × HF/(TP-VLF). The values are expressed as
normalized units (nu).

2.6. Measurement of NOX Activity and Superoxide Production

NOX activity and superoxide production in the PVN, aorta and mesenteric artery were
examined [35,38]. Tissue was quickly frozen in liquid nitrogen, and measurements were
performed within 3 days. The tissues in lysis buffer were homogenized and centrifuged.
The total protein in the supernatant was measured with the Bradford assay (BCA; Pierce,
Santa Cruz, CA, USA). NOX activity and superoxide level in the supernatant were measured
with the lucigenin-derived chemiluminescence method. A modified HEPES buffer was
used in the measurements. Photon emission was triggered by both dark-adapted lucigenin
(5 µM) and NAD(P)H (100 µM) for measuring NOX activity. Photon emission was initiated
by administration of dark-adapted lucigenin (5 µM) for determining superoxide anion
production. Values were obtained by averaging ten measurements in 10 min with a
luminometer (Model 20/20 n, Turner, CA, USA). Background chemiluminescence was
determined in the buffer containing lucigenin (5 µM). Values were expressed as mean light
unit (MLU)/min/mg protein.

2.7. In Situ Detection of Superoxide Anions in the PVN

Specific fluorogenic probe dihydroethidium (DHE) was used to show the superoxide
production in the PVN as we reported previously [35,38]. Samples from all groups were
processed in parallel. Rats were euthanized with an overdose of pentobarbital sodium
(150 mg/kg). Brains were quickly removed, frozen in liquid nitrogen and embedded in
tissue OCT-freeze medium. Then, coronal sections at 30 µm of thickness were made. The
sections were thawed at room temperature, rehydrated with phosphate-buffered saline and
treated with DHE (1 µmol/L) in the dark for 5 min. After washing with phosphate-buffered
saline, the DHE fluorescence was detected by a fluorescence microscope (BX51, Olympus,
Tokyo, Japan) using an excitation wavelength of 543 nm and a rhodamine emission filter.
Detector and laser settings were kept constant for all samples. DHE fluorescence in sections
was examined with a fluorescence microscope (BX51, Olympus, Tokyo, Japan) using an
excitation wavelength of 543 nm and a rhodamine emission filter. The images were analyzed
with the software of Image Pro Plus 6.0 (Media Cybernetics, Silver Spring, MD, USA).

2.8. Masson’s Staining

Tissue was fixed with paraformaldehyde. The paraffin-embedded aorta or mesenteric
artery was sectioned and stained with Masson’s trichrome staining with standard protocols.
The images were taken under a light microscope. Media thickness, lumen diameter and the
ratio of media thickness to lumen diameter were analyzed with the software of Image Pro
Plus 6.0 and used to evaluate vascular remodeling [39,40].

2.9. Western Blot and Antibodies

Protein extracts from samples were separated on 10% SDS-PAGE and transferred onto
PVDF membrane. The membrane was blocked with 5% non-fat milk in TBST and then
probed with primary antibody (1:1000) at 4 ◦C overnight followed by incubation with
HRP-linked secondary antibody (1:5000) [41]. NOX1, NOX2, NOX4 and β-actin antibodies
were obtained from Proteintech Group Inc. (Rosemont, IL, USA). CGRP antibodies were
bought from Abcam (Cambridge, MA, USA).

2.10. Examination of Aldosterone, Potassium and Sodium Levels in Serum and Urine

Serum and urine aldosterone levels were measured with commercial ELISA kits (E-
EL-0070c, Elabscience, Wuhan, Hubei, China) according to the manufacturer’s descriptions.
The colorimetric method was used for analysis of potassium and sodium. Serum and urine
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potassium and sodium levels were, respectively, measured with a commercial Potassium
Assay kit and Sodium Assay kit (C003-1-1 and C002-1-1, Jiancheng Bioengineering Institute,
Nanjing, Jiangsu, China) following the manufacturer’s descriptions.

2.11. Statistics

The experiment was conducted in a randomized double-blind manner. The number of
each group represented the number of samples from different rats. All statistical analyses
were done using computer software (SigmaStat, SPSS22.0, Chicago, IL, USA). Data were
expressed in mean ± SE. One-way or two-way ANOVA followed by Bonferroni’s post
hoc analysis were used for comparisons. The distribution of all data was examined before
analysis of variance. All data in this study are normally distributed. p < 0.05 was considered
statistically significant.

3. Results
3.1. Identification of the RAD Reliability

The CGRP protein serves as a marker of sensory innervation [30,31]. RAD reduced the
CGRP protein expression in the cortex, cortico-medullary border and medulla of the kidney,
suggesting that RAD effectively reduced renal afferent innervation (Figure 1A). Stimulation
of WAT with capsaicin increased the RSNA and pressor responses called AAR [32]. We
examined the sympathetic response to inguinal WAT stimulation with capsaicin, which
was used as the index of the undamaged function of renal efferent sympathetic activity. The
AAR was induced as we previously reported [33,34]. There were no significant differences
in the RSNA response to capsaicin between the Ctrl and the RAD of WKY and SHR
(Figure 1B). The duration and pattern of the RSNA response to capsaicin in the RAD-
treated rat was similar to the control rat (Figure 1C).
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Figure 1. Identification of renal afferent denervation (RAD) in WKY and SHR. (A) CGRP pro-
tein expression in the cortex, cortico-medullary border and medulla of the kidney, which is used
as a marker of afferent innervation of the kidney. (B) RSNA response to the infusion of cap-
saicin to the inguinal white adipose tissue, which is used to confirm the intact renal efferent activity.
(C) Representative recordings showing the RSNA response to the infusion of capsaicin to the inguinal
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white adipose tissue in SHR. Values are mean ± SE. Two-way ANOVA followed by Bonferroni’s
post hoc analysis were used for comparisons. * p < 0.05. n = 4 for each group in (A). n = 6 for each
group in (B).

3.2. Blood Pressure and Heart Rate

RAD caused a lasting reduction in blood pressure, including systolic blood pressure,
mean arterial pressure and diastolic blood pressure in SHR. The maximal depressor re-
sponse was observed at the third week (about −15%), lasting at least 3 weeks (Figure 2A–C).
RAD induced a tendency to reduce heart rate in the first two weeks in SHR, but there was
no significant difference. Significantly, reduced heart rate was observed at the 3rd week
after RAD in SHR (Figure 2D). Moreover, RAD had no significant effects on blood pressure
and heart rate in WKY.
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Figure 2. Effects of RAD on the blood pressure of the tail artery in WKY and SHR: (A) systolic blood
pressure (SBP); (B) mean arterial pressure (MAP); (C) diastolic blood pressure (DBP); (D) heart rate.
Values are mean ± SE. One-way ANOVA followed by Bonferroni’s post hoc analysis were used for
comparisons. * p < 0.05 vs. WKY; † p < 0.05 vs. Ctrl. n = 6 for each group.

3.3. Plasma NE Level and HRV

Excessive sympathetic activity contributes to the pathogenesis of hypertension [12].
The plasma NE level was increased in SHR, which was prevented by RAD (Figure 3A).
Moreover, RAD attenuated the increased nLF and the nLF/nHF ratio in SHR, but had
no significant effect on nHF (Figure 3B). The findings indicate that abolishing renal af-
ferent activity in SHR attenuates sympathetic activity, which further provides evidence
that renal afferent activity is at least partially responsible for the excessive sympathetic
activation in SHR.
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3.4. Superoxide Production in the PVN

Superoxide signaling in the PVN mediates several excitatory sympathetic reflexes in-
cluding excitatory renal reflex, and increased superoxide production in the PVN contributes
to excessive sympathetic activity in SHR [9,18]. Superoxide production was increased in
the PVN of SHR, which was inhibited by RAD (Figure 4A). Similar results were observed
in the DHE fluorescence intensity changes (Figure 4B). These findings indicate that RAD
attenuates superoxide signaling or oxidative stress in the PVN, which may be responsi-
ble for the inhibitory effects of RAD on sympathetic activity. DHE fluorescence staining
showed that RAD in SHR reduced the superoxide production in both the magnocellular
and parvocellular division of the PVN (Figure 4C).
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showing DHE fluorescence staining in the PVN areas. 3 V, the third ventricle. Values are mean ± SE.
Two-way ANOVA followed by Bonferroni’s post hoc analysis were used for comparisons. * p < 0.05.
n = 6 for each group.

3.5. NOX Activity and Expression in the PVN

To determine the origin of superoxide production in the PVN, NOX activity and
expression were examined. The increased NOX activity was inhibited by RAD in SHR
(Figure 5A). The upregulation of NOX1, NOX2 and NOX4 protein expression were attenu-
ated by RAD in SHR (Figure 5B), suggesting that the roles of RAD in reducing superoxide
production are attributed to NOX downregulation.
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Figure 5. Effects of RAD on NOX activity and expression in the PVN of WKY and SHR. (A) NOX
activity. (B) NOX1, NOX2 and NOX4 protein expressions. Values are mean ± SE. Two-way ANOVA
followed by Bonferroni’s post hoc analysis were used for comparisons. * p < 0.05. n = 6 for each group
in A; n = 3 for each group in B.

3.6. Oxidative Stress in Arteries

Vascular oxidative stress contributes to vascular remodeling in hyperten-
sion [6,7]. We further examined the role of RAD in the superoxide production in arteries.
Superoxide production was increased in the aorta and mesenteric artery, which was
attenuated by RAD (Figure 6A). The increased NOX activity in the aorta and mesenteric
artery of SHR was inhibited by RAD (Figure 6B). Moreover, the upregulated NOX1,
NOX2 and NOX4 expressions in the aorta and mesenteric artery of SHR were attenuated
by (Figure 7A,B). These results indicate that RAD attenuates oxidative stress in the
arteries of SHR.
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Figure 7. Effects of RAD on NOX protein expressions in the aorta and mesenteric artery (MA) of
WKY and SHR. (A) NOX1, NOX2 and NOX4 protein expressions in the aorta. (B) NOX1, NOX2
and NOX4 protein expressions in the MA. Values are mean ± SE. Two-way ANOVA followed by
Bonferroni’s post hoc analysis were used for comparisons. * p < 0.05. n = 3 for each group.

3.7. Vascular Remodeling

The aorta and mesenteric artery were, respectively, used as a candidate of the large
and small arteries. The media thickness and the ratio of media thickness to lumen diameter
were increased in the aorta of SHR, which were attenuated by RAD. However, RAD had no
significant effect on the lumen diameter in the aorta of SHR (Figure 8A). In the mesenteric
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artery, the media thickness and the media thickness/lumen diameter ratio were increased,
but the lumen diameter was reduced in SHR, which was abolished by RAD (Figure 8B).
These findings provide evidence that RAD attenuates vascular remodeling in SHR. It is
worth noting that RAD had no significant effects on sympathetic activity, blood pressure,
heart rate, plasma NE level, HRV, superoxide production, NOX activity and expression,
and vascular remodeling in WKY (Figures 2–8).
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Figure 8. Effects of RAD on vascular remodeling of the aorta and mesenteric artery (MA) in WKY
and SHR. Bar graphs show the Masson’s staining analysis for media thickness, lumen diameter and
their ratio of arteries. Representative images showing Masson’s staining of the aorta (A) and MA (B).
Values are mean ± SE. Two-way ANOVA followed by Bonferroni’s post hoc analysis were used for
comparisons. * p < 0.05. n = 3 for each group.

3.8. Serum and Urine Aldosterone, K+ and Na+ Levels

The measurements were performed in WKY and SHR aged 12 weeks, 3 weeks after
RAD or sham intervention. There were no significant differences in the serum and urine
aldosterone, K+ and Na+ levels between WKY and SHR. RAD had no significant effects on
the aldosterone, K+ and Na+ levels in both WKY and SHR (Figure 9A–C).
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4. Discussion

Catheter-based renal denervation is widely used as a therapy for resistant hyperten-
sion, which destroys both afferent and efferent renal fibers [23,24]. Capsaicin is known
to stimulate afferents and induces excitation at low concentration, but capsaicin at high
concentration (about 33 mM) causes transient excitation followed by persistent denerva-
tion [29,42]. This study shows the roles of selective ablation of renal afferent fibers without
interrupting renal efferent activity in SHR. The primary novel findings are that RAD caused
by high concentration of capsaicin attenuates sympathetic activation, superoxide signaling
or oxidative stress in both the PVN and arteries, hypertension, and vascular remodeling
in SHR. Selective removal of renal afferent innervation may be a therapeutic strategy
for hypertension.

Elevated renal afferent activity increases sympathetic activity, and the excitatory reflex
is enhanced in SHR, especially in the early stage of the hypertension [20], suggesting that
selective removal of renal afferents may play beneficial roles in attenuating hypertension.
However, surgical renal denervation in animals or catheter-based renal nerve ablation
in humans is a nonselective method, which disrupts both afferent and efferent renal
fibers [23,24]. Several methods have been tried for selective ablation of afferents. For
example, systemic administration of capsaicin, a transient receptor potential receptor 1
(TRPV1) agonist, in neonatal rat pups does ablate renal afferents, but results in degeneration
of all the TRPV1-positive sensory fibers throughout the body [43–45]. Surgical sectioning
of dorsal roots of the spinal cord (dorsal rhizotomy) at T9-L1 does remove most renal
afferent fibers to the spinal cord, but disrupts all cutaneous, somatic and visceral afferents
at the levels [46,47]. Both methods specifically abolish sensory fibers, but are not selective
for renal afferents. The ablation of other sensory afferents may cause severe dysfunction
or side effects. It is well documented that capsaicin ablates unmyelinated C-fibers [48].
Topical application of capsaicin to the adrenal gland of rats induces selective denervation
of adrenal afferents [49]. It is known that the majority of renal afferent fibers are capsaicin-
sensitive unmyelinated fibers [50,51], and TRPV1 receptors are localized along the axons
and terminals of renal sensory fibers [52]. The method used in the present study selectively
ablates renal afferents without interrupting renal sympathetic output, which has been well
documented in previous studies [25,26,29]. The efficiency of renal afferent denervation
caused by capsaicin treatment was confirmed by the reduction of CGRP expressions in the
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kidney in the present study. Importantly, we provide functional evidence that the capsaicin
treatment had no significant damage effect on renal sympathetic activity.

Excessive sympathetic activity is crucial in the pathogeneses of hypertension [12].
Input from the kidney to the brain increases sympathetic activity and blood pressure via
causing the ERR in WKY and SHR [16]. In this study, selectively abolishing the renal
afferent activity attenuates sympathetic activity, which attributes to the abrogation of the
ERR at the renal afferent level. Superoxide in the PVN is closely related to the integration
of cardiovascular activity and sympathetic output, and increased superoxide production in
the PVN is mainly responsible for sympathetic activation in hypertension [9]. Reducing
superoxide levels in the PVN attenuates sympathetic activity and hypertension in hyper-
tensive rats [53,54]. ERR-induced by activation of renal afferents is mediated by the AT1
receptors-superoxide pathway in the PVN [17]. RAD reduced NOX2/4 expressions and
NOX activity as well as superoxide production, which is at least partially responsible for
the inhibition of excessive sympathetic activity in SHR.

Vascular oxidative stress contributes to vascular remodeling and hypertension [6,7].
RAD reduced NOX-related superoxide production in the aorta and mesenteric artery,
which plays beneficial roles in attenuating vascular oxidative stress. It is known that
increased NE induces oxidative stress [55,56]. Excessive sympathetic activity causes not
only more NE release in the arteries, but a raise in the plasma NE level in SHR, which
promotes vascular oxidative stress. Moreover, increased sympathetic activity and NE
release promote hypertension, which further aggravates vascular oxidative stress. The
role of RAD in attenuating vascular oxidative stress may be attributed to RAD-caused
inhibition in sympathetic activity and NE release. The major role of selective RAD in
attenuating vascular remodeling in SHR attributes to the reduced sympathetic activity,
vascular oxidative stress and hypertension (Figure 10). On the other hand, sympathetic
over-activity promotes renin release and Ang II generation [57]. Selective RAD attenuated
sympathetic activity, which may have a beneficial effect in attenuating the activity of the
renin–angiotensin system.
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Device-based therapies such as catheter-based renal sympathetic denervation have
been widely used to treat resistant hypertension, chronic kidney disease and chronic heart
failure [23]. The technique interrupts the activity of both afferent and efferent renal nerves.
In the present study, selective ablation of renal afferents plays beneficial roles in attenuated
sympathetic activation, central and vascular oxidative stress, vascular remodeling, and
hypertension in SHR, but no significant effects were observed in these aspects in WKY. The
findings suggest that selective RAD may be an effective method for treating hypertension
with less disadvantage in interfering physiological regulatory function, especially renal
function. It is interesting that selective RAD had no significant effects in WKY. This finding
suggests that renal afferent activity in physiological conditions is not important in the
control of vascular oxidative stress and remodeling. It is speculated that selective RAD
may cause some mild direct effects, but may be compensated by regulatory mechanisms to
maintain homeostasis. However, whether there are long-term effects of RAD in normal rats
needs further investigation.

Previous studies showed that RAD in rats with unilateral ischemic kidney reduced
ROS production and renal dysfunction in the kidney [23,25], and that RAD attenuates
proteinuria and renal fibrosis in rats with unilateral 5/6 nephrectomy [26]. However,
it is unknown whether selective RAD had effects on blood and urine K+, Na+, and
aldosterone levels. Previous studies showed that there were no significant increases in
the blood urea nitrogen (BUN) and creatinine levels in SHR aged about 12 weeks [58–60].
There were no significant differences in the blood and urine Na+, K+, and aldosterone
levels between WKY and SHR at the early stage of hypertension [61–64], which were
further confirmed in the present study. Moreover, RAD had no significant effects on
blood and urine Na+, K+, and aldosterone levels in both WKY and SHR. A possible
explanation is that the SHR at this age are in the early stage of hypertension, without
obvious renal dysfunction. However, renal dysfunction or injury certainly exist in the
late stage of hypertension. Therefore, the long-term effects of the selective RAD or the
effects of the selective RAD in older SHR deserves further investigation. A limitation in
the present study was that blood pressure was measured with a computerized tail-cuff
system, which is easily affected by the process of the measurements. Moreover, the DBP
values obtained with this method was not very reliable.

5. Conclusions

Selective ablation of renal afferents attenuates sympathetic activity, vascular ox-
idative stress, vascular remodeling and hypertension in SHR. The abolished afferent
activity from the kidney to the PVN reduces superoxide-mediated signaling in the
PVN, and then causes the attenuation of sympathetic activity in SHR. The reduced
sympathetic activity partially contributes to the attenuation of vascular oxidative stress
and remodeling in hypertension.
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