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Background: Certainly, there is a demand for stronger recognition of how nanoparticles can

move through the cell membrane. Prostate cancer is one of the forcing sources of cancer-

relevant deaths among men.

Aim of the Work: The current research studied the power of prostate cancer cells to uptake

a ternary nanocomposite TNT/CuFe2O4/Zn-Fe mixed metal oxides (MMO).

Methodology: The nanocomposite was synthesized by a chemical method and character-

ized by a High-resolution transmission electron microscope, Field emission scanning elec-

tron microscope, X-ray diffraction, Fourier transmission infra-red, X-ray photoelectron

spectroscopy, dynamic light scattering. Besides, it was implemented as an inorganic antic-

ancer agent versus Prostate cancer PC-3 cells.

Results: The results revealed cellular uptake validity, cell viability reduction, ultra-structures

alterations, morphological changes and membrane damage of PC-3 cells.

Conclusion: The prepared ternary nanocomposite was highly uptake by PC-3 cells and

possessed cytotoxicity that was dose and time-dependent. To conclude, the study offered the

potential of the investigated ternary nanocomposite as a promising prostate anticancer agent.
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Background
Investigations have indicated that 25% of men are diagnosed with prostate cancer

(PCa).1 The clinical diagnostic approach is testing the prostate-specific antigen (PSA)

level, where a concentration ˃ 4 ng/mL is considered a risk of biopsy.2 The routine

diagnostic technique is the digital rectal examination, and Multi-parametric-magnetic

resonance imaging allows the potential diagnosis of PCa.3 The distinct five stages of

PCa are (zero) I, II, III, and IV,4 and most cases of prostate cancer metastasis develop in

the lymph nodes and the bones.5 Choice of the treatment procedure, whatever surgery,

radiation, hormone, Cryo-therapy, Vaccine, and Bone-directed treatment depends on

the clinical stage, the age, and the general health of the individual.6

The potential complications of the mentioned approaches are serious to consider.7

The prostate size is the fundamental limitation of surgery, and 5 to 20% of cases suffer

from stress incontinence after radical prostatectomy. Hormonal therapy leads to loss of

libido, bone, and muscle mass.8 Further, 30 to 50% experience erectile dysfunction

after radiation therapy,9 and urinary retention, urgency, and frequency are more

common in Brachytherapy.10
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Recent improvements in cancer nanomedicine have

a significant consideration.11 In specific, metal and metal

oxides inorganic nanoparticles (NPs) are substantial parts in

the clinical progress of cancer diagnostic and therapy.12,13

For instance, Iron oxide NPs in Glioma,14 Graphite for

Prostate,15 Gold in Cervical,16 Selenium/Ruthenium/copper

for breast,17 Titanium peroxide with the pancreas, Platinum

in the lung18 and Graphene in Non-small-cell lung

carcinoma.19,20 Further, titanium dioxides TiO2 NPs have

promising anticancer activities towards the breast21 and

prostate.22,23 Besides, ferrites magnetic inorganic NPs are

good anticancer agents, as Zinc,24,25 Nickel,26 Zinc-

Nickel,27 Cobalt28 and super-paramagnetic iron oxide.29

Besides, the developed NPs target the PCa using aptamer,

antibody30 and prostate-specific membrane antigen surface

marker.31

However, the major drawback of inorganic NPs is their

toxicity, which impairs the proteins, lipids, and DNA of

the normal cell.32 In specific cases, inorganic NPs inhibit

the cellular efflux pump by disturbing the Ca2+

concentration.33 So far, the researchers denoted the effi-

cacy of inorganic NPs in cancer therapy, but the main

limitation is the only concern at high concentration.

Additionally, the issue of cell penetration, translocation

and subsequent aggregation inside the cell, or in the cel-

lular compartments is still a critical case.

Lately, nanostructures, such as ternary nanocomposites

have potential usage in different fields since synergistic

effects of their ingredients at the nanoscale domain may

enhance the physical and chemical properties when com-

pared to individual phases,34 for example, a novel sensi-

tive photo-electrochemical ternary nanocomposite

biosensor for glucose detection and sensing.35,36 Ternary

nanocomposite films with different NPs exhibited superior

chemical, thermal, mechanical properties, and electroche-

mical capacitance,37,38 a biocompatible nanocomposite of

silver/gold alloy showed potential anticancer activities

against liver cancer.39

To limit the cytotoxicity of the individual inorganic

nanoparticles at high concentrations, the present research

was planned to synthesis a ternary nanocomposite that

constituted of titanate nanotubes/cupper ferrite/zinc-iron

mixed metal oxides (MMO) (TNT/CuFe2O4/Zn-Fe

MMO), in addition, to investigate how and to what extent

the validity of prostate cancer cellular uptake in trial to

achieve high efficacy with low concentration as an ade-

quate anticancer inorganic agent versus PCa.

Materials and Methods
Materials
CuFe2O4 and Zn-Fe layered double hydroxides (LDH)

were prepared using nitrate salts, Fe (NO3)3.9H2

O (Alpha Chemika, India), Cu (NO3)2.3H2O (Alpha

Chemika, India) and Zn (NO3)2.6H2O (Oxford

Laboratory Reagent, India). Sodium hydroxide (NaOH)

was purchased from Piochem for laboratory chemicals,

Egypt, and hydrochloric acid (HCl) was obtained from

Carlo Erba reagents. All chemicals were of reagent grade

quality and used with no further purification.

Human prostate cancer PC-3 cell lines were obtained

from the American-Type Culture Collection (ATCC,

Rockville, MD). Mammalian cell lines: MRC-5 cells

(Normal human Lung fibroblast cells) were acquired

from VACSERA Tissue Culture Unit, Egypt. The used

chemicals were Dimethyl sulfoxide (DMSO), MTT and

trypan blue dyes were purchased from Sigma (St. Louis,

Mo., USA). Fetal Bovine serum, DMEM, RPMI-1640,

HEPES buffer solution, L-glutamine, gentamycin and

0.25% Trypsin-EDTA, Osmium tetroxide chemical fixes

fat and sodium cacodylate buffer, Uranyl acetate staining,

lead citrate phosphate-buffered saline (PBS), acetone, 4%

of glutaraldehyde and 10% formalin were procured from

Lonza (Belgium). Doxorubicin as a reference standard was

taken from Sigma Aldrich.

Preparation of TNT/CuFe2O4/Zn-Fe

MMO
Titanate nanotubes were formed in agreement with our

preceding research with minor adjustments.32 Quickly,

10g of Anatase TiO2 powder was suspended in 500 mL

of 10 M NaOH solution, transferred to a 1000 mL hydro-

thermal autoclave, and heated at 160°C for 23 hrs.

TNT/CuFe2O4 with a 1:1 ratio was prepared using the co-

precipitation approach. In the LDH phase, the molar ratio

of Zn/Fe was 4:1.33 Originally, an aqueous solution of

TNT was sonicated for 30 min in 4 M NaOH solution.

Solutions of Cu2+ and Fe3+ were included drop-wise under

vigorous stirring until a pH 10. The obtained precipitates

were developed for 24 hrs at 70°C, filtered, washed with

bi-distilled water several times, dried at 80°C overnight

and calcined at 400°C for 2 hrs. To prepare the Zn-Fe

MMO, the corresponding Zn-Fe LDH (1:1 by weight) was

deposited over the surface of the TNT/CuFe2O4 phase

through the co-precipitation of the corresponding Zn and

Fe nitrate salts using sodium hydroxide as a precipitating
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agent. After precipitation, the powder was separated by

centrifugation, washed several times and left to dry over-

night at 40°C. Converting the LDH phase into the corre-

sponding MMO was achieved through heating the dried

samples at 200°C and left to cool naturally. Preparing

MMO from the corresponding LDH phase is considered

as a simple and economical procedure, which allows the

MMO to keep the layered morphology of the original

LDH phase after being heated.

Material Characterization
The prepared nanocomposite was characterized by high-

resolution transmission electron microscopy HRTEM

(JEOL-JEM 2100), field emission scanning electron

microscopy FESEM (Gemini, 154 Zeiss-Ultra 55, field

emission high-resolution scanning electron 155 micro-

scope), X-ray diffraction XRD, X-ray photoelectron spec-

troscopy XPS (Thermo-Scientific k-Alpha), Zeta sizer and

zeta potential (Malvern Instruments Ltd), Fourier transfor-

mation infrared spectroscopy FTIR (Vertex 70 FTIR-FT

Raman) to study the microstructure, morphology, crystal-

linity, quantitative elemental composition chemical state,

size distribution, surface potential and the functional

groups, respectively.

Testing the Cellular Uptake by TEM
The PC-3 cells were shaken well and left intact for 20 hrs,

the suspension was centrifuged down to a pellet and rinsed

twice with PBS and then the samples were developed

adopting standard practices for transmission electron

microscopy (TEM), where post-fixation was carried out

in 1% osmium tetroxide in cacodylate buffer at room

temperature for 1 hr. The cells were dehydrated in acetone

and buried in Epon resin. Ultrathin pieces were stained

with Uranyl acetate and lead citrate and later probed with

a TEM (70 kV GEOL GEM-1010) at the Regional Centre

for Mycology and Biotechnology (RCMB), Egypt.

Morphological Analysis
Again, the investigated PC-3 cells were incubated at 37°C

for 24 hrs. After that, the cells were soaked with PBS

triplicates and were prefixed with 4% of glutaraldehyde

solution for overnight and laved three times with

0.1 M sodium cacodylate buffer for 10 mins. The speci-

mens were fixed in 1% of osmium tetroxide at 4oC for 2

hrs and washed plentiful with 0.1 M sodium cacodylate

buffer for 10 mins. Subsequently, the specimens were

dehydrated with a series of ethanol washes (30, 50, 70,

90, and 100%); critical point dried in CO2, coated with

gold, and examined with a 20 kV JEOL JSM-5500LV

Scanning Electron Microscope (SEM) at RCMB.

Viable Cell Counting (Trypan Blue Assay)
The treated PC-3 with the tested nanocomposite cells were

separated using 0.25% trypsin for 10 mins, then 0.50 μL of

PC-3 cell suspension was placed in a cryo-vial. An equal

part of 0.4% trypan blue dye was added to the cell suspen-

sion to obtain a 1 to 2 and was mixed by pipetting up and

down. The mixture was incubated at room temperature for

2 mins. Later, the cells were counted with an automated

cell counter (TC10 Automated Cell Counter 145–0001;

Bio-Rad Laboratories, Inc., Hercules, CA, USA). The

percentage of viable cells was calculated by dividing the

number of viable cells by the number of total cells and

multiplying by 100 or % viable cells = [1.00 – (Number of

blue cells ÷ Number of total cells)] × 100.40

Antitumor Activity Assay
The procedures followed.41 First, the PC-3 cells were

cultivated on RPMI-1640 medium supplemented with

10% inactivated fetal calf serum and 50 µg/mL gentamy-

cin, kept at 37 ºC in a moistened environment with 5%

CO2 and sub-cultured three times a week. For cytotoxicity

evaluation using viability assay, the PC-3 cells were sus-

pended in a medium in Corning® 96-well tissue culture

plate with a concentration 5x104 cell/well and then incu-

bated for 24 hrs. Second, sequential double-fold dilutions

of the tested nanocomposite were included in a 96-well

plate (three repeats). Six vehicles with media 0.5% DMSO

were run as a control (untreated with the investigated

nanocomposite). After incubating for 24 hrs, the numbers

of viable cells were detected by the MTT test.

Shortly, the media was expelled from the well plate and

recovered with 100 µL of pure culture RPMI 1640 med-

ium, and 10 µL of the 12 mM MTT stock solution (5 mg

of MTT in 1 mL of PBS) were added to each well includ-

ing control and was incubated further at 37°C and 5% CO2

for 4 hrs. Finally, an 85 µL aliquot of the media was

removed from the wells, and 50 µL of DMSO was

included to each well and mixed thoroughly with the

pipette and incubated at 37°C for 10 mins.

The optical density was measured at 590 nm with the

microplate reader (SunRise, TECAN, Inc, USA) to detect

the total viable cells. The percent of viability was calculated

as [(ODt/ODc)] x100% where ODt is the mean optical

density of treated wells and ODc is that of untreated cells.
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The experiments and measures were conducted three times,

and the results were presented as the average±Standard

Deviation. The relationship between tested nanocomposite

versus inhibitory and viability percent was plotted in a bar

chart using Graphpad Prism software (San Diego, CA.

USA), and the 50% inhibitory concentration (IC50), which

is the concentration required to cause toxic effects in 50% of

intact cells was determined. The cytotoxicity of the tested

nanocomposite was assessed against Mammalian cell lines:

MRC-5 cells (Normal human Lung fibroblast cells). In addi-

tion, the efficacy of the tested nanocomposite was compared

with a standard Doxorubicin.

Results and Discussion
Material Characterization
Figure 1A displays the X-ray diffraction (XRD) of the studied

nanocomposite. The sharp peaks at 31.89°, 34.5°, 36.3°,

47.61°, 56.6o, 62.9°, and 68o are characteristic peaks for the

(100) (002) (101) (102) (110) (103) and (112) planes,

respectively, and well matched with (ICDD card number: 01-

070-2551). Mild heating of the LDH phase formed the corre-

spondingMMO of ZnO as a dominant phase with the trivalent

Fe+3 cations those uniformly distributed in the oxide network.

ZnFe2O4 phase was absent; its detection required heating at

600°C.42 Besides, the peaks at 31.89°, 34.5°, 36.3° and 62.9°

reflected the diffraction peaks of the CuF2O4 phase (112) (103)

(211) and (224) planes, respectively.43 The diffraction peak of

the titanate phasewas low intensities comparedwith theMMO

and ferrite phases and could not be observed in the XRD

diffractogram. The structure of the nanocomposite is further

illustrated in Scheme 1.

Figure 1B indicates the FTIR range of the synthesized

nanocomposite. The absorption peaks at 3394 cm−1 and

1629 cm−1 illustrates the OH stretching and bending,

respectively, because of the adsorbed water molecules44

while the those at 1382 cm−1 and 1480 cm−1 assigned to

the ν3 stretching vibration of the NO3
45 and carbonate46

groups, and the peaks at the low wave number attributed to

the metal-oxygen bond absorption.47

X-ray photoelectron spectroscopy was performed to

confirm the ingredients elemental composition of the pre-

pared ternary nanocomposite and to determine its oxida-

tion state. Figure 2 presents the XPS spectrum of the

inorganic nanomaterials forming the ternary nanocompo-

site. Overall, XPS results evidenced that all the ingredients

were in oxide form rather than in metallic one. The spec-

trum emphasizes Cu+2, Fe+3, Zn+2 and Ti+4 originating

from the CuFe2O4, mixed metal oxide (Zn-Fe) and titanate

phase, respectively. The Figure clarifies different peaks of

various oxidation states at distinct binding energy levels;

the peak of Fe 2p was detected at the binding energy 712

and 725 eV confirming the +3 oxidation state of iron and

matched with the preceded study.48 The peaks at 1022.7

and 1044.72 eV attribute to the +2 oxidation state of

(ZnO), similar to another research.49,53 The peak of Cu

2p appears at 932 eV specifies to Cu2+ while peaks of Ti

2p assign to Ti4+.50,54,55

Figure 3A shows the SEM micrograph of the prepared

nanocomposite; two morphologies appeared as a layered

morphology of Zn-Fe MMO and fine aggregates that origi-

nated from the titanate and ferrite phases. Figure 3B is a TEM

image indicating all three phases as titanate nanotubes deco-

rated by CuFe2O4 and layered Zn-Fe MMO as illustrated in

Scheme 1. TNTs have an average diameter ranging between

10–15 nm. Figure 3C reveals the formed-walls of the TNTs.
Figure 1 (A) XRD pattern of the prepared ternary nanocomposite, (B) FTIR

pattern of the prepared ternary nanocomposite.
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In the inset image (selected area electron diffraction

SAED), the bright spots confirmed an accepted crystal-

linity of the TNTs phase. Figure 3B displays a hexagonal

symmetry of the MMO layers with an edge-to-edge

distance of 60 nm. Figure 3D shows fine and well-

dispersed CuFe2O4 spheres with diameters less than 10

nm, and inset reflected a good crystallinity of the ferrite

phase.

Figure 4 reveals the hydrodynamic size distribution of

the prepared nanocomposite and showed two peaks at

117.7 nm and 557.4 nm, which attributed to the aggregates

and layered morphologies, respectively. The reported poly

distribution index PDI was 0.54 that reflected the hetero-

geneous distribution of the tested nanocomposite, as

expected. The particles’ tendency to form aggregates or

dispersed depends on the surface charge; the calculated

zeta potential was −26.4 mV indicating incipient stability.

Cellular Uptake
Indeed, the cellular entry of nanoparticles and their ulterior

interaction with the cell’s internal structure, together with the

power to envisage cultures of nanoparticles at high resolution

within cells is a crucial point to infer the processes of any

toxicity. It has evidenced that the imaging-based devices are

A

A Sodium Titanate Nanotubes (Sodium-TNT)               

B Sodium-TNT/CuFe
2
O

4                   

C Sodium-TNT/CuFe
2
O

4
/Zn-Fe Mixed Metal Oxides Nanocomposite 

Sodium Titanate Nanotubes (Sodium-TNT)               

CuFe
2
O

4                   

Zn-Fe Mixed Metal Oxides Nanocomposite 

B

C

Prostate 

cancer 

PC-3 cells

Scheme 1 Possible structure of the ternary nanocomposite.

Figure 2 XPS spectrum of titanate nanotubes/CuFe2O4/Zn-Fe MMO.
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worthy of investigating the nanoparticle-cell actions; the cur-

rent study used electron-based imaging techniques to recog-

nize the cellular uptake of the investigated nanocomposite.

Figure 5 gives information about two different TEM

images of the prostate cancer cells after incubation with

the tested nanocomposite at two distinct times (a) after 24

hrs and (b) after 48 hrs. The figure proves a variation

nanocomposite distribution in the extracellular and intracel-

lular matrix, as well as in the degree of the cellular uptake.

The image of Figure 5 (a) displays a lot of vacuoles and the

distributed nanocomposite in the extracellular regions, also,

external attachment to the cell membrane, and dissemination

of the nanoparticles in the cytoplasm.

Determining the entrance mechanism is paramount;

when NPs come to the surface membrane of a cell, they

can connect with its ingredients or extracellular matrix, and

penetrate the cell through endocytosis. Five main precise

processes of endocytosis are phagocytosis, clathrin-

mediated endocytosis (CME), caveolin-mediated endocyto-

sis, clathrin/caveolae-independent endocytosis, and macro-

pinocytosis.

Based on the theory of each method; the entrance

pathway of the studied nanocomposite into the cells may

be through Phagocytosis or CME. The first approach was

not expected for reasons; Phagocytosis exists primarily in

professional phagocytes as macrophages, monocytes, neu-

trophils, and dendritic cells that were nonexistent in the

incubation media. In addition, Phagocytosis of NPs is

mostly initiated by the Opsonization process, where

A
Nanotubes

Ferrite

B

MMO

C D

Aggregates

MMO

Figure 3 (A) FESEM and (B) TEM micrographs of the prepared nanocomposite. (C) HRTEM micrograph of the TNTs phase (inset: SAED pattern) and (D) HRTEM image of

the ferrite phase (inset: SAED pattern).

Figure 4 Hydrodynamic size distribution of the prepared ternary nanocomposite.
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opsonins such as immunoglobulins, complement proteins,

and other blood proteins are adsorbed onto the NPs’

surface;51 these opsonins did not exist also. Further, larger

micro-particles experience more efficient uptake by pha-

gocytes while the tested composite was in nano-

dimension.

Concerning the second approach, Clathrin-mediated

endocytosis occurs either via receptor-specific uptake or

by non-specific adsorptive uptake, which is referred to as

receptor-independent CME. In receptor-independent CME,

the uptake takes place without direct binding with mem-

brane constituents through non-specific hydrophobic mole-

cules or electrostatic interactions that initiate the uptake.

It is important to bear in mind that the surface charge

has a powerful effect on the receptor-independent CME

uptake mechanism and intracellular fate. For example,

anionic particles showed cellular uptake in HeLa cervical

cancer cells and silica nanotubes (SNTs).51 Taken into

consideration the surface charge, the prepared nanocom-

posite bore negative charges that indicated by the zeta

potential value. And as such, the suggested entrance

mechanism was through electrostatic interaction between

CuFe2O4/Zn-Fe and the phosphate group of the cell mem-

brane lipid layers that caused disruption of the cell mem-

brane integrity, created pores that boosted the entrance of

TNT, and developed a tight pit on the inner surface of the

plasma membrane; this pit then buds into the cell to

complete a covered vesicle in the cytoplasm. The white

arrow in Figure 5 illustrated the coated pits and vesicles

budding in the cell’s cytoplasm, these covered pits and

vesicles budding developed steadily by time after 48 hrs of

incubation as presented in Figure 5B, which in turn

reflected that the distributed nanocomposite in the cyto-

plasm indented to accumulate around the nuclear mem-

brane, and it needed more 48 hrs of incubation to invade

the nuclear envelope. In light of forgoing, the receptor-

independent CME mode was the suggested mechanism of

invasion and cellular uptake.

Cellular Morphological Changes
Figure 6 provides three TEM images (a, b &c) after 48 hrs

of incubation. Overall, it confirmed factual details of the

ultra-structural reforms of the PC-3 cells. For example,

Figure 6A exhibits a heap of the nanocomposite at the internal

wall of the cell membrane face to the cytoplasm. Additionally,

thefigure represented an alteration of the cell shape and the cell

membrane with a slight elongation of the cell. This protraction

increased gradually by time as confirmed in Figure 6B, and the

piles of the nanocomposite still spread in the cytoplasm.

Moreover, Figure 6C illustrates a sinuosity of the cell mem-

brane; this tortuosity may increase the permeability of the

membrane. Increasing permeability occurs in the cells that

passed the death mechanism whatever by apoptosis or necro-

sis. The turban blue sassy emphasized the increased perme-

ability. Further, the cytoplasm appeared clear in Figure 6C,

reflecting the effect of the nanocomposite on the different

organelles in the cytoplasm.

Although the TEM reveals the intracellular distribution

of the nanomaterial; nevertheless, but the quantification of

the internalized nanomaterials is of fundamental concern.

BA

Figure 5 Different TEM images of the PC-3 cells after incubation with the tested nanocomposite materials (IC50 = 29.8 ± 0.6 µg/mL), (A) after 24 hrs at 10,000×

magnification, (B) after 48 h at 8000× magnification.
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Up to date, there is no standardized and validated method

available for this specific question because of different

needs of the analytical methods depend on the particle

type, the biological environment as well as the various

specifications and limitations for each of the techniques.

Ultimately, Figure 7 reviews four SEM images of the PC-

3 cells (a, b, c & d) with different magnifications, where

(a & b) without nanocomposite incubation, while (c &d) with

incubation. Overall, Figure 7 describes the morphological

alterations provoked by the tested nanocomposite on the

PC-3 cells. Figure 7A with a large field of view paraded

clusters of well-united and condensed PC-3, and revealed

non-consistency grid of collagen fibers that reinforced the

PC-3 cells and have a substantial part in prostate growth

management. On the other hand, Figure 7B with a small

and focused field of view exhibited PC-3 cells with

a precise and uniform shape with a distinct cytoplasm.

Regarding the treated PC-3 cells, the image of 7C

exhibited a concise cytoplasm (white arrow). Moreover,

Figure 7D manifests separate cells and cracker structures,

leaving wide cell-free zones that illustrated in the figure as

large dark signal intensity spaces (white arrows). In addition, it

CB

A 

Figure 6 Accurate details of the ultra-structural changes of the PC-3 treated cells with the tested nanocomposites materials (IC50 = 29.8 ± 0.6 µg/mL) after 48 hrs of

incubation, (A) at 8000× magnification, (B) at 10,000× magnification and (C) at 8000× magnification.
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showed a non-uniform swelling with a fall of fragmentation of

collagen tissue, in contrast, the collagen network was intensive

with an increased number of fibers in non-treated PC-3 cells,

as shown in Figure 7A. It is conceivable that a fraction of the

proteins of the connective tissue was ruined during the incuba-

tion with the questioned nanocomposite. The morphological

analysis by SEM proved variations in the basic connective

tissue Stroma (which represents the principal component com-

prising 54% of the prostate gland), including swelling, frag-

mentation, and loss of collagen. The presented results were

well matched with preceded study.52

Cytotoxic Assay
To confirm the implication of the inward nanocomposite; the

cytotoxic effect of the tested nanocomposite versus PC-3

was investigated by the Trypan Blue dye exclusion test,

which is used to determine the number of viable cells pre-

sent in a cell suspension. The test is based on the principle

that living cells possess intact cell membranes that exclude

Trypan Blue dye, whereas Trypan Blue stain can pass

through only permeable membranes of the deceased cells,

altering their color into blue, which is noticeable under

optical microscopy. The treated PC-3 cell suspension with

the nanocomposite was mixed with the Trypan Blue dye and

visually examined to determine whether cells take up or

exclude dye. The cytoplasm of the treated PC-3 cells was

stained by blue color while that of viable cells was clear.

Overall, the incubated cell lines with the medium involving

the ternary nanocomposite showed a substantial rebate in the

number of viable cell contrast to the control group (p<0.05).

A B 

DC

Figure 7 SEM images identify possible morphological alterations caused by the tested nanomaterials on the PC-3 cells. The white arrows refer to a concise cytoplasm and a

wide cell-free zone of the treated PC-3 cells.
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Further, Figure 8 illustrates the statistical analysis bar

chart of the MTT assay measurements. Figure 8A shows

the viability percent (vertical axis) of the PC-3 and MRC-5

cell line (Normal) versus the tested nanocomposite and

a standard chemotherapy agent (Doxorubicin) with serial

dilutions (horizontal axis). The viability percent was mea-

sured for each concentration, and the data were reported as

an average ± Standard Deviation. Overall, the

viability percent of the treated cells (PC-3 and MRC-5)

decreased with the increase of the concentration. The

lowest percent was at the maximum concentration

(500ug/mL). It was below 5% of Doxorubicin and closed

to 5% of the nanocomposite while the viability of the

normal cells was approximately 10%. The viability of the

treated PC-3 by Doxorubicin reduced rapidly while those

treated by the ternary nanocomposite lessened consistently

at low concentration and suddenly diminished at high

concentration. The cytotoxic effect of the nanocomposite

on the normal MRC-5 appeared obviously at high concen-

trations. On the other hand, Figure 8B is a chart clarifies

the inhibitory percent of the treated cell at the same con-

centrations, the IC50% of the nanocomposite against PC-3

and MRC-5 was 29.8 ± 0.6 µg/mL and 71.9 ± 2.5 µg/mL,

respectively, while IC50% of Doxorubicin versus PC-3 was

3.68 ± 0.2 µg/mL.

The future work of the current research will focus on

twofold: performing other assays to indicate the efficiency

of the tested ternary nanocomposite against specific
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Figure 8 The statistical analysis of the MTT assay, (A) the viability and (B) inhibitory percent of the PC-3 and MRC-5 cell line (Normal) cells treated by ternary

nanocomposites and standard chemotherapy agent (Doxorubicin).
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organelles of the PC-3 cells to scout the toxicity pathways,

to study the alteration in the hormonal order, to investigate

special growth factors and activity of specific enzymes that

affects the regulation of the PC-3 growth, and to rebate the

main ingredient of the ternary nanocomposite that activate

the cytotoxicity of the PC-3 cells meticulously.

To conclude, the safe treatment of inorganic NPs persists

a crucial question, and many warrants are still recommended.

Furthermore, recognizing the interactions of NPs with cells

and how the entrance influences their cellular uptake is essen-

tial. Consequently, to limit the cytotoxicity of the individual

NPs at high concentrations; the current study presented the

ternary nanocomposite TNT/CuFe2O4/Zn-Fe MMO, investi-

gated the cellular uptake versus PC-3, proposed the receptor-

independent CME as an entrance mechanism, showed the

intracellular distribution of the tested nanocomposite, reported

a distinct alteration in the morphology and ultrastructure of the

PC-3, as well as a potential toxicity of the tested ternary

nanocomposite that was dose and time-dependent, which

reflected a high cellular uptake. In the final, the current study

suggests the capability of the tested ternary nanocomposite as

a promising prostate anticancer agent.
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