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Sensitivity, specificity, 
and accuracy of a liquid biopsy 
approach utilizing molecular 
amplification pools
Jessica Garcia1,2,5, Nick Kamps‑Hughes3,5, Florence Geiguer1,2, Sébastien Couraud4, 
Brice Sarver3, Léa Payen1,2,6 & Cristian Ionescu‑Zanetti3,6*

Circulating cell-free DNA (cfDNA) has the potential to be a specific biomarker for the therapeutic 
management of lung cancer patients. Here, a new sequencing error-reduction method based on 
molecular amplification pools (MAPs) was utilized to analyze cfDNA in lung cancer patients. We 
determined the accuracy of MAPs plasma sequencing with respect to droplet digital polymerase 
chain reaction assays (ddPCR), and tested whether actionable mutation discovery is improved 
by next-generation sequencing (NGS) in a clinical setting. This study reports data from 356 lung 
cancer patients receiving plasma testing as part of routine clinical management. Sequencing of 
cfDNA via MAPs had a sensitivity of 98.5% and specificity 98.9%. The ddPCR assay was used as the 
reference, since it is an established, accurate assay that can be performed contemporaneously on 
the same plasma sample. MAPs sequencing detected somatic variants in 261 of 356 samples (73%). 
Non-actionable clonal hematopoiesis-associated variants were identified via sequencing in 21% of 
samples. The accuracy of this cfDNA sequencing approach was similar to that of ddPCR assays in a 
clinical setting, down to an allele frequency of 0.1%. Due to broader coverage and high sensitivity for 
insertions and deletions, sequencing via MAPs afforded important detection of additional actionable 
mutations.

A growing understanding of cancer molecular complexity and the role of oncogenic drivers such as mutations 
in genes encoding the epidermal growth factor receptor (EGFR), V-Ki-Ras2 Kirsten Rat Sarcoma 2 (KRAS), 
(MET) and Anaplastic Lymphoma Kinase (ALK) genes have ushered in the era of targeted therapies. Molecular 
profiling of a cancer patient’s tumor to reveal targetable alterations is an important first step in the personaliza-
tion of cancer treatment plans. Usually, these molecular mutational analyses are performed on formalin-fixed 
paraffin-embedded (FFPE) tissue samples at diagnosis or recurrence.

Biopsies of advanced stage non-small cell lung cancer (NSCLC) need invasive exams in fragile patients, and 
therefore minimally invasive “liquid biopsies” have generated considerable enthusiasm. In fact, the use of cfDNA 
for sensitizing and resistance somatic mutation detection in oncodrivers for NSCLC was integrated into the 
European Medicines Agency (EMA) approval. It is now possible to detect somatic alterations from minute cfDNA 
concentrations (less than 0.1%), enabling the detection of alterations in low-volume plasma samples. Several 
techniques are currently available to detect cfDNA, including highly sensitive PCR (polymerase chain reaction) 
assays and next-generation sequencing (NGS). In previous work, we highlighted the complementarity between 
the RAS droplet digital polymerase chain reaction (ddPCR) method and NGS, which often confirmed ddPCR 
results and provided a larger overview of the major targetable alterations of 56 genes (56G oncology panel, Swift 
Biosciences, Ann Arbor, MI, USA) in one run at diagnosis with a 0.5% threshold in lung and colon cancers1.

Sequencing-based liquid biopsy testing offers tremendous promise for tailoring treatment regimens to the 
changing tumor genomic landscape. Current applications include replacing tissue testing when that is difficult or 
fails, re-testing as disease progresses on treatment, and earlier detection of drug resistance. Despite the successful 
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commercial introduction of liquid biopsy testing in oncology2–4, mutation detection performance limitations 
remain5–7. A better understanding of test performance and clinical utility and higher-accuracy methods are 
needed to broaden adoption of liquid biopsies as the standard of care in cancer treatment.

The accuracy of liquid biopsy tests is an area of constant improvement and scientific debate. Publications 
have reported excellent agreement between cfDNA liquid biopsy testing and either tissue or blood-based PCR 
testing8–10, primarily looking at NSCLC and colorectal cancer (CRC) in patients at advanced stage (Stage III-
IV). In contrast, studies using more challenging indications and early-stage samples have generated data that 
demonstrate significant room for improvement for the currently-available clinical assays in this setting5,7,11. 
For example, a comparison of two sequencing lab-developed tests (LDTs) showed low concordance (< 30%) in 
early-stage patient samples7, while another independent study reported low positive concordance of 15% to tissue 
testing5. Researchers have also run 4 commercial liquid biopsy LDTs in parallel on matched blood samples with 
tissue data, finding low concordance between the different tests, especially in the space below 1% mutant allele 
frequency6. The discrepancy between data sets in challenging sample cohorts highlights the need for further 
orthogonal testing in the clinical setting and sensitivity/specificity improvements, especially in the 0.1%-1% 
allelic fraction (AF) range, where most of the false positives and false negatives have been found in orthogonal 
studies6. Current sequencing-based liquid biopsy clinical tests rely on unique molecular identifiers (UMIs) to 
reduce noise. UMIs are short DNA strands used to tag each starting molecule so that it can be tracked through 
the amplification and sequencing process. The key challenges for UMIs include low tagging efficiency for limited 
cfDNA input material, replication errors in the UMIs themselves, and high costs due to the sequencing depths 
required12. For advanced-stage patients, recent work has shown that a large majority of patients responded to 
targeted therapy prescribed based on a commercial cfDNA sequencing test, demonstrating the clinical utility of 
such testing13. Sequencing and ddPCR can provide complementary information from the same blood sample. 
With ddPCR, we have a focused view usually associated with higher sensitivity as we demonstrated it in clinical 
setting for RAS alterations in a colon cancer cohort1. Nevertheless, the diversity of the clinical molecular profile 
of lung cancers and the rarity of cfDNA amounts per sample requires broader oncogene coverage than can be 
provided by ddPCR.

Here we present clinical validation for a recently-introduced sequencing error-reduction method based on 
molecular amplification pools (MAPs) that has shown improved analytical accuracy14. This methodology tracks 
variants present in large collections of molecules, as opposed to single molecule UMIs. Used in conjunction with 
the ERASE-Seq variant caller (Fluxion Biosciences, Alameda, CA, USA), MAPs provide a widely-applicable 
approach to ultrasensitive NGS test development. Sensitivity and specificity were measured with respect to 
ddPCR testing performed as part of standard clinical work-up. This retrospective study reports data from 356 
lung cancer patients receiving plasma testing as part of routine clinical management and utilizing the MAPs 
approach. cfDNA from each sample was separated into two separate pools, and analyzed via NGS on a 56-gene 
panel as described in the analysis flow chart, Fig. 1. The NGS assay and ddPCR give complementary informa-
tion for a complete overview of the molecular profile of the patients at all moments of the disease. With ddPCR 
BEAMing, we have a focused view but usually with higher sensitivity as we demonstrated it in clinical setting 
for RAS alterations in colon cancer cohort1.

The results here present data from a large, orthogonally validated liquid biopsy lung cancer dataset. The 
advantages in terms of additional actionable variant discovery by NGS as compared to both ddPCR and tissue 
sequencing were quantified.

Results
Somatic variant detection.  MAP-based mutation detection (Fig. 2) was applied to a set of 356 cfDNA 
samples obtained in a clinical testing environment and meeting the sequencing quality control metrics for both 
molecular pools (Fig. 1). The use of a MAP-based confidence score eliminates a majority of false positive calls 
in the 0.1–1% AF range. Patients were tested at one of two clinical timepoints: initial diagnosis or progression 
(Fig. 3a). Samples were independently analyzed in Hospices Civils de Lyon’s (HCL) laboratory for ddPCR and 
NGS and all samples were blinded. The NGS analyses were carried out without knowledge of ddPCR results or 
clinical information. A matched blood sample was tested via ddPCR (Bio-Rad ddPCR and/or BEAMing) for a 
set of clinically-actionable variants of the EGFR gene: T790M, L858R, and DelEx19. Tissue mutational data was 
obtained from physician testing records. The sequencing panel contained 263 amplicons across 56 genes cover-
ing pan-cancer mutations of literature-cited clinical relevance (Supplementary Table S1). The panel contained 
all of the variants tested by ddPCR. The ddPCR test method was chosen for comparison based on the fact that it 
has high sensitivity, covers the EGFR alterations of high clinical utility (Exon 18; 19; 20; 21), and has a low cost 
in comparison with commercial NGS tests such as Guardant360 (Guardant Health) and FoundationOne Liq-
uid (Foundation Medicine). Additionally, the ddPCR test is an orthogonal method and thus less likely to mask 
inherent biases that might not be revealed by comparison between NGS-based tests.

Gene-level mutational status for all patient samples with at least one mutation detected by liquid biopsy NGS 
is plotted in Fig. 3b. The full variant set is contained in Supplementary Table S2. Patients’ liquid biopsy samples 
had an average of 1.7 somatic mutations per sample when sequenced via the MAPs protocol, with a larger number 
of mutations detected at progression (Fig. 3b). The types of actionable mutations detected included sensitizing/
resistance mutations of the EGFR, ALK, BRAF and KRAS mutations (Fig. 3b). Other pathogenic mutations (i.e. 
TP53, PIK3CA) were also detected. Clonal hematopoiesis-associated variants (CHIP, clonal hematopoiesis of 
indeterminate potential) were detected for the DNMT3, JAK2 and KIT genes; 27% of TP53 variants were also 
found to be CHIP-associated by our definition (Supplementary Table S5 and Supplementary Fig. S1). In agree-
ment with known molecular disease evolution, a high level of alterations in EGFR mutation-positive samples 
was observed at the progression time point as compared to treatment-naïve patients at initial diagnosis. TP53 
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mutation rates remained high at both timepoints. The overall prevalence of mutations by type is summarized 
in Fig. 4.

The number of unique mutations per gene observed in our 356-sample set is compared to similar measures 
for lung (Fig. 5) and other cancer tissues (Supplementary Fig. S2) across the same 56-gene pan-cancer targeted 
regions. The somatic molecular signature of solid tumors in tissue as captured by The Cancer Genome Atlas 
(TCGA), containing full exon tissue sequencing data from over 300 cancer patients from a number of different 
indications15,16 and crossed with our panel coverage. Agreement with the lung adenocarcinoma data set (R2 = 0.91, 
Fig. 5) is significantly better with respect to unique mutation counts per gene than for melanoma, colon and 
bladder cancers, demonstrating that the cfDNA assay is accurately capturing lung cancer variant signatures 
(Supplementary Fig. S2. C, D, E; R2 = 0.51, 0.54, 0.86, respectively).

Blood‑to‑blood orthogonal concordance.  FFPE testing was usually done before treatment, while 
cfDNA testing was carried out during progression to test for progression mechanisms or a resistant molecular 
profile. In consequence, the molecular profile of the tumor has been modified with time and treatment, explain-
ing the limited concordance previously observed between cfDNA and tissue biopsies. In addition, the ddPCR 
assays display high sensitivity as compared to classical NGS tests for focused clinical hot-spots1, and are used 
as routine clinical tests in our hospital at the time of disease progression. Taken together, these constraints sup-
ported using ddPCR testing as the reference test for the accuracy comparison. Overall concordance between 
MAP liquid biopsy data and ddPCR-targeted mutations (Del Ex19, L858R and T790M) was determined above 
the limits of detection for each variant type (0.1%, 0.1% and 0.13% respectively). The overall concordance across 
1016 ddPCR tests was 98.8%, with a sensitivity of 98.5% and a per-sample specificity of 98.8% (Fig. 6a). Full 
concordance metrics are shown in Table 1. For sensitizing mutations DelEx19 and L858R, 3 discordant calls 
made by ERASE-Seq were supported by tissue data. One DelEx 19 call was negative by ERASE-Seq but positive 

Figure 1.   Flow chart summarizing types of tests conducted as part of our study, and numbers of actionable 
variants detected in each sub-group. 237 patients were analyzed by both cfDNA NGS and ddPCR, and of these 
tissue NGS data was available for 158 patients. 119 patients were analyzed by cfDNA NGS but not ddPCR; of 
these, 35 had tissue NGS data available.
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Figure 2.   (a) Extracted cfDNA is divided into two molecular pools, each containing a fraction of the tumor-
derived cfDNA (red fragments). Each molecular pool undergoes a targeted amplification reaction, resulting 
in the introduction of both stochastic (red) and recurrent (pink) artifacts. Post amplification, each molecular 
amplification pool (MAP) is indexed and sequenced. (b) Variant data from the two molecular pools is 
statistically compared to eliminate stochastic errors and referenced to a large number of reference molecular 
pools to eliminate recurrent errors.

Figure 3.   (a) Tissue samples were obtained and sequenced at diagnosis. Liquid biopsy blood samples are 
obtained either at diagnosis or at progression. Resulting cfDNA is sequenced via the MAP method and tested 
via ddPCR for a clinically-relevant set of variants. (b) Gene-level mutational load for all mutation-positive 
sequencing results at either diagnosis or progression is shown for the 24 most-detected genes as a function of 
sample number (x-axis). Samples were divided by timepoint: initial diagnosis (left) and progression (right). 
Samples are not matched and represent the population of mutation-positive samples used in the study that were 
obtained at each timepoint.
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Figure 4.   (a) The prevalence of clinically-significant mutations over the entire population is presented as a pie 
chart by type. (b) A histogram of gene-level mutational load, with numbers of observations (x-axis) versus gene 
(y-axis labels). Changes in prevalence between the initial diagnosis cohort (left) and progression cohort (right) 
are readily observed for the EGFR gene.

Figure 5.   The number of unique mutations detected per gene is plotted for our liquid biopsy data set in lung 
(a) as compared to tissue-based cancer atlas (TCGA) data (b). The tissue data set analyzed in the TCGA cancer 
genome atlas were lung adenocarcinoma. The analysis was restricted to genomic regions covered by both tests, 
with the highest prevalence genes shown.
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by ddPCR and in tissue. In conclusion, all 4 discordant calls were true positives, with sequencing proving more 
sensitive. For the resistance mutation T790M, 1/3 of the calls made by ERASE-Seq were supported by tissue. 
Because resistance mutations are expected to arise in the course of treatment, the lower tissue support is not 
surprising for the T790M alteration. A scatter plot of allele frequencies for the two technologies (Fig. 6b) shows 
concordance of AF values for sequencing versus ddPCR (Y = 1.3), with an R2 coefficient of 0.85.

Clinically‑actionable mutations.  Clinically-actionable mutations were defined as mutations with tar-
geted therapies either approved or used as part of a clinical trial or a compassionate use basis (Supplemen-
tary Table S3)13. These include EGFR mutations governing TKI treatment sensitivity and resistance and other 
mutations identified in Supplementary Table S3. For each EGFR-positive sample, individual EGFR mutations 
are identified as a green (sensitizing) or red (resistance) marker in Fig. 7A. We detected all of the clinically-
actionable alteration types previously identified in tissue across EGFR exons 18–21 (Fig. 7b). Prevalence of the 
EGFR mutations at initial diagnosis and progression was found to be within the expected range as reported in 
the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) database17.

In addition to ddPCR-covered DelEx. 19, L858R and T790M mutations we detected G719X mutations on exon 
18, insertions for both exons 19 and 20 and L861 mutation on exon 21. The prevalence of clinically-actionable 
EGFR mutations across the two sample sets at the diagnosis and progression timepoints (Fig. 7a) indicated a 3–4 × 
increase in the number of mutations per sample for both TKI activating and resistance mutations (Fig. 7c). Over 
80% of EGFR resistance mutations are found to coexist with sensitizing mutations (Fig. 7a). Other mutations 
including KRAS mutations, ALK mutations, and BRAF mutation V600E are found. For all of these actionable 
mutations, the number of cases where an actionable variant is detected via MAPs sequencing but not ddPCR is 
outlined in Fig. 1.

Discussion
Molecular amplification pools.  The use of molecular amplification pools (MAPs) and the ERASE-
Seq caller are fundamentally different from other approaches to improve sensitivity and specificity in cfDNA 
sequencing. While UMIs attempt to track amplification reaction results for each starting molecule, MAPs are 
used to track amplification reaction results for pools of a few thousand starting molecules by physical separa-
tion into different reaction tubes. Because tagging of each MAP is performed post-amplification using index 
barcodes, this approach avoids the challenges of applying UMIs to limited-input samples.

Figure 6.   Sensitivity and specificity of sequencing compared to orthogonal ddPCR testing in the blood is 
presented for three clinically-actionable alterations: exon 19 deletions, L8585R, and T790M mutations (a). In 
addition to each individual biomarker, comprehensive ddPCR sensitivity/specificity for all targets is plotted. A 
scatter plot compares allele frequencies reported by ddPCR versus ERASE-Seq sequencing results (b).

Table 1.   Correlation and predictive measures for our sequencing assay, assuming ddPCR results as the 
gold standard. Sensitivity and specificity of sequencing versus ddPCR are also shown in Fig. 6. A majority 
of discordant calls are supported by tissue, making the true sequencing specificity and PPV higher than the 
reported values vs. ddPCR.

Del Ex 19 (%) L858R (%) T790M (%) All ddPCR (%)

Sensitivity (PPA) 97.1 100.0 100.0 98.5

Specificity (NPA) 98.6 99.4 98.6 98.9

PPV 94.4 93.3 85.0 91.5

NPV 99.3 100.0 100.0 99.8

Concordance 98.4 99.4 98.7 98.8
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A background-aware caller, ERASE-Seq, then utilizes data from each pool as well as a number of reference 
DNA pools. A statistical confidence score is considered the primary pass/fail criterion for variants (Fig. 2)14. In 
contrast, existing liquid biopsy approaches rely on UMI approaches to reduce noise8,9,18–20, or combine UMIs 
and background statistical noise reduction models9.

Both MAPs and ERASE-Seq are widely applicable and can be adapted for use with data from any workflow 
with read depths of at least 5000 × per molecular pool. This conveys the method broad applicability to virtually 
any cfDNA sequencing panel14. Single- molecule barcoding workflow limitations, including the requirement 
of very deep sequencing to produce consensus reads, reduced efficiency in the attachment of the molecular 
barcodes, and PCR errors introduced in the molecular barcodes themselves, are avoided12.

Variant detection performance.  Orthogonal blood-to-blood concordance testing is ideal because 
it removes questions of tumor heterogeneity and time-dependent variability and tests sensitivity/specificity 
in a real-world setting. The clinically-approved ddPCR testing was performed independently of sequencing 
results, as part of the standard of care. Sequencing results were generated in a blinded manner and compared to 
ddPCR. We obtained excellent sensitivity (98.5%) and specificity (98.9%) when comparing the MAP/ERASE-
Seq approach to ddPCR results (Table 1). It should be noted that while ddPCR was considered a truth table, 
ERASE-Seq and ddPCR perform similarly: Of 7 discordant calls, 4 calls present in sequencing data only were 
concordant with tissue data, indicating that real-life PPV is 97%, versus 91.5% with respect to ddPCR (Table 1). 
Variant detection is likely input copy-number limited in samples containing less then 10 ng cfDNA, where only 
an average of 3 copies support a 0.1% AF call. High-confidence variant detection is supported to 0.1% for single 
base substitutions with a lower limit of detection (LOD) of 0.03% for insertions and deletions (indels). The lower 
indel LOD is due to the absence of an appreciable noise background for this type of alteration.

Figure 7.   (a) Tyrosine kinase inhibitor (TKI) sensitivity and resistance mutations of the EGFR gene detected 
at diagnosis or at progression. Each symbol represents the detection of a specific variant (y axis) in one patient 
sample (x axis). Both resistance (red) and sensitivity (green) variants are detected, with all of the 6 types of TKI-
relevant variants (b) present in the data. The prevalence of three common variant types by time point (c) shows 
the expected increase in both sensitizing and resistance mutations. Samples are not matched and represent the 
population of mutation-positive samples used in the study that were obtained at each timepoint.
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Low limits of detection are necessary in order to successfully serve a large number of patients for whom 
the circulating tumor DNA (ctDNA) variant frequencies are often below 0.5%3,5,8,10,18, a regime where recent 
orthogonal studies have shown that there is significant room for improvement. Recent studies evaluating results 
from four different UMI-based sequencing clinical test providers in challenging sample types6,7,21 found most 
discordance to be in the low AF range between 0.1 and 1%. Publications comprising late stage samples, however, 
report much higher blood-to-tissue and blood-to-blood agreement for UMI-based commercial tests, and robust 
concordance is obtained in late stage patients with higher AF variants8,10,19,20. For example, a recent study used 
ddPCR as a confirmatory assay and reported a high positive percent agreement (> 99%) above 0.3% AF, but 
limited ddPCR testing to sequencing-positive samples10.

While work remains in defining standard metrics and calculation methodologies before alternative approaches 
can be accurately compared, the MAPs approach demonstrated robust sensitivity / specificity in low AF region 
of 0.1–1% when compared to gold-standard ddPCR assays in clinical testing.

Population‑level analysis in lung cancer.  This data set presents a liquid biopsy mutational profile atlas 
for lung cancer. Many earlier liquid biopsy validation reports have focused on closely monitoring response to 
treatment in a relatively small number of patients9,18,22, or data collated from multiple cancer types4,8,10. This data 
set has focused on a larger clinical data set in lung cancer cfDNA. In addition to the prevalence of commonly 
mutated genes covered by our 56 genes panel- TP53, EGFR and KRAS (Fig.  3), we also detected clinically-
important mutations of lower prevalence.

A large dataset also enables a comparison of our liquid biopsy results to the somatic molecular signature of 
solid tumors with the same tissue of origin. The question asked was: is this a pan-cancer mutational profile, or 
is it specific to adenocarcinoma of the lung (over 80% of the patient population tested)? To that end, we mined 
the TCGA database to assemble similar unique mutation counts per gene for lung as well as melanoma, colon 
and bladder cancer. Agreement of cfDNA data with tissue lung adenocarcinoma data set (R2 = 0.91, Fig. 5) is 
significantly better with respect the same distribution for melanoma, colon and bladder cancers (Supplementary 
Fig. S2C,D,E; R2 = 0.51, 0.54, 0.86, respectively). The result strengthens the case that we are indeed detecting a 
lung signature.

The presence of clonal hematopoiesis (clonal hematopoiesis of indeterminate potential , or CHIP) variants 
has been recently identified as a possible source of false positives for cfDNA data23,24. To address this we propose 
criteria based on recently-characterized CHIP-associated mutation profile in blood cell samples25,26 (see Meth-
ods) and found 21% of samples to harbor mutations associated with clonal hematopoiesis (Fig. 3a). They are 
DNMT3A (28), JAK2 (19), and KIT (5) variants previously observed in lymphomas but not lung cancers. Such 
variants have been found in about 10% of healthy subjects above 65 years of age, and associated with adverse 
outcomes25. They represent 11% (52/485) of the mutations detected in 21% of samples in this study. Within the 
TP53 gene, 42% of variants are CHIP-associated, and 60% lung cancer-associated (COSMIC data), with a small 
group of variants previously observed in both. All of the clinically-relevant variants of the EGFR, ALK, BRAF and 
KRAS genes are unambiguously lung cancer-associated and do not meet CHIP criteria; therefore, the presence 
of CHIP-associated variants doesn’t affect clinical decision making.

Clinical utility.  Clinically-actionable mutations were defined as mutations with targeted therapies either 
approved or available for clinical trial/compassionate use (Supplementary Table S3)13. EGFR mutations govern-
ing TKI treatment sensitivity and resistance are of central importance (Fig. 7). We identified all of the clinically-
actionable alteration types previously identified in tissue across EGFR exons 18–21 (Fig. 7). In addition to the 
high-prevalence variants validated via ddPCR, we also observe rare G719X and L861X sensitizing mutations 
as well as low-prevalence Ex19 insertions (sensitizing) and Ex20 insertions (resistance) (Fig.  7). All 7 types 
of clinically-actionable EGFR alterations previously identified are represented14 (Fig. 7b)27. The prevalence of 
clinically-actionable EGFR mutations across the two sample sets at the diagnosis and progression timepoints 
(Fig. 7a) indicated a 3–4 × increase in the number of mutations per sample for both TKI-activating and resist-
ance mutations at progression (Fig. 7c). This is likely due to both higher tumor DNA content associated with 
disease progression, as well as the emergence of resistance mutations like T790M.

In addition to EGFR mutations, variants present in the KRAS, ALK and BRAF genes are actionable, provid-
ing either targeted therapy or therapies on a clinical trial basis, or an indication of resistance to therapy and are 
detected for a number of samples (Figs. 4, 5). Our list of actionable mutations (Supplementary Table S3) was 
recently shown to provide clinical response when liquid biopsy was used to guide therapy selection13. KRAS 
mutations associated with primary resistance to gefitinib and erlotinib28 were identified in 41 cases, and the G12C 
with particularly strong evidence of resistance and therapeutic interest29 was detected in 13/41 cases. As shown 
by previous studies, cfDNA sequencing provided useful information when tissue sequencing was unavailable 
(70% of cases) and delivered new information relating to the emergence of resistance after tissue-based targeted 
therapy. Of a total of 237 cases where both sequencing and ddPCR assays were used, in 55 cases (23%) sequenc-
ing provided actionable information not available from ddPCR. These were either additional EGFR mutations 
detected by NGS or other actionable genes. The results demonstrate our ability to non-invasively detect both 
targeted mutations and resistance mutations with high sensitivity from a majority of lung cancer patients. While 
excellent results have been previously obtained using molecular barcodes in advanced lung cancer populations, 
the validation of this alternative method points to the possibility of combining MAPs and molecular barcoding 
in order to further improve sensitivity for future studies.

Limitations.  While it is possible to determine CNVs from sequencing data, the metrics for CNV detection 
haven’t been well characterized and are omitted from this analysis. CNV detection is not a major marker for lung 
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cancer therapy, but will be important for other indications. In addition, fusions are not targeted by the current 
amplicon panel. Either purpose-built amplicons30,31 or hybrid capture31 will need to be employed to detect gene 
fusions. Like previous studies in NSCLC, this study patient population was primarily advanced-stage patients 
(Stage III/IV), representative of the distribution of staging at diagnosis and first progression. The stage distribu-
tion is representative of the patient population under treatment.

In summary, we performed orthogonal clinical validation for sequencing and analysis of cfDNA samples that 
relies on molecular amplification pools (MAPs) and ERASE-Seq, a background-aware statistical variant caller14. 
In a 356-sample lung cancer data set, we found excellent concordance between MAP/ERASE-Seq analysis and 
matched blood tested via ddPCR (98.5%), indicating that sequencing correctly identifies variants present in the 
ctDNA fraction down to 0.1% AF in clinical samples. For a third of cases tested by both methods, sequencing 
uncovered additional actionable mutations with respect to ddPCR, both in the EGFR gene, and other relevant 
genes (KRAS, ALK, and BRAF). While ddPCR assays provide higher sensitivity for a limited number of variants, 
sequencing via MAPs showed improved discovery of actionable variants as it couples high sensitivity with wider 
coverage of clinically actionable mutations.

Materials and methods
Ethical considerations and patient inclusion.  Patient inclusion for this study followed the CIRCAN 
(“CIRculating CANcer”) enrollment criteria at HCL described previously1. All consecutive patients with NSCLC 
who were routinely screened for molecular alterations over a 2-year period were eligible for inclusion in this 
study. The prescription of EGFR routine molecular screening, mandatory for advanced non-squamous NSCLC, 
was solely the responsibility of the treating physician. Notably, national recommendations for screening for 
EGFR mutations (both EGFR activating mutations and p.T790M), ALK rearrangements, and four emerging 
biomarkers (KRAS, BRAF, HER2, and PIK3CA mutations) have been available since 2010. Additionally, patients 
with a less advanced stage of NSCLC or patients carrying other tumor types (e. g. mixed histology, never smok-
ers) might also have been included in this screening upon approval by their local multidisciplinary tumor board.

All samples and medical data used in the CIRCAN study were anonymized. Sample collection and processing 
protocols were approved by the regional ethics committee Lyon Sud Est IV (CPP L15-188 11/04/2015; amended 
by L16-160 09/21/2016) and French National committee in Informatics (CNIL 15-131 01.12.2015). Written 
informed consent for total blood sampling was obtained from all patients included in the study. All methods 
were carried out in accordance with relevant guidelines and regulations.

cfDNA sample collection.  Blood samples (3 × 10 mL) were collected in K2 EDTA tubes (BD, 367,525, 
18 mg) within the framework of the CIRCAN routine patient management at Lyon University Hospital. As a 
consequence, some clinical data are missing, since the justification of the prescription is not an obligation for 
the clinicians. Plasma samples from NSCLC patients were collected for the detection of somatic alterations in 
cfDNA in the setting of routine patient management at diagnosis (in cases where FFPE tissue was unavailable 
or biopsy was not contributive) or during disease progression. In France, EGFR T790M mutation detection in 
blood samples is the preferred method for tumor resistance genotyping in this setting. Blood sampling was per-
formed (1) at diagnosis and (2) during progression alongside of regular follow-up CT-scan (usually performed 
quarterly).

Extracted cfDNA was collected in one tube (60 µL), split for ddPCR, beaming and NGS assays. All extracted 
cfDNA was used. DNA was quantified by Qubit (Thermo Fisher Scientific). Typical cfDNA input were 0.5–80 ng 
(10 µL max) for the NGS assay, 0.5–63 ng (8 µL max) for the ddPCR assay, and 1–159 ng (20 µL max) for the 
BEAMing assay.

Tissue data.  Where available, tissue sequencing data was obtained from the treating physician. FFPE tumor 
samples were micro-dissected to select areas of the sample with the highest percentage of tumor cells and the 
smallest amount of normal tissue. Hence, samples were constituted of at least 15%-20% tumor cells. These sam-
ples were then analyzed using a customized AmpliSeq library and next-generation sequencing (PGM, Life Tech-
nologies, Carlsbad, CA, USA). Gene-level alteration presence/absence for the target mutations overlapping the 
ddPCR assays was reported and compared to cfDNA NGS and ddPCR data.

At diagnosis, all tumor cases were histologically or cytologically confirmed on FFPE biopsy specimens and 
EGFR sensitizing mutation detection was performed either on FFPE tumor samples or using cfDNA in case of 
tumor tissue genotyping failure as part of routine practice. RECIST measurements were performed/documented 
for each patients.

The tissue NGS (Thermo Fisher Scientific technology, in-house panel of oncodrivers)1 and ddPCR assays 
were performed by investigators without having any prior knowledge of clinical data; this included not having 
any previous results from initial mutation detection tests.

BEAMing and droplet digital PCR cfDNA measurements.  OncoBEAM is a highly sensitive and 
quantitative digital PCR platform utilizing Beads, Emulsion, Amplification and Magnetics (BEAMing). This 
platform is CE-IVD labelled and produced by Sysmex Inostics (Hamburg, Germany, EU). Detailed analytical 
considerations for this assay have been previously described32. Here, we used the OncoBEAM RAS CRC kit and 
OncoBEAM EGFR assay which enable the screening of 34 and 32 somatic genomic alterations respectively in 
RAS and EGFR genes in one run. All experiments were performed according to the supplier’s IVD recommenda-
tions for clinical application (Instructions for Use, IFU).
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The sensitive and quantitative QX100 droplet digital PCR system from Bio-Rad (ddPCR, Bio-Rad, Hercules, 
CA, USA) combines a water–oil emulsion droplet technology with microfluidics (Bio-Rad, 186-3005). Detailed 
analytical considerations for this type of assay have been previously described1,33.

Comprehensive validation of the AF thresholds for sensitivity and specificity of the ddPCR and BEAMing 
tests were completed previously1,32 using Horizon Discovery reference standards as well as clinical samples with 
paired FFPE samples.

Targeted next‑generation sequencing cfDNA library preparation.  cfDNA libraries were created 
using the multiple targeted amplicon technology provided by Swift Biosciences according to the manufacturer’s 
instructions (56G Oncology Panel Kit, Swift Biosciences, Ann Arbor, MI, Cat. No AL-56248). Sample loading 
was tuned to obtain a minimum of 5000 × read median depth per MAP. Fastq files, obtained by the demultiplex-
ing of base-call files, were analyzed using the ERASE-Seq pipeline.

Bioinformatics.  All samples consisted of 2 MAPs, which were indexed as separate samples and sequenced 
at read depth above 5000 ×. The resulting fastq files generated by HCL laboratory were analyzed using the Flux-
ion Biosciences ERASE-Seq pipeline modified for a two-MAP data input and to maximize sensitivity/specific-
ity for clinical use in lung cancer samples. Implementation and performance details for the general ERASE-
Seq variant caller have been previously published14. Briefly, residual adapters and primers were trimmed using 
Trimmomatic34 and Cutadapt35. Cleaned reads were aligned to hg19 (GRCh37) using the MEM algorithm of 
BWA36. For indel calling, base indels were realigned using GATK37. LoFreq38 was used to identify all possible 
variants for the two sample MAPs and background reference sample MAPs. Custom Perl scripts were then used 
to parse pile-up data into a matrix containing read counts for each sample and control replicate at each panel 
variant, and the data matrix was then processed in R, using a negative binomial test to quantify the signifi-
cance of enrichment between variant count observations in sample and control replicates14. ERASE-Seq uses 
this model to assign a confidence score (p-value) to each possible sample variant call. For each possible variant, 
if the multiple testing-corrected p-value is above a cutoff/threshold α (here, 0.05), then the null hypothesis can-
not be rejected, suggesting no mutation present in the sample as compared to control runs. Conversely, if the 
null hypothesis can be rejected, i.e., p value < α, then a mutation call is made for the variant in question. Whereas 
previously negative binomial tests and p-value thresholds were used to determine the presence of significant 
copy differences between sample and control runs in expression data, here a similarly derived p-value thresh-
old determines the statistical significance of mutated copies in the sample DNA MAPs with respect to control 
MAPs. Our preferred method using 2 MAPs and a 0.05 p value threshold eliminates a majority of false positive 
calls. Remaining FP calls are eliminated using strand bias and coverage criteria, yielding a final per-variant 
specificity14.

Standard ERASE-Seq analysis was further modified to take into account variant clinical prevalence in order 
to achieve excellent per-sample specificity and high sensitivity for a large set of clinically-actionable variants 
(Supplementary Table S4). Cancer-specific prevalence was determined using the total number of verified somatic 
variant observations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database39. Ultralow calls 
at 0.1% AF and above were made for variants with over 100 verified somatic observations (258 SNVs); these 
included the 3 variants covered by the orthogonal ddPCR tests (DelEx19, L858R, and T790M). High local back-
ground for T790M mutations in our training set prompted an increase to 0.13% AF for this variant only. Calls 
at 0.2% AF and above were made for variants with over 5 COSMIC observations (1,186 SNVs). The remainder 
of approximately 100,000 variants were called if an AF above 1.0% was observed. In addition to the detection 
of clinically-actionable variants, this approach covered other possible variants with associated clinical value at 
high sensitivity. Variant lists for each category are listed in Supplementary Table S3. At each AF level, probability 
p(AF) that one false positive variant (FP) is called at each position is summed up to give the overall per-sample 
FP rate, or specificity. False positive rates for the ERASE-Seq variant caller have been measured to be < 1/300,000 
variants at > 1%, 0.2/10,000 at 0.2%, and 0.8/10,000 at 0.1%14. Therefore, using our clinically-relevant caller, the 
expected FP rate for low and ultralow variants below 1% is 0.02 + 0.025 = 0.045 per sample. We therefore expect 
under 1 FP call over 20 samples, or a sample specificity of over 95%; this lines up with specificity results obtained 
with respect to ddPCR.

Identification of hematopoietic variants.  A number of recent publications have highlighted the pres-
ence of CHIP-derived variants in cfDNA samples and their possible role as false positives in liquid biopsies23,24,40. 
The gold standard for determining the origin of such variants is to sequence the white blood cell (WBC) fraction 
independently form the plasma23,24,40. While we do not have access to reference WBC sequencing information, 
we propose a practical methodology for correctly labeling CHIP variants in liquid biopsy data. Recently-pub-
lished evidence showed that > 85% of CHIP variants have been observed in hematopoietic and lymphoid tissue 
samples25,26. We therefore classify any variant in the 0.1–20% AF range previously observed in hematopoietic 
and lymphoid tissue (COSMIC) as CHIP-associated. The prevalence of CHIP-derived variants is clearly identi-
fied in our data set and mirrors data found in WBC sequencing studies25,26.

Sensitivity and specificity calculations.  Sensitivity, specificity, concordance, and false positive rate are 
used to compare the performance of ERASE-Seq with several published low-frequency DNA variant detec-
tion approaches. Sensitivity, or positive percent agreement (PPA), is defined as (True Positives)/ (True Posi-
tives + False Negatives) and expresses the fraction of ddPCR positive calls made using the MAP/ERASE-Seq 
sequencing method. Specificity, or negative percent agreement (NPA) is defined as (True Negatives)/(True Nega-
tives + False Positives), and expresses the ratio of samples expected to be negative by ddPCR that are called by 
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the sequencing data. In some cases, the false positive rate is reported, defined as (False Positives)/(False Posi-
tives + True Negatives). This is alternatively expressed as false positive calls per 10,000 variant tests (False Positive 
Rate * 10,000). Concordance is defined as (Number of Concordant Tests)/(All Tests). These measures for our 
MAPs-based clinical ERASE-Seq pipeline vs. ddPCR are shown in Table 1.

A few important considerations that affect performance comparisons deserve mention. Orthogonal sequenc-
ing and ddPCR tests were administered independently of each other in our study and data from both is available 
for a majority of patients; this is preferable to studies where ddPCR is used as a confirmatory assay to positive calls 
from sequencing10. The ERASE-Seq analysis was first applied to a 120-sample training set and caller parameters 
were optimized to maximize sensitivity and specificity. The same pipeline parameters were then fixed and applied 
in a blinded manner to the full 356-sample set.

Sample inclusion criteria were defined as all samples meeting a minimum 5000 × per MAP read depth, and 
were included in the concordance analysis via ddPCR. For tissue concordance, some previous studies report 
overall concordance6,7, while others exclude samples based on the absence of ctDNA as defined by no alterations 
being detected8. This can lead to disparate conclusions from the same data set. We report both metrics when 
describing tissue concordance.

The assay limits of detection (LOD) are defined as the lowest variant detected and may be much lower than 
the high > 95% confidence allele frequency (AF) range. Comparison to ddPCR data was performed within the 
high-confidence AF range for that specific variant, generally above 0.1% for our sequencing assay. This matches 
the reported AF range for the Bio-Rad ddPCR assays used in the vast majority of tests.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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