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-e physiological and neuroregulatory mechanism of propofol is largely based on very limited knowledge. It is one of the
important puzzling issues in anesthesiology and is of great value in both scientific and clinical fields. It is acknowledged that neural
networks which are comprised of a number of neural circuits might be involved in the anesthetic mechanism. However, the
mechanism of this hypothesis needs to be further elucidated. With the progress of artificial intelligence, it is more likely to solve
this problem through using artificial neural networks to perform temporal waveform data analysis and to construct biophysical
computational models.-is review focuses on current knowledge regarding the anesthetic mechanism of propofol, an intravenous
general anesthetic, by constructing biophysical computational models.

1. Introduction

Propofol is a short-acting intravenous anesthetic commonly
used for induction and maintenance of general anesthesia,
sedation for adult Intensive Care Unit (ICU) patients. It
takes about two minutes to achieve the maximum effect after
intravenous injection, and the effect lasts for five to ten
minutes. Propofol has been used in clinical anesthesia for
more than 30 years. It is widely accepted that improper use
of propofol could lead to injection pain, respiratory de-
pression, and circulatory inhibition. Injection pain is the
most common adverse reaction of propofol, which mainly
comes from the stimulation of blood vessel walls during
intravenous injection of the drug. However, the pain will
disappear when the patient is sedated, and the pain at the
injection site will not be felt when the patient wakes up.
Respiratory suppression is one of the severe complications
that limit the broader use of propofol. -e application
of propofol would slow down the respiratory rate and

amplitude of patients and sometimes lead to respiratory
arrest in severe cases. If the anesthesiologists could not
reasonably control the dosage and indication of propofol
and continuously monitor the patient’s vital signs, the pa-
tient’s life will be in danger at any time. Another fatal side
effect of propofol is circulatory inhibition. Propofol not only
has a sedative effect, but also has an inhibitory effect on the
circulatory system. Excessive use of propofol could lead to
blood pressure drop, arrhythmia, and so on. If there is no
continuous electrocardiogram (ECG) monitoring, the pa-
tient’s life will be at risk.-erefore, the monitoring system of
propofol delivery based on the mechanism of this drug is
particularly urgent for safe and proper usage. However, the
mechanism of propofol remains ambiguous. A large number
of research articles have reported that propofol produces
general anesthesia through regulating a variety of neural
transmitters [1] and ion-channels [2–4]. However, the de-
tailed mechanism underlying the anesthesia effect of pro-
pofol on interactions among different neurons in each layer
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of brain regions remains largely unknown. -erefore, it is
demanding to clarify the detailed anesthetic mechanism of
propofol. Previous studies have investigated the mechanism
of general anesthesia from six aspects, which are molecular
[5], synaptic [6], cellular, neural microcircuit [7], systematic
(brain regions), and behavior levels [8]. It is well known that
these neural networks are comprised of a number of neural
circuits that are involved in the anesthetic mechanism [9].
-is review focuses on current knowledge in the anesthetic
mechanism of propofol using biophysical modeling.

2. PropofolMay Produce General Anesthesia by
Inhibiting Thalamic Rhythm

General anesthesia is a process in which patients go through
awareness, sedation, and arousal upon receiving anesthetics.
-e mechanism of general anesthetics has been one of the
most important topics for scientists since its appearance in
1846. -e last few decades have witnessed a surge in the
discovery of the mechanism of general anesthetics [10–14].
-e theory of network regulation in the mechanism of
general anesthesia based on neural microcircuit and sys-
tematic levels (brain regions) has been the most attractive
one among all hypotheses [15]. Alkire et al. used slow im-
aging methods such as Positron Emission Computed To-
mography (PET) and statistical parametric mapping (SPM)
to study anesthesia-induced loss of consciousness and to
describe dramatic changes in the brain activities. -ey found
that the thalamus became relatively inactive during general
anesthesia and named the “thalamic consciousness switch”
[16–19]. Ching et al. found that the thalamus was not
completely inactive during general anesthesia, which is
contrary to the classical theory. Instead, some subsets of the
thalamus consolidated their activities into a highly struc-
tured α-rhythm [20]. -ese confirmed that propofol may
take the anesthetic effect by inhibiting the thalamic rhythm
[21, 22].

Propofol also inhibits auditory signal transduction
through inhibiting the thalamic rhythm. Purdon et al. found
that propofol induced characteristic changes in neural
physiological activities in patients and simultaneously
inhibited auditory signal transduction [23]. Using functional
Magnetic Resonance Imaging (fMRI) and electroencepha-
logram (EEG), they found that as the dosage of propofol
increased, the correct response observed in the auditory tone
discrimination task gradually decreased, followed by a
complete disappearance of the correct responses and a
decrease in activities of the secondary auditory cortex, with
activities of the primary auditory cortex unchanged. -is
demonstrated that general anesthetics could induce loss of
consciousness as well as inhibition of auditory transduction
in the subjects [24]. -e underlying mechanism of propofol
inhibiting auditory signal transduction may lie in that
propofol enhances GABAA receptor function or GABAergic
neurotransmission possibly by facilitating the binding of
GABAA receptor to GABA [25, 26]. Inhibitory synapses such
as GABAA ligand-gated channel are necessary and sufficient
for the synchronization of gamma rhythm [27]. -is is
consistent with the results of Paik and Wang in that neural

networks comprised of inhibitory interneurons are the key
element in generating this high-frequency rhythmic activity
of gamma oscillation [28, 29]. Experiments on animals and
humans using EEG, intracranial EEG (iEEG), magneto-
encephalography (MEG), and other techniques have dem-
onstrated that synchronized gamma oscillation is related to
auditory sensation [30]. Gamma oscillation is present in a
variety of brain regions of mammals and humans, such as
the thalamus, somatosensory cortex, and the hippocampus
[31]. Although we have learned much about the molecular
mechanism of propofol, little is known about the neural
mechanism of inhibiting auditory signal transduction [32].
-is could be solved through combining studies of neural
circuits and biophysical computational modeling. Lee et al.
demonstrated neural circuits between cortex layers and
cortical areas could be coordinated and schemed by brain
rhythms [33], which adds evidence to the theory of propofol
inhibiting auditory transduction by modulating gamma
oscillation.

3. The Role of Computational Modeling in the
Study of the Neural Mechanism of Propofol

As a result of the rapid development in modern informatics
tools, research on brain structure and function has been
surging by combining neuroscience and bioinformatics tools
[34–39]. For example, it is possible to complete the meso-
scopic mapping of neural circuits and their activity patterns
and to explore the underlying mechanism in animal models
[40–46]. -is also applies to research on the mechanism of
propofol with the assistance of computational modeling
[47]. Ching et al. found that the α-rhythm induced by
propofol was related to loss of consciousness. -ey built a
thalamocortical model to simulate the effect of propofol by
combining it with the known cortical dynamics and thal-
amus models [48]. -ey also found that the state of con-
sciousness of patients was closely related to the highly
structured EEG produced by propofol and the highly
structured brain rhythmic activities can be simulated using
dynamic system models [20]. -ey discovered that propofol
might act on GABAergic neural networks in the cortex,
thalamus, and the brainstem to induce profound brain
dynamics which then led to changes from sedation to loss of
consciousness. Due to the participation of the thalamus,
synchronous rhythms produced by the cerebral cortex may
prevent responses to external stimuli, thus maintaining an
unconscious state.

Lee et al. simulated interactions between the primary
auditory cortex (A1) and the secondary somatosensory
cortex (Par2) as observed in vitro by constructing a bio-
physically based computational model [33]. -ey proposed
that one of the most important factors influencing the gating
process that regulates the bottom-up sensory signaling from
A1 to Par2 is the coordination between the top-down
gamma [14] and beta rhythms. -is coordination was reg-
ulated by cholinergic modulation between the cortices. -is
sets a good example of studying the mechanism of propofol
using biophysical computational modeling.
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4. Biophysical Modeling and Computational
Simulation Are Important Methods in
Studying Neural Networks

It is difficult to investigate the mechanism of interactions
within and between neural networks, due to the complexity
of the biological neural networks and the limitations of ex-
perimental conditions. -e rapid development of information
technology endowed researchers to examine biological neural
networks using diverse techniques, not relying on biological
experiments alone [49–52]. To study neural networks under
various conditions, mathematical modeling and computer
simulation can be easily used to simulate the dynamic processes
of various neurons and brain regions, especially to describe the
electrophysiological activities of individual or collectively
recorded neurons in large neural networks. Neuroscience
deciphers the function of the brain from all aspects of the brain,
such as the interaction between molecules and their rela-
tionship with behavior. Mathematical methods and statistical
ideas play an important role in explaining and analyzing a
variety of phenomena of the brain. Advances in measurement
and storage devices have also made it possible to record the
electrical activity of neurons in detail, which consequently help
neuroscientists better deal with large experimental databases.

In the 1950s, Hodgkin and Huxley had studied the ionic
current in the squid giant axon [53]. -rough a series of
well-designed experiments, they found why the current gen-
eration is the conductivity change of the calcium and potassium
channels in the axon membrane. -ey established the classical
Hodgkin-Huxley model (i.e., H-H model) describing the
conductivity of calcium and potassium varying overmembrane
potential as well as time. -is model accurately predicted the
temporal evolution ofmembrane conductance, the shape of the
action potential, morphological changes of the action potential
with sodium concentrations, the number of sodium ions in-
volved in the inward flux across the membrane, the propa-
gation speed of the action potential, and the voltage curves of
sodium and potassium ions [53, 54].-eH-Hmodel has many
extensions in the field of computational neuroscience, in-
cludingmodels that capture additional biological features, such
as extra ion currents [55] and various aspects of the extra-
cellular environment of neurons [56], both of which introduce
new fast and slow time scales to the dynamic equation. Al-
though it is necessary to take the complexity of biological
conditions into account and applymore complexmathematical
logic to modeling when studying a large number of neuronal
activities, the H-H model is still the framework of computa-
tional neuroscience [57, 58]. It lays the foundation for elec-
trophysiological modeling. More accurate models describing
changes in the membrane potential of neurons were estab-
lished based on it, such as the calcium-dependent channel
model [59], the single-ion channel Markov model [60], the
multicompartment model [61], and so on. A synaptic model
[62] was also built to describe interactions between neurons.
By combining these models, a neural network model can
be directly constructed. For example, a multicompartment
model is used to describe the cell bodies, axons, and dendrites
of neurons, and a synaptic model to connect compartment

models. After converting the mathematical model into the
corresponding computer algorithm, dynamic changes of the
neural network can be simulated.

Based on the models mentioned above, it is common to
investigate the gamma-band oscillation by constructing a
biophysical computational model. Borgers et al. built a
computational model mimicking the local circuit comprised
of a few inhibitory and excitatory neurons to demonstrate
interactions between cholinergic modulation, gamma-band
oscillation, and selective attention [63]. To study the mass
phenomenon in the whole thalamus cortex, Traub et al. [58]
constructed a computational model including large-scale net-
works consisting of various neurons. Recently, gamma oscilla-
tion in the auditory transmission pathway has drawn extensive
attention to investigate this phenomenon. Lee et al. [33] has
established a computational model on interactions between the
primary auditory cortex and the secondary somatosensory
cortex to demonstrate the correlativity between gamma oscil-
lation and information transmission between these two regions.
-is model can precisely simulate the outcomes of biological
experiments and accurately predict experimental phenomena.

Apart from directly simulating biological processes
under experimental conditions, the computation models can
also be used in clinical scenarios. For example, Recurrent
Neural Network (RNN) is a type of special neural network
with memory function, which can effectively use time in-
formation for time series analysis. -e RNN model and its
modified form—the Long Short-Term Memory (LSTM)
model—are often used to monitor the depth of anesthesia.
-e traditional RNN model has the problem of gradient
disappearance or gradient explosion. -e LSTM model, an
improved version of the RNN model, can simulate nerve
cells by simply adding a number of gates to effectively deal with
serial data (see Figure 1) and consequently solve this problem
to some extent [64]. Li et al. [65] proposed a method for
monitoring the depth of anesthesia based on LSTM and sparse
denoising autoencoder (SDAE) combined with EEG signals.
Compared with models using a single feature, this model can
accurately estimate the depth of anesthesia with a higher
probability. Sun et al. [66] developed an RNN model using a
clinical dataset of 154 patients undergoing anesthesia. Without
any feature extraction, end-to-end training is used to distin-
guish depth of anesthesia from nonsedation using the original
EEG spectrum. Compared with the simple and smooth
feedforward model, their RNN model can continuously pro-
vide a better and reliable estimation of the sedation level.

5. Artificial Intelligence (AI) and
Anesthesia Optimization

-e application of artificial intelligence in medical and
health field is expanding rapidly, including image recog-
nition, new drug research and development, medical robot,
assistant diagnosis, and so on. As a data-intensive discipline,
anesthesiology has natural advantages in the application
of AI, including the evaluation of anesthetic depth, the
construction of predictive models, the establishment of
clinical decision support tools, and intelligent drug delivery
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system.-e health data of patients before and after operation
and a large number of monitoring data produced during
operation are the basis to guide anesthesiologists to judge the
state of anesthesia and prevent adverse events, but it is often
difficult for the differences in individual patients and
medical conditions to achieve accurate management of each
patient, which is the main cause of anesthesia and peri-
operative complications and even death. One of the ad-
vantages of AI is that it has strong data processing ability and
self-learning ability. -rough machine learning, we can
effectively integrate and deal with the complicated clinical
big data and summarize the rules, so as to optimize the
anesthesia strategy to achieve accurate anesthesia. -e ac-
curate monitoring of anesthesia depth/state can be achieved
by integrating perioperative monitoring data based on AI
convolutional neural network modeling. Sadrawi [67] et al.
take the subjects’ EEG, EMG, heart rate, blood pressure,
pulse, and signal quality index as input signals through
machine learning. -e artificial neural network model can
monitor the depth of anesthesia significantly higher than the
existing depth of anesthesia monitoring. Saadeh [68] et al.
have further improved the anesthetic depth monitoring
system based on AI analysis EEG, which can be used under
harsh conditions such as different ages and different drugs,
with an accuracy of 92.2% and a delay time of only 1 s, which
can more accurately reflect the depth of anesthesia. Secondly,
the clinical decision support system and anesthetic closed-loop
system constructed on this basis can help to achieve accurate
anesthesia and optimize anesthesia management, thus greatly
reduce the workload of anesthesiologists. Ultrasound-guided

nerve block is an important technical means of precision
anesthesia, but because of its complexity and diversity, it is
difficult to guarantee the popularity and blocking effect.
Bowness et al. [69] built a clinical support system for nerve
block based on AnatomyGuide system by learning from big
data, which can effectively assist clinicians to identify nerve
block and operate and achieve the role of optimizing anesthesia
management. During general anesthesia, a number of studies
have shown that closed-loop management based on anesthetic
depth canmore safely guide clinical anesthetic drugs to achieve
accurate anesthesia. During the perioperative period, anes-
thesiologists need to collect and measure the management of
blood glucose, blood pressure, and cardiac output. -e com-
plicated process of judgement and regulation is often lagging,
while the subjournal Lancet [70] reports that perioperative
closed-loop insulin based on deep learning and norepinephrine
management system can optimize the existing anesthetic
regimen from multiple dimensions and eliminate the possi-
bility of human error. It could also provide a better clinical
approach to improve the prognosis of patients. In addition, one
of the challenges faced by anesthesiology is that the prediction
and management of perioperative adverse events, such as
hypoxemia, hypotension, etc., will cause a certain degree of
damage to the brain and peripheral organ function of patients
and even death. -e machine learning model developed by
Lundberg et al. [71] could predict the impending hypoxemia
more accurately than anesthesiologists and point out the causes
of hypoxemia, with early prediction of perioperative adverse
reactions and early notification of intervention by anesthesi-
ologist.-is can not only improve the efficiency of preoperative
evaluation of anesthesiologists, but also optimize the peri-
operative patient management and ensure the perioperative
safety of patients. AI has also been continuously developed in
the field of anesthesia and perioperative medical transforma-
tion. McGill University in Canada has developed the first
Kepler remote artificial intelligence intubation system through
the combination of video laryngoscope and robotic arm. With
the help of AI, anesthesiologists can not only fully understand
the past clinical diagnosis and treatment information of pa-
tients and carry out rapid preoperative evaluation, but also use
AI to dig out more hidden information and improve post-
operative outcome. Cheng et al. [72] automatically assessed
infant pain through machine learning of facial expressions. Lee
et al. [73] found that changes in autonomic nerve activity in the
human body are highly related to the degree of pain through
functional Magnetic Resonance Imaging (fMRI) and AI
technology. Doctors can score pain for patients who are unable
to communicate by monitoring autonomic nerve activity, with
an accuracy of 92.4%, greatly reducing the possibility that such
patients will be converted into chronic pain after operation.

6. Evidence in Biological Neural Networks
Promotes the Development of
Computational Science

With the advance of computer science, the biological pro-
cesses can be simulated and the behaviors of neurons effi-
ciently explored in the computer. Similarly, simulating the
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Figure 1: Model structure of biological experimental data analysis.
“Cell” represents the cell body and consists of three gates. -e input
gate (Input Gate), the output gate (Output Gate), and the amnesia gate
(forget gate) are used to control the memory and forgetting of time
series data.-e S-shaped curve represents the activation function, and
the black dot represents the data operation. -emodel can use “forget
gate” to choose the state information before forgetting, to maintain
useful information to complete the analysis of time series.
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biological process can promote the development of com-
puter science, especially in the field of information pro-
cessing and artificial intelligence. Artificial neural network
[74–77] is a type of information processing and analysis
algorithm inspired by the biological neural system. It im-
ports the information processing of neurons into simple
models based on data analysis and forms a network structure
by using a weighted synaptic connection [78–83]. -is model
plays an important role in the application of information
processing, including machine learning [84–86], computer
vision [87–89], biological and medical data analysis [90, 91],
and so on. In biomedicine, artificial neural networks are es-
pecially important as they can overcome difficulties in the
detection and analysis of biological signals [92], signal pro-
cessing, and recognition of medical images [93], which remain
a challenge for conventional methods [94]. Compared with
real-life neural modeling, artificial neural network modeling is
much simpler andmore direct. Take the widely usedmultilayer
perceptron as an example; the basic module in multilayer
perceptron is artificial neurons [95] which is composed of
weighted synapses and nonlinear activation. In real neurons,
the activation of themdepends not only on theweighted sumof
signals. But the simple weighted sum can fit any functions in
theory when they are connected layer by layer.

In addition, there are some models based on the lateral
inhibition of the primary visual cortex, such as self-orga-
nizing mapping [96, 97], cyclic neural networks [98], the
Hopfield network [99, 100], and so on. With the in-depth
study of the information processing mechanism of the
human brain, it has been found that sensory information is
expressed through complex hierarchical structures, such as
the V1∼V5 areas of the visual cortex. Visual information is
transmitted and processed layer by layer before being
consolidated into advanced perception and memory. In-
spired by this type of information processing, deep neural
networks were developed by constructing hierarchical in-
formation processing layers [101, 102]. -is network model
has better information processing and modeling ability than
the shallow network model and can directly learn the input
data without the process of data preprocessing and feature
extraction [103, 104]. -us, it can be applied to various
scenarios such as speech recognition [105], natural language
processing [106], image/video processing [107], and so on.
Currently, there are a decent number of models in the field of
deep neural networks, for example, the convolutional neural
network [108, 109] inspired by the receptive field in the
visual cortex, the sparse representation models [110, 111]
simulating the V1 and V2 in the visual cortex, and so on.
However, due to the lack of knowledge and understanding of
the mechanism of biological neural networks, these models
are simply mimicking the characteristics of local neurons
that are observed with current techniques. -ey only sim-
ulate part of the evidence in real neural systems. For ex-
ample, convolutional neural network uses the convolutional
kernels to imitate the receptive field while ignoring many
biological details. For convenient optimization in practice,
many sparse representation models simulate the sparse
regions by using differentiable functions. With the increase
of data volume and complexity, it is one of the challenges for

the field of artificial intelligence to build a more efficient
information processing model through learning from the
biological nervous system.

-ough brain-inspired learning models are successful in
simulating the learning mechanism of the biological neural
system and processing practical information, they are simply
designed based on mathematic theories to efficiently work
on computational devices. With the development of hard-
ware, especially of the Graphics Processing Unit (GPU) and
corresponding parallel computation methods [112, 113],
more complex models that are closer to the real neural
system have been developed. -e most popular learning
model deep neural networks [101, 114] are inspired by the
hierarchical architecture of brain learning. In contrast to
simulating models, such as the abovementioned H-H model,
they aim to simulate the real neural system as true as possible to
explore the behaviors of the neural system. -e common
problem these two types of models encounter in practice is the
low computational efficiency. Due to the limitation of com-
putational capacity, the simulated model only contains a small
number of neurons. Undoubtedly, simulating a more complex
system will result in more interesting findings. Inspired by the
development of information models, more complex models
can construct a high-performance computational device. It
might be a new direction for simulating modeling to study the
mechanism of propofol with the assistance of new computa-
tional platforms such as GPU parallel computation.

7. Conclusions and Perspectives

In the study of propofol, most computational simulation
models focus on a small local network with several neurons.
For more neurons and more complicated neural networks,
traditional models may fail to efficiently simulate them. To
overcome this difficulty, brain-inspired information pro-
cessing models may provide solutions. On one hand, parallel
computation based on GPU has significantly increased the
capacity of artificial intelligence models. Similarly, the
simulating models can also be executed based on parallel
computational platforms. Since the structure of neurons is
distributed, each neuron can be simulated in an arithmetic
unit and updated parallelly by using parallel computation. In
theory, the computational complexity of parallel computa-
tion increases linearly with the increase of neurons. For
serial computation, the computational complexity even
increases exponentially. As a result, much more complex
structures and more types of neurons can be efficiently
simulated. On the other hand, artificial intelligence models
provide excellent modeling methods for simulating real
neurons. -e widely used H-H model successfully simulates
the input and output relationship of a neuron as shown in
Figure 2. -e parameters are estimated based on data col-
lected from in vivo experiments. However, there are nu-
merous types of neurons in the brain; it is difficult for a
model to simulate all of them. -e input and output rela-
tionship can also be learned by artificial intelligent models,
such as the abovementioned artificial neural networks. In
theory, a two-layer neural network can model any function.
As shown in Figure 3, the RNN model is adept in dealing
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with time series data which can be used to simulate the
function of neurons. -e parameters within the RNN are
learned from data collected from in vivo experiments. Each
neuron can be simulated through learned RNNs. Further-
more, with the multidimensional modeling capacity of
neurons, one neural network can also simulate a group of
neurons, such as a local cortical area. -erefore, a larger
region in the brain can be simulated with numerous artificial
neural networks.

Propofol produces general anesthesia by inhibiting the
thalamic rhythm, which is achieved through the participa-
tion of neural networks comprised of multiple neural cir-
cuits. Among the many methods to study the anesthetic
mechanism of propofol, computational modeling can help
to find changes in the brain rhythm upon injection of
propofol, which facilitates our understanding of the anes-
thetic mechanism of propofol. -is will guide the safe and
rational use of propofol clinically.
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