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ABSTRACT: Investigating the bioaccessibility of harmful in-
organic elements in soil is crucial for understanding their behavior
in the environment and accurately assessing the environmental
risks associated with soil. Traditional batch experimental methods
and linear models, however, are time-consuming and often fall
short in precisely quantifying bioaccessibility. In this study, using
937 data points gathered from 56 journal articles, we developed
machine learning models for three harmful inorganic elements,
namely, Cd, Pb, and As. After thorough analysis, the model
optimized through a boosting ensemble strategy demonstrated the
best performance, with an average R2 of 0.95 and an RMSE of 0.25.
We further employed SHAP values in conjunction with
quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we
carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic
(As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance
weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for
metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the
standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a
precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil
environmental management.
KEYWORDS: machine learning, soil environmental criteria, potentially harmful elements, bioaccessibility, sites

1. INTRODUCTION
Soil pollution, primarily caused by mining activities and
uncontrolled industrial emissions, has become a significant
global challenge.1−3 China’s first pollution census indicated
that 16% of soil samples and approximately one-third of
metallurgical and industrial sites exceeded pollution standards,
with Cd, Pb, and As being the primary inorganic contami-
nants.4 In response, China introduced the “Soil Pollution
Prevention and Control Action Plan,” aiming for 95% of
contaminated land to be safely utilized by 2030.5 Soil
environmental standards play an indispensable role in the
assessment of potential exposure risks and in the determination
of the need for more in-depth site investigation.6 Although the
Chinese government has issued a unified national standard for
site soils based on health risks for soil pollution screening,
given China’s vast land area and diverse soil types, a uniform
standard may not be adequate to scientifically and
comprehensively assess exposure risks across different regions.7

Methodologies for human health risk assessment must be
developed to establish site exposure criteria (SECs) based on
health risks.8,9 Notably, incidental ingestion is an important

route for the intake of metals from soil.10,11 It is imperative to
ascertain the bioavailability of potentially harmful elements
(PHE) in contaminated soil matrices to accurately determine
human exposure. Currently, oral bioavailability is gauged by
comparing metal accumulations in animal tissues or urine, with
these animals being exposed to soluble reference compounds
such as sodium arsenate (NaH2AsO4), lead acetate (Pb(AC)2),
or cadmium chloride (CdCl2).

12−14 Owing to the substantial
costs and ethical dilemmas linked with animal testing, the
assessment of bioaccessibility�the proportion of heavy metals
extracted in vitro from gastric simulations relative to their total
content�has been widely explored as an alternative for
appraising PHE bioavailability. This approach not only
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circumvents the limitations of animal-based tests but has also
been corroborated by them and extensively applied in
research.15−18 While several research groups have evaluated
the health risks of site pollutants based on oral bioavailability/
bioaccessibility, they predominantly relied on limited, site-
specific pollutant data.19,20 To date, the absence of nationwide
investigations means that regional variations in PHE
bioaccessibility on a continental level and their subsequent
implications for health risk evaluations are yet to be fully
understood.
The distinct properties of soil, such as pH level, cation

exchange capacity, particle size distribution, and nutrient
content, lead to significant variations in the bioavailability of
PHE in different soil environments.21,22 Traditionally
employed methods for determining PHEs’ bioaccessibility in
site soil are noted for their inefficiency and extensive time
requirements. An alternative approach is to utilize traditional
multivariate linear regression models to estimate the
bioaccessibility of PHE in site soils.23,24 However, these
traditional models have a narrow application range, as batch
experiments are a prerequisite for obtaining the bioaccessibility
of soil PHE before modeling.25 Furthermore, due to the
heterogeneity of soils, it is challenging to use these traditional
large-scale models to quantify the bioaccessibility of soil PHE,
as the experimental parameters need to be predetermined
before developing models for specific types of site soils. Given
these shortcomings, machine learning models have been widely
applied in the field of environmental science as powerful tools
for discovering complex relationships, owing to their low cost,
high accuracy, and robustness.26−28 Although the bioaccessi-
bility of PHE in site soils is a key research area, related studies
are still relatively limited. Several researchers have already
introduced machine learning methods to predict the
bioaccessibility of PHE. For instance, Xie et al. utilized a

random forest (RF) model to predict the bioavailability of
heavy metals in soil using samples from 12 metallurgical sites.29

In contrast, Zhang et al. employed conditional inference trees
(CIT) and RF models to explore the primary factors
influencing heavy metal bioavailability in paddy soils in the
karst regions of the northern part of Guangxi, China.30

However, due to limitations in the data, a lack of diversity in
soil types, and instability in model performance, the
applicability of the models developed in these studies is
limited. To overcome these barriers, there is a need for more
holistic and representative data aggregation, coupled with
further refinement and authentication of models, catering to
the need for predictive models that can be applied across
diverse environments and scenarios.
Therefore, in this study, data-driven methods are introduced

to explore new approaches for improving the soil environ-
mental standards of regional sites. To assess the applicability of
machine learning in the study of site soil environmental
standards, we framed a comprehensive data set for the
bioaccessibility of three different PHE in various soils, utilizing
937 data points. This data set was used to develop machine
learning (ML) models based on five different ML algorithms,
and the best-performing parameters were selectively integrated
to construct more stable predictive models for soil PHE
bioaccessibility. The models that performed best were used to
identify the key factors affecting soil PHE. To evaluate the
applicability of the ML models in determining SEC, we applied
the integrated model to predict the bioaccessibility of soil PHE
in 3002 samples from 31 provinces in China. Based on the
model prediction results, we derived typical SEC, offering a
comprehensive understanding of soil PHE bioaccessibility
across different regions in China.

Figure 1. Schematic diagram of the model building process.
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2. MATERIALS AND METHODS

2.1. Data Collection and Preprocessing

In our research, we merged data sets from China National Knowledge
Infrastructure (CNKI) and Web of Science with a focus on key terms
including “soil heavy metals,” “Cd,” “Pb,” “As,” “bioavailability,” and
“bioaccessibility” to craft an extensive literature database on soil heavy
metal bioaccessibility. This compilation was enhanced by integrating
diverse soil properties, environmental variables, and a range of in vitro
simulation digestion methods to explore the connection between the
bioaccessibility of PHE and soil attributes. Our data set encompasses
54 peer-reviewed papers from 2005 to 2023, offering predictions on
the gastric bioaccessibility of PHE in soil. Additionally, we aggregated
pollution concentration data from 151 studies covering all 31 Chinese
provinces, amassing a total of 3068 data points. During the
preprocessing phase, we addressed missing values, encoded
categorical features, and identified and removed outliers. This process
refined our data set into three targeted subsets: Cd, Pb, and As, laying
the groundwork for model development, performance evaluation, and
comprehensive analysis. For a more detailed methodology,
description of the data set, and the analysis process, please refer to
Appendix text S1.

2.2. Model Development and Interpretation
In our study, we crafted a comprehensive model that melded a variety
of machine learning algorithms. These algorithms include linear
models such as ridge regression (RR), decision tree methods such as
RF, integration techniques, especially XGBoost (XGB) and CatBoost
(CB), and multilayer perceptron (MLP) models. Intriguingly, the
core algorithms of XGB and CB equipped them to adequately manage
data sets with missing values.31 Building on this, we implemented a
fusion model anchored in the boosting ensemble learning strategy.
Here, RR, RF, XGB, and CB served as the foundational learners,
augmented by the gradient boosting algorithm.32 For a granular
understanding of this process, please refer to Appendix text S2. We
then employed the finalized ensemble model on a test set, gauging its
performance using the average coefficient of determination (R2) and
the root-mean-square error (RMSE) metrics across a spectrum of one
hundred distinct random states. A 5-fold cross-validation was further
used to evaluate its generalization ability (Figure 1).

In the field of machine learning, interpretations remain crucial. We
not only utilized the built-in explanatory module of the gradient
boosting integrated learning model to directly articulate the
importance of features, thereby revealing their effects on the
prediction results but also employed SHAP-based analysis of the
importance of model features. The essence of the built-in explanation
module is to assess the importance of features through metrics such as

Figure 2. Spatial and statistical analysis of environmental data: (a) spatial distribution of modeling data; (b) violin plot of data distribution; (c)
heatmaps of correlations of target variables (significant correlation marker “*”: p < 0.05; “**”: p < 0.01).
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the frequency of tree node splits and subsequent gains. Although this
approach is known for its simplicity, clarity, and efficiency, it mainly
reveals the relative importance of features and neglects the
interactions between them.33 To bridge this knowledge gap, a
quantitative analysis based on SHAP values was employed to study
the cumulative impact of multiple features on the output.34 A more in-
depth exposition can be found in Appendix text S3. Furthermore, all
the preprocessing, development, and interpretation of the models
mentioned above were conducted using Python 3.7 through the
Anaconda distribution, specifically leveraging the scikit-learn package
(version 0.24.1).

2.3. Application of the Model

Leveraging our refined machine learning model, we projected the
bioaccessibility of PHE across various Chinese regions and sites.
Using the inverse distance weighting (IDW) technique in ArcMap, we
transformed these projections into intuitive heatmaps, highlighting
the spatial distribution of PHE bioaccessibility. By aligning these
visualizations with the Chinese standards for soil pollution in
construction areas, we established the SEC for representative sites
(Tables S2−S3).35 Evaluating these standards against concentration
data from our data set offered insights into the model’s accuracy and
reliability. All analyses were performed in ArcMap 10.8.

3. RESULTS AND DISCUSSION

3.1. Descriptive Statistics for Modeled Data Sets

To gain a preliminary understanding of the original data set,
we performed descriptive statistics analysis on all numerical
features. Figure 2a illustrates the spatial distribution of all
sampling points. Moreover, Figure 2b and Tables S4−5 depict
the distribution patterns and approximate ranges of soil
properties and spatial factors, respectively. The data set reveals
significant variations in soil characteristics and spatial factors,
covering most soil types in China. This confirms that our data
set, gathered from the literature, is a representative sample for
researching the regional bioaccessibility of Cd, Pb, and As in
China’s soils.
The bioaccessibility of PHE in the gastric phase, including

Cdgastric, Asgastric, and Pbgastric, were chosen as the targets for our
predictions. Their approximate ranges and distributions are
presented in Table S6. Specifically, Cdgastric ranges from 0.01 to
1093.6 mg/kg with an average of 61.3 mg/kg, with magnitudes
from 10−2 to 10.3 Asgastric varies from 0.11 to 14775.95 mg/kg,
averaging 313.8 mg/kg, and ranges from 10−1 to 10,4 showing a
broader variance than Cdgastric. Pbgastric has the widest range
among the three, from 0.0015 to 26347.4 mg/kg, with

Figure 3. Model performance evaluation for (a) Cd; (b) Pb; (c) As. (red: training set; blue solid line: test set; light blue shaded padding: 95%
confidence intervals for test set fit lines).
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magnitudes from 10−4 to 105 and an average of 1186.3 mg/kg.
Overall, the three prediction targets exhibit skewed distribu-
tions, with that of Pbgastric being the most pronounced. To
address this skewness and enhance model performance, we
applied a logarithmic transformation to our prediction targets.

Furthermore, the performance of the imputed numerical
features after the KNN imputation was employed is depicted in
Figure S1. A comparison between the distributions of the
imputed and original data sets reveals a close resemblance,
affirming the reliability of our imputation process. We further

Figure 4. Shape waterfall and relative importance plots for the MLP model are presented for (a) Cd; (b) Pb; (c) As. (The color in the shape
waterfall chart indicates the magnitude of the feature values, while the horizontal axis represents their contribution to the prediction (output). The
relative importance chart depicts the marginal contribution of each feature to the output.).
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explored the relationships between all feature variables and the
prediction target within the imputed data set using Pearson’s
rank correlation analysis.36 As illustrated in Figure 2c and
Figure S2, there is a significant correlation between the
predicted PHE bioaccessibility and soil properties. Addition-
ally, climate and elevation data show varying degrees of
correlation with the bioaccessibility of different PHE,
suggesting their potential influence on the mobility and
accumulation of PHE in soil.36 Figure 2 also reveals a
pronounced correlation between categorical features (source
and assay) and the bioaccessibility of Cd and As, emphasizing
the importance of considering these categorical features. While
these features do exhibit significant correlations with PHE
bioaccessibility, the majority of the correlation coefficients are
relatively low. This indicates weak multicollinearity among
them. Consequently, simple linear models may be insufficient
to capture the complex relationships between these character-
istics.37

3.2. Evaluation of the Performance of Models

After completing data imputation, we employed five machine
learning algorithms, specifically RR, RF, XGB, CB, and MLP,
utilizing 19 input features to predict the bioaccessibility of soil

PHE in the three subdata sets for Cd, Pb, and As. Figure 3a
depicts the predictive performance of different models after 5-
fold cross-validation using R2 and RMSE. By comparing the
scores of the linear regression (RR), bagging (RF), boosting
(XGB, CB), and artificial neural network (MLP) algorithms,
we found that although the RR model outperformed the other
models for all three subdata sets, there were still significant
differences compared to the integrated and artificial neural
network algorithms.38 This might be attributed to the fact that
linear models might not capture nonlinear relationships as
effectively as other methods when the number of input features
is high and their interrelationships become complex.38 The
performance of the MLP model was similar to that of the tree-
based model for each of the subdata sets, while the integrated
tree-based bagging and boosting algorithms performed slightly
differently on the three subdata sets. Although both the
boosting and bagging algorithms use a tree structure, there are
significant differences in the way they are processed. The
boosting algorithm focuses on hard-to-classify samples in the
unbalanced data set to reduce the loss function and to enhance
the weights of positively classified samples. The bagging
algorithm, on the other hand, trains each tree independently

Figure 5. SHAP qualitative analysis. Red dots indicate that the combined parameter’s total SHAP values are positive, while blue dots signify that
the overall effects are negative. Points with different colors on the z-axis (SHAP values) represent the interaction of other factors. (a) The total
SHAP value of pH and Ca. (b) The total SHAP value of EC and Mn. (c) The total SHAP value of sand and TOC. (d) The total SHAP value of TN
and pH. (e) The total SHAP value of T and PS. (f) The total SHAP value of Fe and TOC. (g) The total SHAP value of T and pH. (h) The total
SHAP value of TOC and source. (i) The total SHAP value of EC and pH.
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through random sampling.39 This could explain the observed
scoring trends in the different models in our study.
Moreover, to leverage the strengths and compensate for the

weaknesses of multiple models, we integrated the aforemen-
tioned five models using three ensemble strategies: voting,
stacking, and boosting. As shown in Figure S3 and Figure 3,
the boosting strategy outperformed the other two strategies
and even surpassed the performance of individual models.
Evaluating the cross-validation performance of the bioaccessi-
bility prediction models (BRBs) for the three subdata sets
allowed us to gauge their capacity to handle unknown data and
generalize effectively. As illustrated in Figure 3, the BRB
models for the three subdata sets produced R2 scores of 0.97
(Cd), 0.95 (Pb), and 0.95 (As) after 100 random simulations
of cross-validation. These scores closely align with the test set
performance, highlighting the high predictive accuracy and
generalization capability of the BRB models constructed for
Cd, Pb, and As. This emphasizes the advantages of adopting an
ensemble approach. Despite significant data volume differences
across the three subdata sets, their model performances
remained consistent, indicating our model’s ability to capture
inherent relationships effectively, even within limited data sets.
Additionally, the optimal BRB models for these subdata sets
achieved relatively low RMSE values both on the test set and
during cross-validation, specifically Cd: 0.22, Pb: 0.25, and As:
0.25. The low variability in predicted values further under-
scores the model’s superior performance in predicting the
bioaccessibility of PHE in site soils.
3.3. Interpretation of the Fusion Model

In the PHE bioaccessibility models of the three subdata sets,
we primarily analyzed the MLP model with the highest
contribution rate in the integrated model through weight-based
model-intrinsic methods and kernel SHAP calculation methods
(Figure S4). Additionally, using a quantitative analysis, we
further elucidated the features that are particularly important
for predicting soil PHE bioaccessibility (Figure 4).
The bioaccessibility of potentially PHE in the gastric phase,

including Cdgastric, Asgastric, and Pbgastric, were chosen as
the targets for our predictions. Notably, across different
interpretation strategies, the PHEtotal in the soil consistently
played a central role in predicting PHE bioavailability.
Moreover, our findings regarding the impact of parameters
such as EC, pH, particle size distribution, CEC, and TOC on
PHE bioaccessibility are in line with the literature, and these
parameters have been widely acknowledged to be important
among the academic community.40,41 However, the kernel
SHAP analysis also revealed that some spatial features and
encoded categorical features were important (with a relative
feature importance greater than 5%) in predicting Pb and As in
soil. Additionally, based on the distribution of feature
descriptors in the SHAP graph, we observed that the soil
PHEtotal might exhibit a nonlinear positive correlation with
bioaccessibility. Furthermore, the high feature values of EC
and pH (marked in red) were primarily concentrated on the
right side of the graph, suggesting a possible positive
correlation with PHE bioaccessibility. Conversely, features
such as Mn, sand, TN, and Fe had more high-value points on
the left, emphasizing their potential negative correlation with
PHE bioaccessibility (Figure 4). A detailed quantitative
analysis of these key features is undertaken in subsequent
sections.

As shown in Figure 5a, under acidic conditions, the stability
of complexes formed by organic matter and hydroxyl ions with
Cd increases as soil pH rises. At the same time, at high
concentrations, protons compete with soil anion exchange
sites, leading to the release of more Cd. Furthermore, Ca ions
compete with these sites, enhancing the bioaccessibility of Cd
in the soil.42 However, as soil pH increases to alkaline levels,
the number of insoluble compounds or precipitates formed by
Cd with soil anions increases, leading to a decrease in its
bioaccessibility.43 Figure 5b indicates that with an increase in
soil EC, soil adsorption of Cd is weakened.44 However,
although high ion concentrations potentially promote the
transfer of Cd from the soil’s solid phase to the aqueous phase,
Mn oxides and hydroxides in the soil might form stable
complexes with Cd, slightly limiting its mobility and
bioaccessibility in the aqueous phase.45,46 Additionally, Figure
5g reveals that the bioaccessibility of As in soil is highest under
neutral pH and high EC conditions, confirming the
aforementioned analysis. Furthermore, soil texture and
elemental content can affect the bioaccessibility of PHE in
soil. As depicted in Figure 5c, due to its lower surface area, the
sand fraction has fewer adsorption sites for Cd, causing Cd to
be released into the soil aqueous phase. The low water
retention of sand expedites the leaching of Cd, reducing its
bioaccessibility.47 However, an increase in TOC in sandy soils
enhances Cd adsorption, inhibiting the leaching of Cd from
the soil.48 Figure 5d illustrates the trend in soil Pb
bioaccessibility with changes in TN. At a soil pH of 2−6,
due to the protonation of nitrogen organic functional groups,
the complexes formed by Pb2+ might be more stable. However,
as the soil pH rises from 6 to 10, the number of negative
charges increases due to functional group deprotonation,
which weakens complex formation with Pb, resulting in
increased soil Pb bioaccessibility at the same TN content.
This further indicates that the main mechanism by which TN
affects the bioaccessibility of Pb in the soil is the chelation
effect of TN.49 Figure 5f shows that an increase in Fe content
results in the enhanced adsorption of Pb, reducing its
bioaccessibility. However, when the soil TOC content (greater
than 15%) is high enough to form complexes with Fe, TOC
inhibits the oxidation of Fe, reducing Pb adsorption and
thereby increasing its bioaccessibility.50 It is noteworthy, as
depicted in Figure 5g, that in the prediction of soil As
bioaccessibility, there is an interaction between spatial variables
(T) and soil properties (such as pH). Specifically, when the
temperature is below 15 degrees, increasing pH has a
significant impact on the SHAP value. Figure 5e further
demonstrates that in cold and arid areas, the bioaccessibility of
Pb is higher. This underscores the importance of considering
spatial heterogeneity and its interaction with environmental
factors when predicting PHE bioaccessibility. Moreover, in
terms of categorical features, Figure 5h reveals that the
bioaccessibility of As in natural lands with vegetation cover is
lower, possibly because arsenic primarily exists in natural
environments as stable compounds that do not absorb easily.
In contrast, mining sites, due to long-term excavation and
smelting activities, show an increase in the proportion of
bioaccessibility soil As.
3.4. General Status of Heavy Metal Pollution in China

The descriptive statistics for PHE concentrations in China are
presented in Table S7−8. The average concentrations of Cd,
Pb, and As are 17.5 mg/kg, 451.2 mg/kg, and 175.5 mg/kg,
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respectively. When compared with the current soil environ-
mental standards in China, which set values for Cd, Pb, and As
at 65, 800, and 60 mg/kg respectively, exceedance rates vary
across land use types. Specifically, for Cd, the rates are 0.9% in
natural greens (Ng), 6.2% in city industry (Ci), and 7.2% in
mining and smelting (Ms). For Pb, the rates are 0% in Ng,
2.4% in Ci, and 19.1% in Ms. As for As, rates of exceedance are
recorded at 1.1% in Ng, 10.2% in Ci, and notably, 34.2% in
Ms7. This indicates that areas used for mining/smelting have
the most significant contamination, followed by urban
commercial areas and natural green spaces. Furthermore,
natural green spaces have a lower coefficient of variation (CV),
which suggests that the elemental concentrations are primarily
influenced by the inherent soil background and natural
processes.51,52 In contrast, in mining/smelting and urban
commercial areas in China, where the CV for PHE
concentrations exceeds 2, there is pronounced spatial variation
in PHE contamination. This highlights the presence of point-
source pollution, with human activities significantly contribu-
ting to pollution in these areas.53

Figure 6a depicts the distribution patterns of Cd, Pb, and As
across China. Notably, significant PHE pollution is concen-
trated in the southeastern region of China. Specifically, key
PHE contamination clusters can be identified at the confluence
of Guizhou and Yunnan, the Hunan-Guangdong border, and
Guangxi’s Heyuan area. These hotspots likely result from
historical smelting, a prevalence of ore deposits, and unchecked
industrial waste discharges.54 Furthermore, parts of Fujian
show notable lead pollution, primarily from smelting (Figure
6a). This heightened presence of lead is potentially due to past
industrial and mining activities.55 Farther northward in the
southeast, isolated mining and smelting sites emerge as
pollution focal points. It is important to highlight that even
in the northwestern areas, bordered by the Heihe-Tengchong
line, sporadic PHE pollution exists. For example, Gansu’s lead

contamination is linked to its lead−zinc smelting plants
(Figure 6a). Scattered arsenic pollution in the northwestern
and northeastern provinces might be linked to industries such
as coal mining (Figure 6a).56 Given these insights, it is
imperative to devise targeted soil management strategies for
mining and smelting areas, ensuring robust environmental and
public safety.
3.5. Determination of Soil Environmental Criteria for
Chinese Sites Based on the BRB Model
To evaluate the performance of our model in site SEC
derivation, we utilized the previously trained BRB model to
forecast the bioaccessibility distribution of Cd, Pb, and As in
the three subdata sets in China. As shown in Figure S6, the
analysis of 3002 samples from across the country indicates that
the bioaccessibility of cadmium is significantly higher than that
of lead and arsenic. Additionally, the bioaccessibility of lead
and arsenic is notably increased in northwestern parts of
China, at the border between Shandong and Henan, and along
the southeastern coast. The elevated bioaccessibility of soil Cd
might be attributed to the BRB model’s inability to predict
PHE bioaccessibility at extremely low concentrations due to a
lack of training data. As a result, biases cause the predicted
PHE bioaccessibility to exceed 100%. Considering the
negligible health impact of extremely low soil PHE
concentrations on the public, we set the bioaccessibility to
100% when deriving the soil environmental standards for these
areas. Although our model reveals regional disparities in the
bioaccessibility of Cd, Pb, and As in soils, its conclusions are
limited by a small data set. Future research, enriched by
additional data, will improve the model’s accuracy and broaden
its applicability.
Furthermore, based on inverse distance weighting inter-

polation, we mapped the bioaccessibility thermal distribution
in various locations across China (Figure S6). To enhance the
accuracy of health risk assessments for PHE in site soil, we

Figure 6. (a) Distribution of PHE contamination across various land use types in China. The concentration levels for Cd and As ranged from 0 to
1, 1−10, 10−100, 100−1000, and 1000−10000 mg/kg. For Pb, the levels range from 0 to 10, 10−100, 100−1000, 1000−10000, to 10000−100000
mg/kg. (b) Derivation of soil environmental standards (mg/kg) for Mining/Smelting sites in China based on the BRB model.
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applied formulas from Table S9, transforming bioaccessibility
into bioavailability. Moreover, drawing upon the “Technical
Guidelines for Risk Assessment of Soil Contamination of
Construction Land” currently in force in China, we developed
SEC tailored to various PHE found in soils of industrial sites.35

The criteria for the three PHE are as follows: Cd (558.99−
1277.04 mg/kg), Pb (1703.37−6281.43 mg/kg), and As
(1.23−6.65 mg/kg), as shown in Figure 6b. These criteria
exhibit clear regional patterns. Our model captures dynamic
differences in soil PHE bioaccessibility across different regions
in China, enabling derivations of soil environmental criteria
across continental scales.
In addition, we conducted an in-depth analysis of the

samples from the three subdata sets of metallurgical site types.
As demonstrated in Figure S7, compared to the criteria
recommended by the current Chinese guidelines (Table S10),
the number of samples that exceeded the standards for Cd, Pb,
and As decreased from 5, 58, and 14 to 1, 24, and 7,
respectively. This significant reduction indicates our method’s
precision in pinpointing areas that are at genuine risk. It is
estimated that during China’s “13th Five-Year Plan,” over 3
million acres of metallurgical land was set aside for restoration,
representing a market potential of over 300 billion Chinese
yuan.57 Implementing our model could offer governmental
departments and decision-making bodies a more precise
screening of soil contamination, reducing unnecessary
monitoring costs and soil remediation investments. In
comparison to traditional assessment methods, our model
provides a finer spatial resolution and higher data sensitivity,
enabling us to better identify and locate potential pollution
hotspots.

4. CONCLUSION
In this study, we analyzed 937 data points from 53 studies to
showcase the potential of machine learning models for
predicting PHE bioaccessibility in soil. The boosting method
excelled, achieving an average R2 of 0.95 and RMSE of 0.25
across three data sets. Using Kernel SHAP values, we identified
how soil properties and spatial variables impact PHE
bioaccessibility. The spatial distribution of PHE bioaccessi-
bility throughout China was illustrated by the constructed
machine learning model associated with Inverse Distance
Weighting, uncovering that Cd bioaccessibility surpasses that
of Pb and As, particularly in the northwestern and southeastern
coastal areas. This insight laid the groundwork for formulating
soil environmental standards for smelting/mining sites across
China, significantly reducing the prevalence of sites exceeding
the standards. However, limitations include reliance on lab
data and insufficient low-concentration data. Incorporating
deep feature analysis is crucial for model enhancement, with a
focus on detailed classification of smelting/mining sites for a
clearer understanding of industrial activity impacts. To
improve, we advocate for expanding data sets and collection
methods to comprehensively map PHE bioaccessibility in soil
for better environmental health insights.
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