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A B S T R A C T   

Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, 
which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT 
varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure 
associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the 
process and assist radiologists for more prompt and better decision-making. In this work, we design a deep 
learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two 
sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the 
extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning 
algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 
0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert 
radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have 
further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, 
respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results 
have demonstrated the high performance and robust generalization ability of our proposed method, which makes 
it a useful second-read or triage tool that can facilitate routine clinical applications.   

1. Introduction 

Intracranial hemorrhage (ICH), bleeding that occurs inside the cra-
nium, is an emergency disease that can cause severe disability or even 
death (Qureshi et al., 2009). It may be caused by diverse pathology, 
including, trauma, hypertension, cerebral amyloid angiopathy, hemor-
rhagic conversion of ischemic infarction, cerebral aneurysms, cerebral 
arteriovenous malformations, dural arteriovenous fistula, vasculitis, 
venous sinus thrombosis, and etc (Heit et al., 2017; Lovelock et al., 
2007). Population-based studies have estimated the world standardized 
annual incidence of ICH to be about 10–30 per 100 000 people (Qureshi 
et al., 2001; Labovitz et al., 2005). Although ICH represents only 
10–15% of all strokes, it has been estimated to cause more than 50% of 

the overall stroke mortality (Nilsson et al., 2000). In addition, more than 
one-third of survivors end up with severe disability three months later 
(Øie et al., 2018). 

Timely diagnosis of ICH is critical for deciding on the need and 
approach for emergent surgical intervention (Kuo et al., 2019). A ma-
jority of studies have indicated that most patients with acute ICH require 
a medical operation to control their blood pressure in time within 6 h of 
the symptom onset (Charlotte et al., 2018; Sprigg et al., 2018; Lili et al., 
2016). Timely surgical evacuation may prevent expansion, decrease 
mass-effects, block the release of neuropathic products from hema-
tomas, and thus prevent initiation of pathological processes (Qureshi 
et al., 2009). Therefore, early diagnosis and immediate treatment can be 
a lifesaver for these patients. 
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For central nervous system emergencies, such as acute traumatic 
brain injury, hemorrhage from an aneurysm, ischemic stroke, and 
hemorrhagic stroke, head computed tomography (CT) is often the first- 
line diagnostic tool for identifying the bleeding location and size due to 
its noninvasive nature and rapid 3D imaging ability (García-Blázquez 
et al., 2013). Correct assessment of acute intracranial hemorrhage types 
from head CT scans thus plays a decisive role in the subsequent clinical 
management of these diseases. It is also critical for deciding on an 
emergency surgical intervention and the choice of surgical methods. 

Delayed or missed diagnosis, however, often occurs in clinical 
practice (Bello et al., 2019; GR et al., 2004), which can be attributed to 
the following major reasons. The first is that correct diagnosis of acute 
ICH and its subtypes based on CT images is very challenging even for 
experienced radiologists. The bleeding can be subtle with highly vari-
able shape, size, and location even for the same ICH subtype (Kuo et al., 
2019; Ker et al., 2019). The bleeding areas can also be easily confused 
with calcifications and/or stripping artifacts (Kuo et al., 2019; Cho et al., 
2019; Patel et al., 2019). The second reason is the increased workload 
for radiologists. The manufacturers of CT imaging devices have 
continuously made efforts to improve image resolution by increasing the 
number of image slices per 3D scan (Rao et al., 2020). In addition, the 
number of patients undergoing head CT scans continues to increase 
every year (Rao et al., 2020; Robert et al., 2015). These factors combine 
to largely increase the workload of radiologists. It has been estimated 
that if a radiologist works for 8 h per day, he or she will have to finish 
examining each CT slice within about 3 s to meet the workload demand 
(Robert et al., 2015). The overloaded work may cause fatigue and 
interpretation errors (misdiagnosis or missed diagnosis). 

It has been shown that peer-reviewing by the double reading of scans 
can help reduce the risk of diagnostic errors in clinical practice (Rao 
et al., 2020; Aslanian et al., 2013; Pow et al., 2016). This process, 
however, is labor-intensive and requires more utilization of radiologists’ 
time. Hence, it is difficult to implement in the current clinical situation 
(Rao et al., 2020). A more commonly adopted peer review process is the 
retrospective double reading of cases, as implemented by the American 
College of Radiology’s RadPeer program (Geijer and Geijer, 2018). 
However, this process is not real-time and does not provide immediate 
clinical benefit for the patients under treatment (Rao et al., 2020). 

Recently, various deep learning-based artificial intelligence (AI) al-
gorithms have been successfully developed for medical imaging inter-
pretation tasks with accuracy equivalent to specialist physicians (Yu 
et al., 2018), such as the diagnosis of skin cancer, breast cancer detec-
tion, and the grading of diabetic retinopathy. Such AI techniques can 
potentially function as a second reader to ensure proper detection of 
high-impact subtle findings, and can also act as a triage tool to facilitate 
timely diagnosis of acute events. There already exist a few works on the 
development of deep convolutional neural network (CNN) methods for 
the automatic detection and/or classification of ICHs (Cho et al., 2019; 
Lee et al., 2019; Chilamkurthy et al., 2018; Ye et al., 2019; Nguyen et al., 
2020). However, both the training and the validation datasets were 
rather limited in the reported studies. In addition, most of them only 
validate the classification accuracy on the scan level, instead of slice-by- 
slice as we pursue in this study. 

In this work, we report a novel AI algorithm consisting of a 2D CNN 
classifier and two sequence models for the automatic detection of acute 
ICH and classification of its subtypes from non-contrast head CT scans. 
The design of our method is inspired by radiologists’ workflow, where 
the sequence models automatically learn the correlation across image 
slices to mimic the process of rolling pictures by radiologists in their 
decision-making. This design offers an effective solution to process large 
3D images using 2D CNN models. Our method has been developed and 
validated using the large public datasets from the 2019-RSNA Brain CT 
Hemorrhage Challenge with over 25,000 head CT scans. The perfor-
mance is further evaluated using two independent external datasets as 
will be explained later. The pipeline of our study is illustrated in Fig. 1. 

2. Materials and methods 

In this section, we detail the utilized datasets and the proposed deep 
learning system for automatic detection and classification of acute ICH 
and its five subtypes from non-contrast 3D head CT images. The Grad- 
CAM procedure for saliency map computation to enable model inter-
pretation is also explained. 

Dataset. The main dataset utilized in this paper comes from the 
2019-RSNA Brain CT Hemorrhage Challenge.2 It was collected from 
three institutions (Stanford University (Palo Alto, Calif), Universidade 
Federal de São Paulo (São Paulo, Brazil) and Thomas Jefferson Uni-
versity Hospital (Philadelphia, Pa)), and re-annotated by the American 
Society of Neuroradiology (ASNR) with the contribution of more than 60 
neuroradiologists (Flanders et al., 2020). The dataset consists of over 
one million images from 25272 examinations, which provides the 
largest multi-institutional and multinational dataset for the study of 
acute ICH detection and subtype classification. During the RSNA 
competition, the full dataset was released to the public in two batches 
(batch-1 and batch-2), each batch containing a distinct set of patients. In 
batch-1, 19530 CT scans (674258 slices) with slice-level ICH annota-
tions were provided for algorithm training and validation, and the 
remaining 2214 CT scans (78545 slices) were used as the first set of test 
data (batch-1 test set). All 3528 CT scans (121232 slices) of batch-2 were 
later released as the second test set (batch-2 test set). Manual annota-
tions for the batch-1 test data were made available to the public at the 
start of the second competition stage, whereas annotations for the batch- 
2 test data were not released. It should be emphasized that our model 
implements a multi-label classification scheme. Each scan or slice may 
contain more than one ICH subtype. Hence, the label for each image is 
not binary but represented by a 6-digit one-hot vector {y = y1,y2,y3,y4,

y5,y6}. The first binary digit y1 indicates whether the image has ICH and 
the other five binary digits indicate the existence of each of the five 
subtypes, EDH, IPH, IVH, SAH, and SDH, respectively. In the RSNA 
dataset, 95606 slices in the training set and 10633 slices in the batch-1 
test set contain two or more ICH subtypes, but the distribution of each 
ICH subtype is highly unbalanced. For example, only 1.5% of all CT 
scans contain EDH, which is consistent with everyday clinical observa-
tions (Ye et al., 2019). The detailed dataset characteristics can be found 
in Tables 1 and 2. 

To allow direct comparison with competing methods in the 2019 
RSNA challenge, we maintained the same splitting of training and 
testing data as provided by the challenge organizers, as clearly indicated 
in the top header of Table 2. In particular, the training set of the 2019 
RSNA challenge is used as our model training data. The testing data 
consist of the two test sets (batch-1 and batch-2) of the 2019 RSNA 
challenge. All experiments reported in the manuscript follow the same 
data splitting scheme. In addition, the code of our proposed method has 
been made publicly available,3 which should make it easier for other 
researchers to reproduce our results. 

In addition to the batch-1 and batch-2 test sets of the RSNA chal-
lenge, we further validate our algorithm on two independent external 
datasets, namely, the PhysioNet-ICH dataset4 (Hssayeni, 2020; Gold-
berger et al., 2000) and the CQ500 dataset5 (Chilamkurthy et al., 2018). 
The overall characteristics of these two extra test datasets can also be 
found in Tables 1 and 2. 

The PhysioNet-ICH dataset (version 1.3.1) includes a total of 75 
participants (36 with ICH and 39 normal controls) with a total of 2814 
slices (318 with bleeding and 2496 normal images). The number of CT 
scans (slices) for each subtype is 5(24) IVHs, 16(73) IPHs, 7(18) SAHs, 
21(173) EDHs, and 4(56) SDHs. All the data were collected from the Al 

2 https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection  
3 https://github.com/Scu-sen/1st-RSNA-Intracranial-Hemorrhage-Detection  
4 https://physionet.org/content/ct-ich/1.3.0/  
5 http://headctstudy.qure.ai/dataset 
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Hilla Teaching Hospital-Iraqare and scanned using a Siemens/SOMA-
TOM Definition AS CT scanner with a slice thickness of 5 mm. The 
bleeding regions and subtypes were manually annotated by two expe-
rienced radiologists. 

The CQ500 dataset consists of a total of 491 CT scans, including 205 
with ICHs, 40 fractures, 65 middle shifts, 127 mass effect, and 54 normal 
controls. The 205 ICH scans contain all five subtypes, including 28 IVHs, 
134 IPHs, 60 SAHs, 13 EDHs, and 53 SDHs. The CQ500 dataset was 
collected from multiple radiology centers in New Delhi, India. The uti-
lized CT scanners were either GE or Philips brand, with 6 different 
models in total, including GE BrightSpeed, GE Discovery CT750 HD, GE 
LightSpeed, GE Optima CT660, Philips MX 16-slice, and Philips Access- 
32 CT. The annotation of each ICH subtype was manually performed by 
three senior radiologists with around 10 years of clinical experience in 
head CT interpretation. 

System design. The overall architecture of the proposed AI system is 
shown in Fig. 1 and Supplementary Fig. 2, which consists of three major 
stages. In the first stage, a CNN classifier is trained using 2D slices with 
ground truth manual ICH labels. Once trained, the CNN classifier can be 
applied on each slice of a head scan to produce an initial estimation of 
the existence of each ICH subtype. The CNN classifier also serves as a 
feature extractor, where the output feature map at the last convolution 
layer is taken as an abstract representation of the input image. The 
Sequence Model 1 (Supplementary Fig. 2b) at the next stage then takes 
the feature outputs from the first stage classifier for all slices of a 3D scan 
as inputs, and applies a bi-directional RNN with the GRU unit to 
generate a refined estimation of the ICH subtypes for every slice. The 
RNN model takes into account 3D context information and also serves as 

a regulator to ensure spatially coherent estimation of ICH occurrences. 
This RNN model simulates the rolling picture reviewing process of 
human experts. The last stage uses another RNN model (Supplementary 
Fig. 2c) with the GRU unit to implement the idea of stacked general-
ization ensemble, i.e., a new model learns how to best combine the 
predictions from multiple existing models. Consequently, the prediction 
outputs from the first classifier and the Sequence Model 1 for all cor-
responding slices of a 3D scan are assembled together and used as the 
input to the second RNN model (Sequence Model 2). Once trained, the 
Sequence Model 2 outputs the final prediction of ICH subtypes on every 
slice of an input head CT. In order to enable the model to automatically 
handle slice thickness differences, we also use slice thickness informa-
tion as an additional input feature to the Sequence Model 2. Other 
metadata could also be incorporated if available. 

To fully exploit the feature learning ability of deep convolutional 
neural networks and the benefits of ensemble learning, we create 
different versions of feature representation by changing the backbone 
network of the CNN classifier in the first stage. In particular, three 
popular networks for image classification are utilized, including SE- 
Resnext101 (Hu et al., 2018), Densenet169 (Huang et al., 2017), and 
Densenet121 (Huang et al., 2017). Each backbone network leads to a 
different CNN classifier for the first stage, which serves as a different 
sub-model for the ensemble learning in the last stage. 

Window settings as data preprocessing. Due to the large dynamic 
range of CT image intensity, usually 12 or 16 bits, it is impossible to 
display all image details on the monitor screen at one time. During 
clinical interpretation, radiologists often apply multiple display window 
settings (window-width and window-level) to highlight different 

Fig. 1. The pipeline of our study. The AI system comprises three stages. In the first stage, a 2D CNN classifier is used to extract features and produce an initial 
prediction of ICH and its subtypes on each input slice. The generated feature vectors for all slices of a 3D scan are fed into Sequence Model 1 (the second stage) to get 
more refined and spatially coherent ICH detection results on every image slice. In the third stage, the classification results of the CNN classifier and Sequence Model 1 
are assembled together and passed through Sequence Model 2 to perform adaptive model averaging. The output of Sequence Model 2 gives the final ICH prediction 
results for every slice of the input scan. Each DICOM file represents one 3D scan, which can be considered as a sequence of 2D slices. 
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intensity ranges to check for subtle abnormalities. For example, the 
brain window (window level 40/width 80) and the subdural window 
(level 80/width 200) are frequently used when reviewing brain CTs as 
they make intracranial hemorrhage more conspicuous, and may help in 
the detection of thin acute subdural hematomas (Jacobson, 2012). The 
bone window (level 600/width 2800) is another crucial setting that 
helps to identify skull lesions. A fracture observed in the bone window 
may indicate the presence of additional axial bleeding that needs to be 
further diagnosed in the brain window (Lee et al., 2019). To mimic the 
reviewing strategy of radiologists, we preprocess each image by first 
applying the three window settings and then converting each result to an 
8-bit grayscale image. The three converted images are then assembled as 
the three channels of an RGB image and used as an input to the 2D CNN 
classifier in the first stage. 

Network optimization criterion. Using the RSNA training data, the 
network parameters for the deep learning models in all three stages are 
optimized to minimize the discrepancy between the model outputs with 

the ground truth manual labelling. In this work, the multi-label binary 
cross-entropy loss function (also known as the log-loss) is adopted to 
measure the discrepancy, which is defined as follows: 

LCE = −
1
N

1
C

∑N

k=1

∑C

c=1

[
wcyc,klog

(
ŷc,k

)
+
(
1 − yc,k

)
log

(
1 − ŷc,k

) ]
(1)  

where yc,k indicates the ground truth manual label of the kth sample for 
the cth class, N denotes the number of training samples, and C is the 
number of classes. C equals 6 in this work, including ICH and its five 
subtypes. Each target yc,k may have more than one positive value 
because a CT slice may contain multiple ICH subtypes. Thus, this is a 
multi-label classification problem. ŷc,k represents the predicted ICH 
probabilities, which has the same dimension as the ground truth yc,k. wc 

is a weight value assigned to the c-th class. Empirically, wc is set to 2 for 
the overall ICH class and 1 for the five ICH subtypes. 

Network training procedure. Training of the CNN classifier applies 

Table 1 
Dataset characteristics.  

Table 2 
Data distribution characteristics of the utilized datasets.  

Label Training set  Test sets 

RSNA-train  Batch-1 test set  Batch-2 test set  CQ500  PhysioNet-ICH 

Scans Slices  Scans Slices  Scans Slices  Scans Slices  Scans Slices 

ICH 8003 97103  879 10830  1243 15902  205 18774  36 318 
EDH 313 2761  41 384  23 208  13 131  21 173 
IPH 4796 32564  525 3554  758 5468  134 6323  16 73 
IVH 3313 23766  379 2439  616 4546  28 2348  5 24 
SAH 3549 32122  383 3553  528 4908  60 9590  7 18 
SDH 3442 42496  370 4670  503 6555  53 6391  4 56 
None 11527 577155  1335 67715  2285 105330  286 152616  39 2496 
Total 19530 674258  2214 78545  3528 121232  491 171390  75 2814  
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5-fold cross-validation with a mini-batch size of 32 slices to optimize the 
model parameters. The Adam optimizer (Kingma and Ba, 2014) is used 
as the optimization method. A cosine annealing strategy (Loshchilov and 
Hutter, 2016) is utilized to adaptively adjust the learning rate with the 
initial learning rate set to 0.0005. A weight decay of 0.00002 is added to 
the cost function to reduce the risk of overfitting. Real-time data 
augmentation is also performed to make the model learn features 
invariant to geometric perturbations. The augmentation transformations 
thus include random cropping, random scaling, random flipping, and 
random rotation. The data augmentation also addresses the problem of 
overfitting and improves the generalization ability of the trained models 
even when the number of training data is limited. 

Training of both sequence models adopts 10-fold cross-validation 
with a mini-batch size of 128 CT scans. Adam optimization (Kingma 
and Ba, 2014) with a simple step-wise learning rate decay scheme is 
applied with the initial learning rate set to 0.0004. The learning rate is 
reduced by a factor of 10 at the 20th and the 30th epoch, with the total 
number of epochs set to 40. Random sequence subsampling is used as 
the data augmentation technique for the sequence model training that 
randomly selects 24 slices from each CT volume. 

All models are implemented using the PyTorch framework and all 
experiments are performed on a workstation equipped with an Intel(R) 
Xeon(R) E5-2680 v4 2.40 GHz CPU and four 24 GB memory NVIDIA 
Tesla P40 GPU cards. 

Saliency map creation. To help visualize the decision support for 
the trained ICH classifier, the gradient-weighted class attention map 
(Grad-CAM) technique (Selvaraju et al., 2017) is adopted to highlight 
the regions in each image that are most relevant to the final model 
prediction. To obtain the Grad-CAM, the first step is to compute the 
class-specific weight of each feature map in the last convolution layer 
(Selvaraju et al., 2017): 

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

(2)  

where αc
k denotes the weight parameter for the kth feature map corre-

sponding to the cth class. Z is the total number of pixels of all the feature 
maps. yc represents the model prediction for the cth class. Ak

ij represents 
the feature value at location (i, j) of the kth feature map. 

The saliency map Lc
Grad− CAM can then be calculated by multiplying the 

obtained weights with the corresponding feature maps and then sum-
ming up the weighted feature maps: 

Lc
Grad− CAM = ReLU(

∑

k
αc

kAk) (3)  

where Ak denotes the kth feature map. The rectified linear unit (ReLU) 
nonlinear function is applied to highlight only the image locations that 
are positively correlated with the prediction of the cth class. 

3. Results 

The AI system development. Our deep learning method for acute 
ICH detection and subtype classification was first developed and vali-
dated through participating in the RSNA challenge. In particular, the 
first batch of 19530 CT scans with slice-level ICH annotations were used 
as the development data. From them, we randomly select 1/5 cases with 
ICH and 1/5 cases without ICH as a validation dataset for hyper-
parameter tuning. 

The proposed multi-stage AI system comprises three major stages: a 
convolution neural network (CNN) classifier and two sequence models, 
as will be detailed in the Methods section. The CNN classifier is trained 
on 2D image slices, which aims to provide a preliminary estimation of 
the existence of ICH and its subtypes for each slice. The two sequence 
models then refine the estimation by taking into account 3D context 
information and outputs from earlier models. In particular, the first 

sequence model applies a gated recurrent unit (GRU)-based recurrent 
neural network (RNN) on the slice-wise feature outputs of the CNN 
classifier to exploit long-range spatial dependencies in a 3D volume. The 
second sequence model is another RNN trained using the outputs of both 
the CNN classifier and the first sequence model, as well as meta- 
information about the slice thickness. It adaptively performs weighted 
model averaging and learns to automatically correct prediction errors 
from the models of earlier stages. 

The incremental performance improvement offered by adding each 
sequence model compared to the baseline CNN classifier can be seen in 
Table 3. The results were obtained by training the models on the RSNA 
batch-1 training data and then tested on the batch-1 test set. To further 
improve the accuracy for ICH detection and subtype classification, we 
adopt an ensemble learning strategy, where the above described system 
is trained three times using three different backbones for the CNN 
classifier (Methods). The unweighted average of probabilities predicted 
by the three different models is taken as the final result for each test 
image. The performance of the ensemble model on the batch-1 test data 
is listed in the last row of Table 3, which clearly offers the best accuracy. 
All results reported later are obtained by the ensemble model approach. 

Evaluation of the AI system on the RSNA and two independent 
test datasets. The performance of our proposed method was evaluated 
using the 2019-RSNA test data, as well as the two independent external 
validation datasets, PhysioNet-ICH and CQ500. Since the manual 
annotation of the RSNA batch-2 test set was never released, detailed 
evaluation results were only obtained on the batch-1 test set with 2214 
scans and 78545 slices. 

Fig. 2 shows the ROC (receiver operating characteristic) curves for 
the detection of ICH and its five subtypes on the three test datasets. 
Detailed metrics, including the area under the ROC curve (AUC), 
sensitivity, and specificity, are summarized in Table 4. As can be ex-
pected, the accuracy on the RSNA test data was higher than that on the 
independent validation data, but most of the AUCs were higher than 
0.95, which showed a very robust performance of the proposed method. 

On the RSNA test data, the overall detection accuracy for ICH was 
0.988 (95% CI 0.9873–0.9889) in terms of AUC, 0.944 (95% CI 
0.9371–0.9466) of specificity, and 0.950 (95 % CI 0.9460–0.9575) of 
sensitivity. For individual subtypes, the highest detection accuracy was 
achieved for IVH, with an AUC of 0.996 (95% CI 0.9954–0.9969), a 
specificity of 0.974 (95% CI 0.9631–0.9806), and a sensitivity of 0.975 
(95% CI 0.9672–0.9852). The SDH showed the worst detection accuracy 
with an AUC of 0.983 (95% CI 0.9818–0.9847), a specificity of 0.932 
(95% CI 0.9266–0.9266), and a sensitivity of 0.946 (95% CI 
0.9323–0.9529). 

For the detection and classification of ICHs on the two external 
datasets (PhysioNet-ICH and CQ500), the proposed AI algorithm per-
formed slightly better on the PhysioNet-ICH dataset with an AUC of 
0.964 (95% CI 0.9549–0.9731) for ICH overall, 0.953 (95% CI 
0.9405–0.9648) for EDH, 0.964 (95% CI 0.9467–0.9807) for IPH, 0.985 
(95% CI 0.9673–1.0000) for IVH, 0.962 (95% CI 0.9313–0.9935) for 
SAH, and 0.987 (95% CI 0.9780–0.9951) for SDH. On the CQ500 
dataset, the algorithm produced an AUC of 0.949 (95% CI 
0.9480–0.9507) for ICH overall, 0.980 (95% CI 0.9764–0.9830) for 
EDH, 0.981 (95% CI 0.9792–0.9821) for IPH, 0.992 (95% CI 
0.9903–0.9931) for IVH, 0.906 (95% CI 0.9034–0.9088) for SAH, and 
0.945 (95% CI 0.9424–0.9471) for SDH. 

Comparison with the top-performing teams in the RSNA chal-
lenge. Our team participated in the 2019-RSNA brain CT hemorrhage 
challenge with the proposed method, which allowed a direct comparison 
of our method with other state-of-the-art algorithms. In the challenge, 
the multi-label binary cross-entropy loss (log-loss) (Bishop, 2006) was 
used as the metric to assess the performance of each participating al-
gorithm. Smaller log-loss values indicate more accurate detection and 
classification of the ICH and its subtypes. Results from each team were 
submitted to and evaluated by the challenge organizers independently 
on two batches of test data as mentioned earlier. The performance of the 
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top 10 teams can be found in the final leaderboard (Supplementary 
Table 1). The bold text in each column denotes the best accuracy or the 
lowest log-loss. Our method produced the lowest log-loss of 0.054 for 
the batch-1 and 0.04383 for the batch-2 test sets, respectively, which 
ranked our team at the 1st place in the challenge. 

Saliency maps for decision visualization. Given a head CT scan, 
the AI system predicts the probability of ICH and its 5 subtypes for each 
slice of the 3D volume. To help visualize the model decision and increase 
interpretability, we apply the Grad-CAM (gradient-weighted class sa-
liency map) algorithm (Selvaraju et al., 2017) to generate saliency maps 
that highlight the regions leading to the model decision. The saliency 
maps are computed automatically following the procedure explained in 
Section 2. They correspond to regions of the image that contribute most 
to the final decision of the deep learning model. It should be noted that 
the saliency maps are not intended for a precise segmentation of the 
bleeding areas, but only provide a rough localization of the detected ICH 
or its subtypes. For the two external datasets, manual delineations of the 
ICH lesions were provided. We can thus directly compare the automat-
ically generated saliency maps with the corresponding manual annota-
tions to judge the usefulness of the visualization technique. 

Fig. 3 shows some examples of the saliency maps for the five ICH 
subtypes using data from the two external test sets. In each subfigure, 
the left column is the original CT image; the middle column shows the 

saliency map automatically computed; and the right column shows the 
manual annotation of the corresponding bleeding region(s) by experi-
enced radiologists. It is seen that the generated saliency maps by the AI 
method overlap very well with the manually drawn bleeding areas for all 
five bleeding types in both datasets. This demonstrates that the trained 
network has learned to focus on the correct areas to make its prediction. 
It should be noted that the training data only have slice-level ICH labels 
but no delineations of the bleeding areas. Thus, the AI model can learn to 
locate the ICH regions even without fine-grained annotations for model 
training. 

For ICH detection, small calcifications can be easily confused as 
small bleeding areas as they also appear as high densities in CT images. 
From the saliency maps shown in Fig. 3(a) and (b), it is observed that our 
AI system can correctly ignore the calcification areas and make an ac-
curate prediction for each of the ICH subtypes. 

As can be observed in Fig. 3, the image resolutions vary in the two 
datasets, which are due to different slice thickness settings of the CT 
scans. In the PhysioNet-ICH dataset, each patient has only one CT scan 
and the slice thickness is fixed at 5 mm. In the CQ500 dataset, each 
patient has multiple CT scans with different slice thicknesses (0.625 mm, 
3 mm, and 5 mm). Thinner slices provide better contrast and finer image 
details at the expense of higher radiation dose to the patients. Our 
approach directly uses the slice thickness as an extra input in the second 

Table 3 
Performance at different stages of the proposed method (evaluated on the RSNA batch-1 test set).   

Log_loss AUC Specificity Sensitivity 

2D-CNN 0.064 0.961 (0.9594–0.9631) 0.903 (0.8956–0.9147) 0.889 (0.8775–0.8775) 
2D-CNN + Seq_model 1 0.060 0.967 (0.9656–0.9690) 0.914 (0.9024–0.9284) 0.904 (0.8903–0.9173) 
2D-CNN + Seq_model 1 + Seq_model 2 0.058 0.975 (0.9738–0.9765) 0.926 (0.9140–0.9301) 0.919 (0.9301–0.9308) 
Model_ensemble 0.054 0.988 (0.9873–0.9889) 0.944 (0.9371–0.9466) 0.950 (0.9460–0.9575)  

Fig. 2. ROC curves of our AI algorithm evaluated on three test data sets: the RSNA batch-1 test set, the PhysioNet-ICH, and the CQ500 datasets for predicting (a) ICH, 
(b) EDH, (c) IPH, (d) IVH, (e) SAH, and (f) SDH. The “RSNA-1” means the batch-1 test set from the 2019-RSNA Brain CT Hemorrhage Challenge. 
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sequence model. Results from these figures and Table 4 show that our 
model can robustly handle slice thickness differences and produce ac-
curate results on both thin and thick slice head CT scans, which makes it 
a reliable tool in real clinical environments. 

4. Discussions 

Intracranial hemorrhage is a life-threatening health problem 
requiring rapid and often intensive medical attention and treatment 
(Qureshi et al., 2009). However, in clinical practice, misdiagnosis and 
missed diagnosis still exist due to the difficulty in interpreting subtle 
signs for the bleeding regions and increased workload for radiologists 
(Vermeulen and Schull, 2007). An automatic computer-aided diagnosis 
(CAD) system with high accuracy and robust performance can act as a 
second reader and patient triage tool to better utilize critical medical 
resources and improve patient care. To solve the ICH classification 
problem, traditional machine learning methods would rely on manually 
defined image features (Shahangian and Pourghassem, 2016; Muschelli 
et al., 2017; Liao et al., 2010), the design of which requires a lot of 
algorithmic and clinical domain knowledge. In addition, it is difficult to 
handle large shape and appearance variations of ICHs in real data due to 
the limited capacity of traditional classification models. In contrast, 
deep learning models can automatically learn task-specific feature rep-
resentations and discover intricate hidden patterns directly from the 
data. The high capacity of a deep learning model with millions of pa-
rameters also makes it possible to solve complex problems involving a 
significant number of interdependent variables. Deep learning technol-
ogy has become the method of choice for many image analysis problems 
ever since it outperformed traditional machine learning methods by a 
large margin in the 2012 ImageNet image classification challenge 
(Huang et al., 2017; Krizhevsky et al., 2012). Deep learning methods 

have also shown very high accuracy comparable to human experts in 
various medical image analysis problems (Kuo et al., 2019; Coudray 
et al., 2018; Poplin et al., 2018). In this work, we adopted this newer 
technology and developed a deep learning-based AI system for auto-
matic acute ICH detection and classification. The development makes 
use of by far the largest multi-institutional and multinational head CT 
dataset from the 2019-RSNA Brain CT Hemorrhage Challenge. Our 
method won 1st place in the challenge, and was also shown to maintain 
very high performance on two independent external datasets. 

On the RSNA test data, the proposed method produced very high 
accuracy in terms of AUC, specificity, and sensitivity, for all 5 ICH 
subtypes (cf. Table 4). The accuracy was the highest for the IVH subtype. 
This is likely due to the relatively fixed position of IVH, which appears as 
bright regions inside the brain ventricles (Flanders et al., 2020). SDH 
was the most difficult to detect, which can be attributed to the following 
factors. Firstly, The location of SDH is highly variable and can occur in 
holohemispheric, parafalcine, bilateral tentorial, frontotemporal, and 
left anterior temporal areas (Kuo et al., 2019). The shape and size of SDH 
vary significantly as well. In particular, small SDHs are common in the 
test data, which are challenging to detect. Secondly, An isodense SDH 
and its adjacent tissues (brain parenchyma) have very similar image 
intensity values (Kuo et al., 2019), which requires the algorithm to be 
able to detect subtle differences in the image. Thirdly, SDHs also share 
similar characteristics with other bleeding types. For example, SDHs and 
EDHs have very similar image texture (Shahangian and Pourghassem, 
2016), which causes misclassification between the two subtypes. 
Because of these challenges, it is also difficult to ensure correct manual 
labelling of the SDH for method development and evaluation. 

The developed system has also shown very good performance on two 
independent external datasets, namely the PhysioNet-ICH and the 
CQ500. The PhysioNet-ICH dataset was released very recently by 

Table 4 
Performance of the proposed AI system for automatic ICH detection and subtype classification on the 2019-RSNA challenge, PhysioNet-ICH, and CQ500 datasets.  
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Hssayeni et al. (Hssayeni, 2020) mainly for brain bleeding region seg-
mentation. No other study has reported ICH detection results using this 
data. The CQ500 dataset was released by Chilamkurthy et al. (Chi-
lamkurthy et al., 2018) for ICH classification and has been utilized by a 
couple other groups, which allows us to compare our method with these 
related works. Chilamkurthy et al. (Chilamkurthy et al., 2018) adopted a 
ResNet18 model for scan-level ICH classification and reported AUCs of 
0.9419 (ICH), 0.9731 (EDH), 0.9544 (IPH), 0.9310 (IVH), 0.9574 (SAH), 
and 0.9521 (SDH) respectively for ICH and its five subtypes. Nguyen 
et al. (Nguyen et al., 2020) utilized a cascaded CNN-LSTM architecture 
for end-to-end ICH classification, and also used the CQ500 dataset as 
their external test set. The corresponding AUCs achieved were 0.9613 
(ICH), 0.9731 (EDH), 0.9674 (IPH), 0.9858 (IVH), 0.9696 (SAH), and 

0.9644 (SDH). We noticed that both methods evaluated classification 
accuracy at the scan-level, rather than the slice-by-slice evaluation as we 
reported in the Results section and in the RSNA challenge. The scan-level 
accuracy tends to be higher since not all occurrences of each subtype 
need to be detected. To allow a fair comparison with these reported 
works, we also computed scan-level classification results using a similar 
approach as Nguyen et al. (Nguyen et al., 2020), where the maximum 
probability across all slices is taken as the scan-level probability for each 
subtype. By this way, we obtained AUCs of 0.985 (ICH), 0.980 (EDH), 
0.982 (IPH), 0.988 (IVH), 0.947 (SAH), and 0.959 (SDH). More detailed 
comparison results can be found in Supplementary Table 2. As can be 
seen, our method produced the best overall ICH detection accuracy, and 
also higher classification accuracy for all subtypes except for the SAH by 

Fig. 3. Visualization of model predictions using saliency maps on the CQ500 dataset (left panel (a)–(e)) and the PhysioNet-ICH dataset (right panel (f)–(j)). In each 
subfigure, the original CT slice (left column), the corresponding saliency map (middle column), and the manual annotation by experienced radiologists (right 
column) are shown. In the saliency maps, warmer colors represent more relevant regions for the model prediction of the corresponding bleeding type. The same color 
scale is used for all the saliency maps, which is indicated by the color bar. The brain window is used for displaying the CT images. 

X. Wang et al.                                                                                                                                                                                                                                   



NeuroImage: Clinical 32 (2021) 102785

9

Chilamkurthy et al. (Chilamkurthy et al., 2018) and the SAH and SDH by 
Nguyen et al. (Nguyen et al., 2020). As pointed out in the literature (Kuo 
et al., 2019; Ye et al., 2019; Shahangian and Pourghassem, 2016; Strub 
et al., 2007), the SAH and SDH subtypes are more challenging to detect 
and may be easily confused with other subtypes, even for experienced 
radiologists. Thus, there could be some labeling inconsistency between 
the RSNA data for our method development and the CQ500 test data. 

In addition to the two works mentioned above (Chilamkurthy et al., 
2018; Nguyen et al., 2020), there are three other methods proposed in 
the literature for ICH detection and classification from head CT images 
(Cho et al., 2019; Lee et al., 2019; Ye et al., 2019). Accuracy comparison 
in terms of AUC between our method and these related works is sum-
marized in Supplementary Table 2. Three studies have compared their 
algorithm performance with that of radiologists (Lee et al., 2019; Chi-
lamkurthy et al., 2018; Ye et al., 2019). Chilamkurthy et al. (Chi-
lamkurthy et al., 2018) claimed that their method had sensitivities 
indistinguishable from three expert raters but specificities were signifi-
cantly lower at the high sensitivity operation point. As shown in the left 
of Supplementary Fig. 1, our algorithm produced much higher speci-
ficities while maintaining high sensitivities. Lee et al. (Lee et al., 2019) 
and Ye et al. (Ye et al., 2019) reported sensitivity/specificity of 0.924/ 
0.949 and 0.99/0.99 respectively for ICH detection using their own test 
data, and concluded that the accuracy was comparable to radiologists. 
But the test data were collected from a single institution and rather 
limited in size (196 cases in (Lee et al., 2019) and 299 cases in (Ye et al., 
2019)). In addition, the accuracies were calculated on the scan-level 
instead of slice-by-slice, similar to (Chilamkurthy et al., 2018 and 
Nguyen et al., 2020). As explained earlier, the scan-level accuracy tends 
to be higher than the slice-by-slice evaluation. Our method produced 
slice-level and scan-level sensitivity/specificity of 0.950/0.944, 0.945/ 
0.995, respectively, on the multi-institutional RSNA test sets with 2214 
scans, which outperformed all competing methods in the RSNA 
challenge. 

All existing methods applied 2D deep learning models for ICH 
detection, but some of them further incorporated 3D context informa-
tion using various schemes (Supplementary Table 2). Lee et al. (Lee 
et al., 2019) used a slice interpolation technique to consider de-
pendencies between adjacent slices, but only local context information 
was taken into account. Ye et al. (Ye et al., 2019) and Nguyen et al. 
(Nguyen et al., 2020) both applied an RNN sequence model to integrate 
long range 3D context information to improve detection accuracy. In our 
method, we proposed to apply a cascade of two sequence models to fully 
exploit long range context information and better integrate image fea-
tures both locally and globally. Extra information such as the slice 
thickness was also built into the second sequence model. It was shown 
that the two sequence models further improved the ICH detection and 
classification accuracy. 

A major strength of deep learning models comes from their high 
capacity with millions of trainable parameters or features. Altogether, 
they form a complex non-linear mapping from the input image to the 
output prediction result. These features are all interdependent and it is 
difficult to interpret the meaning of every individual feature or under-
stand the contribution of each feature using the traditional multivariate 
analysis method. Hence, deep learning methods are often considered 
non-transparent black boxes. For clinical uses, it is important to make 
the model prediction interpretable or traceable by human experts. As the 
results in Fig. 3 demonstrated, the saliency map generated by the Grad- 
CAM method can serve as a very useful tool to alert human users about 
the important regions most relevant to the predictions of the AI model. 
The results also showed that the AI model can automatically learn to 
locate the bleeding regions even though the training data only have 
slice-level categorical ICH labels but not detailed delineations of the 
lesion areas. This is known as weakly supervised learning, which is a 
very important property of deep learning for medical applications since 
manual labeling of diseased areas can be very time-consuming and 
labor-intensive to acquire. 

As observed in Table 4, the performance of the proposed method on 
the two external datasets (PhysioNet-ICH and the CQ500) is slightly 
worse than on the RSNA test set. This is mainly due to differences in the 
image acquisition protocols and scanner machines as well as possible 
differences in patient characteristics. In the 2019-RSNA challenge, all 
the data are carefully curated such that incomplete or erroneous slices 
are removed and all scans have similar resolution (Flanders et al., 2020). 
However, the two external validation datasets have largely varying slice 
thicknesses and the images appear to be more noisy (Chilamkurthy 
et al., 2018; Hssayeni, 2020; Goldberger et al., 2000). The performance 
drop is not due to the smaller sample size of the external validation data. 
To verify this, we have created a similarly small RSNA test set by 
randomly selecting 10% samples from the 2019-RSNA batch-1 test data. 
The performance metrics on this small RSNA test set are summarized in 
Supplementary Table 3. Comparing with Table 4, it can be seen that the 
accuracy measures on this much smaller dataset remain about the same 
as on the full 2019-RSNA test set and still clearly higher than that of the 
external test data. 

Compared with existing algorithms for ICH subtype classification 
(Cho et al., 2019; Lee et al., 2019; Chilamkurthy et al., 2018; Ye et al., 
2019; Nguyen et al., 2020) (cf. Supplementary Table 2), our method 
takes better account of both intra-slice and inter-slice image informa-
tion. The multi-stage design also allows the RNN model at the last stage 
to automatically learn to correct prediction errors of the models in the 
earlier stages. The limitation is that training of the whole model is more 
complex and more time-consuming. The inference time is also longer 
than a single model. But once the models are trained, applying them to a 
new CT scan is still very fast, which in total only takes about 90 ms per 
slice. The inference speed is sufficient for real-time diagnosis assistance. 

The design of the current study also has some limitations. First, 
detailed patient clinical information and data collection parameters 
were not provided in the RSNA data. Therefore, it is impossible to study 
the individual effects of various factors on the model performance, such 
as scanner type, cause of bleeding, and patient demographics. Second, 
the current method is only developed and tested on head CT images. 
Other imaging modalities, especially MRI, are also used in ICH screening 
and diagnosis. Third, the external validation data (PhysioNet-ICH and 
CQ500) are still quite scarce. More thorough clinical validation of the 
developed system is necessary before it can be deployed in the real 
clinical workflow. 

5. Code availability 

The source code of the proposed AI algorithm is made publicly 
available for research purposes athttps://github.com/Scu-sen/1st-RS 
NA-Intracranial-Hemorrhage-Detection. 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, athttps://doi.org/10.1016/j.nicl.2021.102785. 
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