Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methylphenyl)-6-nitro-1,3-benzoxazole

Roberto Centore,* Vincenzo Piccialli and Angela Tuzi

Dipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy Correspondence e-mail: roberto.centore@unina.it

Received 25 March 2013; accepted 2 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.168; data-to-parameter ratio = 12.3.

The title compound, $C_{14}H_{10}N_2O_3$, is a π -conjugated molecule containing a benzoxazole aromatic fused heterobicycle. The benzoxazole ring system is planar within 0.01 Å. The molecule assumes an approximately flat conformation, the benzoxazole ring system forming dihedral angles of 6.52 (12) and 7.4 $(3)^{\circ}$ with the benzene ring and the nitro group, respectively. In the crystal, molecules are connected by very weak C-H···O hydrogen interactions, forming chains running parallel to the a or c axes. The methyl H atoms are disordered over two sets of sites of equal occupancy rotated by 60° .

Related literature

For general information on heterocycles in organic electronics and optoelectronics, see: Dalton (2002); Heeger (2010). For heterocycle-based semiconductors, optoelectronic and piezoelectric materials, see: Carella, Centore, Sirigu et al. (2004); Centore, Ricciotti et al. (2012); Centore, Concilio et al. (2012). For structural and theoretical analysis of conjugation in heterocycle-based organic molecules, see: Carella, Centore, Fort et al. (2004); Gainsford et al. (2008). For structural and theoretical analysis of conjugation in heterocycle-based metallorganic compounds, see: Takjoo et al. (2011); Takjoo & Centore (2013). For theoretical computations on similar compounds, see: Capobianco et al. (2012, 2013). For the synthesis of related heterocyclic compounds, see: Bruno et al. (2002); Centore et al. (2007); Piccialli et al. (2013); Centore, Fusco, Capobianco et al. (2013). For hydrogen bonding in crystals see: Desiraju & Steiner (1999); Centore, Fusco, Jazbinsek et al. (2013).

organic compounds

V = 2432.8 (19) Å³

Mo Ka radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.40 \times 0.20 \times 0.20$ mm

970 reflections with $I > 2\sigma(I)$

intensity decay: none

1 standard reflections every 120 min

Z = 8

T = 293 K

 $R_{\rm int} = 0.020$

Experimental

Crystal data

$C_{14}H_{10}N_2O_3$
$M_r = 254.24$
Orthorhombic, Pbca
a = 27.251 (4) Å
b = 7.4457 (6) Å
c = 11.990 (9) Å

Data collection

Enraf-Nonius MACH3 diffractometer 2968 measured reflections 2140 independent reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.055 \\ wR(F^2) &= 0.168 \end{split}$$
174 parameters H-atom parameters constrained S = 1.11 $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 2140 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10\cdots O2^{i}$ $C1-H1B\cdots O2^{ii}$	0.93 0.96	2.61 2.80	3.502 (6) 3.143 (5)	160 102
	1			

Symmetry codes: (i) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: MACH3/PC Software (Nonius, 1996); cell refinement: CELLFITW (Centore, 2004); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors thank the Centro Interdipartimentale di Metodologie Chimico-Fisiche, Università degli Studi di Napoli "Federico II", for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5053).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Crvst. 32, 115-119.
- Bruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. Part A Polym. Chem. 40, 1468-1475.
- Capobianco, A., Centore, R., Noce, C. & Peluso, A. (2013). Chem. Phys. 411, 11 - 16
- Capobianco, A., Esposito, A., Caruso, T., Borbone, F., Carella, A., Centore, R. & Peluso, A. (2012). Eur. J. Org. Chem. pp. 2980-2989.
- Carella, A., Centore, R., Fort, A., Peluso, A., Sirigu, A. & Tuzi, A. (2004). Eur. J. Org. Chem. pp. 2620-2626.
- Carella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948-1954.
- Centore, R. (2004). CELLFITW. Università degli Studi di Napoli "Federico II", Naples, Italy.
- Centore, R., Concilio, A., Borbone, F., Fusco, S., Carella, A., Roviello, A., Stracci, G. & Gianvito, A. (2012). J. Polym. Sci. Part B Polym. Phys. 50, 650-655.

- Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). *Eur. J. Org. Chem.* In the press. doi:10.1002/ejoc.201201653.
- Centore, R., Fusco, S., Jazbinsek, M., Capobianco, A. & Peluso, A. (2013). CrystEngComm. 15, 3318–3325.
- Centore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719–2725.
- Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083–2093.

Dalton, L. (2002). Adv. Polym. Sci. 158, 1-86.

- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-0619.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Heeger, A. J. (2010). Chem. Soc. Rev. **39**, 2354–2371.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nonius (1996). MACH3/PC and CAD-4-PC. Nonius BV, Delft, The Netherlands.
- Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. In the press. doi:10.1002/ejoc.201201554.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180-185.
- Takjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36–41.

supplementary materials

Acta Cryst. (2013). E69, o667-o668 [doi:10.1107/S1600536813008970]

2-(4-Methylphenyl)-6-nitro-1,3-benzoxazole

Roberto Centore, Vincenzo Piccialli and Angela Tuzi

Comment

Heterocycles are important compounds of synthetic chemistry. Besides their long standing and relevant application as drugs and bioactive compounds, aromatic heterocycles are playing a fundamental role in modern material chemistry as building blocks of conjugated active molecules in some emerging fields of organic electronics and optoelectronics: conducting polymers and organic solar cells (Heeger, 2010), organic field-effect transistors (Centore, Ricciotti et al., 2012), nonlinear optically active and piezoelectric compounds (Dalton, 2002; Carella, Centore, Sirigu et al. (2004); Centore, Concilio et al., 2012). The chemical investigation is mainly directed to the synthesis of new molecules or conjugated polymers containing heterocyclic moieties. However, also the structural investigation of the molecules is relevant, pointing towards the quantitative evaluation of the structural parameters related to the conjugation (Carella, Centore, Fort et al., 2004; Gainsford et al., 2008; Capobianco et al., 2012; Capobianco et al., 2013). Following our interest in the synthesis and characterization of new heterocyclic compounds, including metal containing heterocyclic compounds (Takjoo et al., 2011; Takjoo & Centore, 2013) for applications as advanced materials and bioactive compounds, and in the analysis of crystal structures controlled by the formation of H bonds (Centore, Fusco, Jazbinsek et al., 2013), we report, in the present paper, the structural investigation of the title compound, shown in Scheme 1. 2-(4methyl)-phenyl-6-nitro-benzoxazole is an organic dye containing the 6-nitrobenzoxazole acceptor group conjugated with a 4-methylphenyl moiety. The 6-nitrobenzoxazole-2-vl moiety has been used in the synthesis of polymers showing quadratic NLO behaviour (Bruno et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The phenyl and benzoxazole rings are nearly coplanar, the dihedral angle between the mean planes being 6.7 (1)°. That structural feature is in accordance with the expected π conjugation of the compound.

Molecules in the crystal form rows through very weak hydrogen interactions between methyl or aromatic C–H donors and oxygen acceptors of the nitro group (Fig. 2 and Fig. 3; Table 1). The chains, which have graph set symbol $C_1^1(14)$ and $C_1^1(7)$ are generated, respectively, by the *b* and *a* glide planes.

Experimental

The title compound was prepared by reaction of 2-amino-5-nitrophenol (5.00 g, 32.4 mmol) with toluic acid (4.41 g, 32.4 mmol) in polyphosphoric acid (150 g) at 150°C. The dehydration procedure is analogous to that we have already described for the synthesis of similar chromophores (Bruno *et al.*, 2002; Centore *et al.*, 2007). Purification of the title compound was obtained by recrystallization from ethanol. The final yield was 5.69 g (69%). M. p. 437 K. Single crystals were obtained by slow evaporation of an ethanol solution. ¹H-NMR (CDCl₃) δ 2.47 (s, 3H), 7.38 (d, 2H, J = 7.9 Hz), 7.82 (d, 1H, J= 8.5 Hz), 8.18 (d, 2H, J = 8.3 Hz), 8.33 (d, 1H, J= 8.7 Hz), 8.48 (d, 1H, J= 1.8 Hz).

Refinement

All H atoms were generated stereochemically. In particular, the methyl group is disordered over two sets of sites of equal occupancy rotated from each other by 60°. All H atoms were refined by a riding model with C—H = 0.93-0.96 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl hydrogen atoms.

Computing details

Data collection: *MACH3/PC* Software (Nonius, 1996); cell refinement: *CELLFITW* (Centore, 2004); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Figure 1

ORTEP view of the molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level. Only one orientation of the disordered methyl group is shown.

Figure 2

Row of molecules of the title compound running along the *a* axis. Only one orientation of the disordered methyl group is shown. Hydrogen bonds are shown as dashed lines.

Figure 3

Row of molecules of the title compound running along the *c*. Only one orientation of the disordered methyl group is shown. Hydrogen bonds are shown as dashed lines.

2-(4-Methylphenyl)-6-nitro-1,3-benzoxazole

Crystal data	
$C_{14}H_{10}N_2O_3$	F(000) = 1056
$M_r = 254.24$	$D_{\rm x} = 1.388 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 25 reflections
a = 27.251 (4) Å	$\theta = 12.2 - 12.4^{\circ}$
b = 7.4457 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 11.990 (9) Å	T = 293 K
V = 2432.8 (19) Å ³	Prism, brown
Z = 8	$0.40 \times 0.20 \times 0.20$ mm
Data collection	
Enraf–Nonius MACH3	$R_{\rm int} = 0.020$
diffractometer	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Radiation source: fine-focus sealed tube	$h = -12 \rightarrow 32$
Graphite monochromator	$k = -3 \rightarrow 8$

 $k = -3 \rightarrow 8$ $l = -5 \rightarrow 14$ 1 standard reflections every 120 min intensity decay: none

non-profiled ω scans

2968 measured reflections

2140 independent reflections

970 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.168$	neighbouring sites
S = 1.11	H-atom parameters constrained
2140 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.383P]$
174 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.05625 (9)	0.1644 (3)	0.0918 (2)	0.0545 (7)	
O2	0.25311 (13)	-0.0885 (6)	0.2271 (3)	0.1125 (14)	
O3	0.19587 (12)	-0.0394 (6)	0.3439 (3)	0.1144 (14)	
N1	0.08562 (12)	0.1994 (4)	-0.0827 (3)	0.0614 (10)	
N2	0.21215 (15)	-0.0363 (6)	0.2493 (4)	0.0771 (11)	
C1	-0.14836 (14)	0.4375 (6)	-0.1283 (4)	0.0819 (15)	
H1A	-0.1684	0.3329	-0.1391	0.123*	0.57 (5)
H1B	-0.1477	0.5068	-0.1958	0.123*	0.57 (5)
H1C	-0.1618	0.5090	-0.0690	0.123*	0.57 (5)
H1D	-0.1502	0.5663	-0.1302	0.123*	0.43 (5)
H1E	-0.1709	0.3923	-0.0735	0.123*	0.43 (5)
H1F	-0.1568	0.3901	-0.2002	0.123*	0.43 (5)
C2	-0.09695 (16)	0.3808 (5)	-0.0983 (4)	0.0624 (12)	
C3	-0.05929 (17)	0.3930 (6)	-0.1742 (4)	0.0754 (13)	
Н3	-0.0656	0.4411	-0.2443	0.091*	
C4	-0.01233 (16)	0.3358 (6)	-0.1496 (4)	0.0710 (13)	
H4	0.0122	0.3420	-0.2035	0.085*	
C5	-0.00180 (14)	0.2695 (5)	-0.0448 (3)	0.0516 (10)	
C6	-0.03907 (14)	0.2611 (5)	0.0325 (3)	0.0621 (11)	
H6	-0.0325	0.2182	0.1038	0.074*	
C7	-0.08606 (15)	0.3154 (6)	0.0058 (4)	0.0682 (13)	
H7	-0.1107	0.3075	0.0592	0.082*	
C8	0.04769 (15)	0.2121 (5)	-0.0175 (3)	0.0521 (10)	
С9	0.12336 (14)	0.1393 (5)	-0.0134 (3)	0.0548 (11)	
C10	0.17235 (15)	0.1012 (6)	-0.0351 (4)	0.0724 (13)	
H10	0.1855	0.1146	-0.1062	0.087*	

C11	0.20086 (14)	0.0426 (6)	0.0532 (4)	0.0718 (13)
H11	0.2337	0.0139	0.0416	0.086*
C12	0.18069 (14)	0.0268 (6)	0.1583 (4)	0.0592 (11)
C13	0.13235 (14)	0.0639 (5)	0.1837 (3)	0.0571 (11)
H13	0.1194	0.0525	0.2551	0.069*
C14	0.10530 (14)	0.1191 (5)	0.0941 (3)	0.0509 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0553 (17)	0.0632 (18)	0.0449 (16)	0.0015 (13)	0.0038 (13)	0.0002 (14)
O2	0.057 (2)	0.171 (4)	0.110 (3)	0.020 (2)	-0.005 (2)	0.013 (3)
O3	0.086 (2)	0.190 (4)	0.068 (2)	0.022 (3)	-0.004 (2)	0.022 (3)
N1	0.064 (2)	0.073 (3)	0.0474 (19)	-0.0022 (18)	0.010 (2)	-0.0039 (19)
N2	0.058 (2)	0.096 (3)	0.077 (3)	-0.006 (2)	-0.004 (2)	0.006 (3)
C1	0.073 (3)	0.070 (3)	0.103 (4)	0.010 (3)	-0.024 (3)	-0.008 (3)
C2	0.071 (3)	0.051 (3)	0.066 (3)	0.000 (2)	-0.008 (3)	-0.011 (3)
C3	0.090 (3)	0.087 (3)	0.049 (3)	0.014 (3)	-0.011 (3)	0.007 (3)
C4	0.075 (3)	0.086 (3)	0.052 (3)	0.009 (3)	0.002 (2)	-0.001 (3)
C5	0.060 (2)	0.051 (3)	0.044 (2)	0.000 (2)	-0.002 (2)	-0.003 (2)
C6	0.064 (3)	0.073 (3)	0.050 (2)	-0.004 (3)	0.002 (2)	0.004 (2)
C7	0.060 (3)	0.078 (3)	0.067 (3)	-0.006 (2)	0.004 (2)	0.001 (3)
C8	0.067 (3)	0.051 (3)	0.038 (2)	0.000 (2)	-0.001 (2)	-0.003 (2)
C9	0.058 (3)	0.058 (3)	0.048 (2)	-0.009 (2)	0.008 (2)	-0.007 (2)
C10	0.065 (3)	0.093 (4)	0.058 (3)	-0.003 (3)	0.019 (3)	-0.001 (3)
C11	0.053 (3)	0.092 (3)	0.070 (3)	-0.001 (3)	0.010 (2)	-0.003 (3)
C12	0.050 (2)	0.066 (3)	0.062 (3)	-0.003 (2)	-0.005 (2)	-0.002 (2)
C13	0.059 (3)	0.060 (3)	0.052 (3)	-0.004 (2)	0.005 (2)	-0.001 (2)
C14	0.048 (2)	0.051 (2)	0.054 (3)	-0.005 (2)	0.006 (2)	-0.005 (2)

Geometric parameters (Å, °)

01—C8	1.378 (4)	С3—Н3	0.9300
O1-C14	1.379 (4)	C4—C5	1.380 (5)
O2—N2	1.212 (4)	C4—H4	0.9300
O3—N2	1.218 (5)	C5—C6	1.376 (5)
N1—C8	1.299 (4)	C5—C8	1.452 (5)
N1-C9	1.396 (5)	C6—C7	1.381 (5)
N2-C12	1.465 (5)	C6—H6	0.9300
C1—C2	1.506 (5)	C7—H7	0.9300
C1—H1A	0.9600	C9—C14	1.387 (5)
C1—H1B	0.9600	C9—C10	1.389 (5)
C1—H1C	0.9600	C10—C11	1.383 (6)
C1—H1D	0.9600	C10—H10	0.9300
C1—H1E	0.9600	C11—C12	1.380 (5)
C1—H1F	0.9600	C11—H11	0.9300
C2—C7	1.373 (6)	C12—C13	1.380 (5)
C2—C3	1.375 (6)	C13—C14	1.366 (5)
C3—C4	1.381 (6)	C13—H13	0.9300

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.1 $118.4 (4)$ $121.4 (4)$ $120.2 (4)$ $121.0 (4)$ 119.5 119.5 119.5 119.5 119.5 $114.8 (3)$ $128.7 (4)$ $116.6 (3)$ $119.5 (4)$ $109.0 (3)$ $131.4 (4)$ $117.4 (4)$ 121.3 $120.1 (4)$ 119.9	C3-C4-H4 C6-C5-C4 C6-C5-C8 C4-C5-C8 C5-C6-C7 C5-C6-H6 C7-C6-H6 C2-C7-H7 N1-C8-O1 N1-C8-C5 O1-C8-C5 O1-C8-C5 C14-C9-N1 C10-C9-N1 C10-C9-N1 C11-C10-C9 C11-C10-H10 C9-C10-H10	104.6 (3) $122.3 (4)$ $118.5 (4)$ $119.1 (4)$ 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	C8—N1—C9 O2—N2—O3 O2—N2—C12 O3—N2—C12 C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1B—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.4 (4) $121.4 (4)$ $120.2 (4)$ $121.0 (4)$ 119.5 119.5 $121.0 (4)$ 119.5 119.5 $114.8 (3)$ $128.7 (4)$ $116.6 (3)$ $119.5 (4)$ $109.0 (3)$ $131.4 (4)$ $117.4 (4)$ 121.3 $120.1 (4)$ 119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.3 (4) $118.5 (4)$ $119.1 (4)$ 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	O2—N2—O3 O2—N2—C12 O3—N2—C12 C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1B—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.4 (4) 120.2 (4) 121.0 (4) 119.5 119.5 121.0 (4) 119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 120.1 (4) 119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.5 (4) 119.1 (4) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 56.3	O2—N2—C12 O3—N2—C12 C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.2 (4) $121.0 (4)$ 119.5 119.5 $121.0 (4)$ 119.5 119.5 119.5 $114.8 (3)$ $128.7 (4)$ $116.6 (3)$ $119.5 (4)$ $109.0 (3)$ $131.4 (4)$ $117.4 (4)$ 121.3 $120.1 (4)$ 119.9 119.9	C4—C5—C8 C5—C6—C7 C5—C6—H6 C7—C6—H6 C2—C7—C6 C2—C7—H7 N1—C8—O1 N1—C8—C5 O1—C8—C5 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9—C10—H10	119.1 (4) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	O3—N2—C12 C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.0 (4) 119.5 119.5 121.0 (4) 119.5 119.5 119.5 119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 120.1 (4) 119.9 119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 119.5 121.0 (4) 119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 120.1 (4) 119.9 119.9	C5—C6—H6 C7—C6—H6 C2—C7—C6 C2—C7—H7 C6—C7—H7 N1—C8—C5 O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9_C10_H10	$ \begin{array}{r} 109.5 \\ 109.5 \\ 109.5 \\ 109.5 \\ 109.5 \\ 109.5 \\ 141.1 \\ 56.3 \\ 56.3 \\ 109.5 \\ 56.3 \\ \end{array} $	C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 121.0 (4) 119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9	C7—C6—H6 C2—C7—C6 C2—C7—H7 C6—C7—H7 N1—C8—O1 N1—C8—C5 O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9—C10—H10	109.5 109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.0 (4) 119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 120.1 (4) 119.9 119.9	C2C7C6 C2C7H7 C6C7H7 N1C8C5 O1C8C5 C14C9N1 C10C9N1 C11C10C9 C11C10H10 C9C10H10	109.5 109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	C2—C1—H1C H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9	C2C7H7 C6C7H7 N1C8C5 O1C8C5 C14C9C10 C14C9N1 C10C9N1 C11C10C9 C11C10H10 C9C10H10	109.5 109.5 109.5 141.1 56.3 56.3 109.5 56.3	H1A—C1—H1C H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	C6—C7—H7 N1—C8—O1 N1—C8—C5 O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10	109.5 109.5 141.1 56.3 56.3 109.5 56.3	H1B—C1—H1C C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.8 (3) 128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	N1—C8—O1 N1—C8—C5 O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10	109.5 141.1 56.3 56.3 109.5 56.3	C2—C1—H1D H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128.7 (4) 116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	N1—C8—C5 O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9_C10_H10	141.1 56.3 56.3 109.5 56.3	H1A—C1—H1D H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116.6 (3) 119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	O1—C8—C5 C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9_C10_H10	56.3 56.3 109.5 56.3	H1B—C1—H1D H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 (4) 109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	C14—C9—C10 C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9_C10_H10	56.3 109.5 56.3	H1C—C1—H1D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0 (3) 131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	C14—C9—N1 C10—C9—N1 C11—C10—C9 C11—C10—H10 C9—C10—H10	109.5 56.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.4 (4) 117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	C10—C9—N1 C11—C10—C9 C11—C10—H10 C9_C10_H10	56.3	C2-C1-H1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.4 (4) 121.3 121.3 120.1 (4) 119.9 119.9	C11—C10—C9 C11—C10—H10 C9 C10 H10		H1A—C1—H1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.3 121.3 120.1 (4) 119.9 119.9	C11—C10—H10	141.1	H1B—C1—H1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.3 120.1 (4) 119.9 119.9	C0 C10 H10	56.3	H1C—C1—H1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.1 (4) 119.9 119.9	C9-C10-1110	109.5	H1D—C1—H1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.9 119.9	C12—C11—C10	109.5	C2—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.9	C12—C11—H11	56.3	H1A—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C10—C11—H11	56.3	H1B—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.4 (4)	C13—C12—C11	141.1	H1C—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.3 (4)	C13—C12—N2	109.5	H1D—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.3 (4)	C11—C12—N2	109.5	H1E—C1—H1F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.7 (4)	C14—C13—C12	117.7 (4)	C7—C2—C3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.1	C14—C13—H13	121.1 (4)	C7—C2—C1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.1	C12—C13—H13	121.2 (4)	C3—C2—C1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	127.8 (4)	C13—C14—O1	122.0 (4)	C2—C3—C4
C4—C3—H3 119.0 O1—C14—C9 107.4 C5—C4—C3 119.9 (4) N1—C9—C10—C11 -179. C1—C2—C3—C4 2.4 (7) N1—C9—C10—C11 -179. C1—C2—C3—C4 -177.7 (4) C9—C10—C11—C12 -1.1 (C2—C3—C4—C5 -2.1 (7) C10—C11—C12—C13 0.8 (7) C3—C4—C5—C6 0.5 (7) C10—C11—C12—N2 179.8 C3—C4—C5—C8 -178.9 (4) O2—N2—C12—C13 172.0	124.8 (4)	C13—C14—C9	119.0	С2—С3—Н3
C5—C4—C3119.9 (4)C7—C2—C3—C4 2.4 (7)N1—C9—C10—C11 $-179.$ C1—C2—C3—C4 -177.7 (4)C9—C10—C11—C12 -1.1 (C2—C3—C4—C5 -2.1 (7)C10—C11—C12—C13 0.8 (7)C3—C4—C5—C6 0.5 (7)C10—C11—C12—N2179.8C3—C4—C5—C8 -178.9 (4)O2—N2—C12—C13172.0	107.4 (4)	O1-C14-C9	119.0	С4—С3—Н3
C7—C2—C3—C4 2.4 (7) N1—C9—C10—C11 -179. C1—C2—C3—C4 -177.7 (4) C9—C10—C11—C12 -1.1 (7) C2—C3—C4—C5 -2.1 (7) C10—C11—C12—C13 0.8 (7) C3—C4—C5—C6 0.5 (7) C10—C11—C12—N2 179.8 C3—C4—C5—C8 -178.9 (4) O2—N2—C12—C13 172.0			119.9 (4)	C5—C4—C3
C7-C2-C3-C4 2.4 (7) N1-C9-C10-C11 -179. C1-C2-C3-C4 -177.7 (4) C9-C10-C11-C12 -1.1 (C2-C3-C4-C5 -2.1 (7) C10-C11-C12-C13 0.8 (7) C3-C4-C5-C6 0.5 (7) C10-C11-C12-N2 179.8 C3-C4-C5-C8 -178.9 (4) O2-N2-C12-C13 172.0				
C1—C2—C3—C4 -177.7 (4) C9—C10—C11—C12 -1.1 (C2—C3—C4—C5 -2.1 (7) C10—C11—C12—C13 0.8 (7) C3—C4—C5—C6 0.5 (7) C10—C11—C12—N2 179.8 C3—C4—C5—C8 -178.9 (4) O2—N2—C12—C13 172.0	-179.9 (4)	N1-C9-C10-C11	2.4 (7)	C7—C2—C3—C4
C2-C3-C4-C5 -2.1 (7) C10-C11-C12-C13 0.8 (7) C3-C4-C5-C6 0.5 (7) C10-C11-C12-N2 179.8 C3-C4-C5-C8 -178.9 (4) O2-N2-C12-C13 172.0	-1.1 (7)	C9-C10-C11-C12	-177.7 (4)	C1—C2—C3—C4
C3—C4—C5—C6 0.5 (7) C10—C11—C12—N2 179.8 C3—C4—C5—C8 -178.9 (4) O2—N2—C12—C13 172.0	0.8 (7)	C10-C11-C12-C13	-2.1 (7)	C2—C3—C4—C5
C3—C4—C5—C8 –178.9 (4) O2—N2—C12—C13 172.0	179.8 (4)	C10-C11-C12-N2	0.5 (7)	C3—C4—C5—C6
	172.0 (4)	O2—N2—C12—C13	-178.9 (4)	C3—C4—C5—C8
C4—C5—C6—C7 0.8 (6) 03—N2—C12—C13 -5.9 (-5.9 (7)	O3—N2—C12—C13	0.8 (6)	C4—C5—C6—C7
C8—C5—C6—C7 -179.8 (4) O2—N2—C12—C11 -7.0 (-7.0 (7)	O2—N2—C12—C11	-179.8 (4)	C8—C5—C6—C7
C3—C2—C7—C6 –1.0 (6) O3—N2—C12—C11 175.1	175.1 (5)	O3—N2—C12—C11	-1.0 (6)	C3—C2—C7—C6
C1—C2—C7—C6 179.0 (4) C11—C12—C13—C14 0.0 (6	0.0 (6)	C11—C12—C13—C14	179.0 (4)	C1—C2—C7—C6
C5—C6—C7—C2 –0.6 (7) N2—C12—C13—C14 –179.	-179.0 (4)	N2-C12-C13-C14	-0.6 (7)	C5—C6—C7—C2
C9—N1—C8—O1 -0.3 (4) C12—C13—C14—O1 179.4	170 4 (4)	C12-C13-C14-O1	-0.3 (4)	C9—N1—C8—O1
C9—N1—C8—C5 179.6 (4) C12—C13—C14—C9 -0.6 (1 /9.4 (4)		179.6 (4)	C9—N1—C8—C5
C14 O1 C8 N1 07(4) C8 O1 C14 C12 1702	1/9.4 (4) -0.6 (6)	C12—C13—C14—C9	0.7 (4)	C14—O1—C8—N1
C14 - O1 - C3 - N1 = 0.7(4) = C3 - O1 - C14 - C13 = 1/9.2	1 /9.4 (4) -0.6 (6) 179.2 (4)	C12—C13—C14—C9 C8—O1—C14—C13		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1/9.4 (4) \\ -0.6 (6) \\ 179.2 (4) \\ -0.8 (4) \end{array} $	C12—C13—C14—C9 C8—O1—C14—C13 C8—O1—C14—C9	-179.2 (3)	C14—O1—C8—C5

C4—C5—C8—N1	-6.1 (7)	N1-C9-C14-C13	-179.3 (3)
C6—C5—C8—O1	-5.6 (6)	C10—C9—C14—O1	-179.7 (3)
C4—C5—C8—O1	173.8 (4)	N1-C9-C14-O1	0.7 (4)
C8—N1—C9—C14	-0.2 (4)	C4—C5—C8—N1	-6.1 (7)
C8—N1—C9—C10	-179.8 (4)	C4—C5—C8—O1	173.8 (4)
C14—C9—C10—C11	0.5 (6)	C11—C12—N2—O3	175.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
C10—H10…O2 ⁱ	0.93	2.61	3.502 (6)	160
C1—H1B····O2 ⁱⁱ	0.96	2.80	3.143 (5)	102

Symmetry codes: (i) -*x*+1/2, -*y*, *z*-1/2; (ii) *x*-1/2, -*y*+1/2, -*z*.