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Abstract

Many analogues of the glycolipid alpha-galactosylceramide (a-GalCer) are known to activate iNKT cells through their
interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT
cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell
ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell
ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell
activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for
each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different
test-systems. We linked the chemical space to the immunological space using a system biology computational approach
resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of
iNKT cell activation by a-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell
activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
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Introduction

iNKT cells are a regulatory type of T cells that have been

involved in many different disease settings. They express a T cell

receptor that is composed of an invariant alpha-chain (Va14-Ja18

in mice, Va24-Ja18 in humans) and a restricted set of beta-chains

(Vb7, Vb8.1, Vb8.2 and Vb2 in mice, Vb11 in humans). These

semi-invariant T cell receptors (TCR) recognize antigens in the

context of CD1d, which is a non-classical MHC molecule

expressed by antigen presenting cells (APCs). In contrast to

classical MHC molecules, CD1d presents glycolipids instead of

peptides. Upon TCR recognition, iNKT cells are activated which

results in the production of large amounts of pro-inflammatory

Th1- (IFN-c, TNF-a) and anti-inflammatory Th2-cytokines (IL-4,

IL-13) [1] both by iNKT cells themselves and activated bystander

cells. Depending on the elicited cytokine response, glycolipid

induced iNKT cell activation is able to alter the outcome of several

pathologies, as has been observed in an experimental model of

rheumatoid arthritis (CIA) [2] and different cancer models [3],

making glycolipids promising therapeutics for immunomodulation

[4–6]. Poor efficacy in some clinical trials is attributed to the

opposing activities of simultaneous secreted Th1 and Th2

cytokines. Hence, glycolipids capable of inducing a biased Th1

or Th2 response are believed to afford superior clinical effective-

ness.

In the physiological process of ageing, iNKT cell changes are

observed [7] and a Th1/Th2 imbalance in favour of Th2

dominance is known as one of the most important detrimental

shifts of immune senescence [8–11].

Alpha-galactosylceramide (a-GalCer), the synthetic prototype of

an iNKT cell activating glycolipid, consists of a galactose

connected to a lipid backbone by an alpha-glycosidic binding.

The lipid backbone consists of a ceramide: an N-acyl chain

coupled to a phytosphingosine-chain. Alpha-galactosylceramide

evokes the production of a combined Th1/Th2-cytokine response

[1].

Currently, different hypotheses about how a specific iNKT cell

agonist can induce a polarized Th1 or Th2 response are being

intensively examined but it has been shown already that a

reasonable strategy is to alter the structure of the glycolipids. This

bias or selectivity should lead to more disease-specific therapies.

Nowadays, hundreds of these altered glycolipids have been

synthesized and tested on their ability to provoke different

cytokine-responses, in mice as well as in humans, in vitro and in

vivo. Despite the numerous chemical and immunological data

reported, no overall combined in silico analysis is up till now
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available. In this study, we used a system biology computational

approach exploring the chemical and immunological spaces

wherein the currently known iNKT cell activators are situated.

All available existing data (up to December 2012), as well as new

results from novel analogues (from our research group), were

included. The chemical space of the iNKT cell activating

glycolipids is defined by their chemical properties, quantitatively

expressed by descriptors, while the immunological space is defined

by different cytokine-responses. This novel approach resulted in an

in silico structure-immune model of iNKT-activators. We believe

such a model could be valuable for future design of new

compounds, leading to optimized iNKT cell based therapies.

Materials and Methods

Dataset
We searched Web of Science, using the keywords ‘a-GalCer-

analogues’ and ‘iNKT cell activators’ till the end of 2012. We only

included articles containing defined chemical structures accom-

panied with quantitative immunological results. After a prelimi-

nary search, we found that the most frequently used immunolog-

ical markers are the cytokines IL-2, IFN-c, IL-4 and IL-13.

Moreover, we could define five test-models: mice/in vivo, mice/in

vitro/cell-cell, mice/in vitro/cell-plate, human/in vitro/cell-cell and human/

in vitro/cell-plate, where the cell-cell system refers to CD1d and

iTCR both expressed on cells, while for the cell-plate system,

CD1d is plate-bound. As such, a maximum of 20 immunological

responses for every analogue is thus possible. We used the

cytokine-values reported in the articles. We tested some new

analogues with slightly different composition as well as published

analogues, to expand the chemical and immunological space of the

dataset and improve our models. These new analogues can grossly

be divided in three groups: substitutions on the 6-OH of a

galacturonic acid sugar (138, 139, 140, 142, 143 and 145), amine

substitutions of the OH-backbone of the sphingosine chain (154,

155, 156, 157 and 159) and variations on the length and

phenylation of the lipid chains (160, 161, 163, 164 and 165). To

account for the variability in the immunological responses from

different articles and experiments, the immunological response of

the analogue is normalized to the response of a-GalCer, which is

numbered as compound 1. This relative immunological response,

i.e. the ratio relative to the reference compound 1, is the

immunological result used in the computations. If different doses

or incubation times for one analogue were used in the same

experiment, only those results are withheld corresponding to the

dose and incubation time for which a-GalCer gave maximal

cytokine-response.

In total, we analyzed 333 analogues (Supporting information S1)

from 57 articles (Supporting information S2) and from unpublished,

new data of our lab.

Chemical space
With the use of the chemical software programs Hyperchem

8.0.8 (Hypercube, Gainesville, USA) and Dragon 5.5 (Talete,

Milan, Italy), the three-dimensional structure of the 333 glycolipids

was optimized, followed by the calculation of 3228 chemical

descriptors. After removal of the constant descriptors, a final

dataset of 1656 descriptors was retained. Multivariate data-

analysis on this resulting 33361656 data-matrix was performed

using Principal Component Analysis (PCA) and Hierarchical

Cluster Analysis (HCA) with SIMCA-P+ 12.0 (Umetrics, Sweden)

and SPSS Statistics 20.0 (Illinois, USA) software programs,

respectively. PCA and HCA are two different ways to cluster

molecules based on their chemical properties as quantified by their

descriptors. See Supporting information S3 for a more in-depth

description [12,13].

Immunological space
For the analysis of frequencies, variability and correlations,

SPSS Statistics 20.0 was used. In order to integrate the different

cytokine responses into a limited set of physiological interesting

responses, a multi-criteria decision technique was employed, using

Derringer’s concept of desirability [14,15,16]. Every immunolog-

ical response was first linearly transformed into a dimensionless

desirability (d) value, ranging from 0.1 to 0.9, where 0.1 is the least

and 0.9 the most desired cytokine response (Supporting information S4

and S5). As such, analogues with a high Th1 desirability should

induce high IFN-c responses – high IFN-c values get d-values

close to 0.9 – while they induce low IL-4 responses – low IL-4

values get d-values close to 0.9. The opposite is true for analogues

with a high Th2 desirability. These standardized d-values were

combined into a global D-value for each analogue, which is the

geometric mean. The analogue with the highest D-value expresses

the best overall combination of the different desired responses.

Inherent to this desirability concept, all D-values lie between 0.1

and 0.9. Analogues where both the IFN-c and IL-4 responses are

very high or very low are not of interest for fine-tuning the

immune system in a clinical setting, and this is reflected in a low D-

value of 0.3 (geometric mean of 0.1 and 0.9). We calculated four

different D-values for each analogue where sufficient information

was available: Th1 in vivo, Th2 in vivo, Th1 in vitro and Th2 in vitro.

Structure-immune modelling
Stepwise linear regression (Multiple Linear Regression, MLR)

and Partial Least Squares (PLS) regression were performed for the

modelling using SPSS Statistics 20.0 and SIMCA-P+ 12.0 software

programs [17]. To obtain the MLR models, F values to enter/

remove were set at 0.05 and 0.10, respectively. The models were

also validated for their ability to predict the quantitative

desirability value of newly synthesized analogues. Therefore, a

PLS seven-fold internal cross-validation was performed, resulting

in a cross-validated R2 and Q2 value, which is an estimate of the

predictive ability of the model. To visualize the goodness-of-fit of

the models to categorize the analogues as strong or weak Th1 or

Th2 molecules, an ROC curve was built. Strong analogues have a

D-value higher than a-GalCer. The ‘goodness’ of the ROC curve

was expressed as the area under the curve.

Results and Discussion

Dataset
Table 1 gives the distribution of our dataset, ordered by the

different test-systems and markers used. In total, 851 results were

available, covering 333 different a-GalCer analogues. Some a-

GalCer analogues were evaluated by different research groups

using multiple methods; for these analogues, the normalized data

obtained with a specific test-system and marker were averaged to

obtain one result as represented in the total set of 851 results.

The test-system most frequently applied to obtain our dataset is

the human/in vitro/cell-cell system (34.31%). This is followed by two

test-systems almost equally applied: the mice/in vitro/cell-cell

(28.67%) and mice/in vivo method (27.85%). The two in vitro/cell-

plate methods are only marginally used, with the human/in vitro/cell-

plate method only reported in two studies (S2: references 4 and 57).

Therefore, unless otherwise mentioned, with the in vitro test-models

is meant the in vitro/cell-cell test-models in this article. IFN-c and

IL-4 are the markers most frequently measured in the three most

important test-systems, i.e. their frequencies ranging from 7.87% to
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14.22%. The IL-2 data were mostly obtained from the mice/in

vitro/cell-cell method (10.22%), while IL-13 was only used to a

limited extent in the human/in vitro/cell-cell test-system (6.58%).

Chemical space
The PCA description is given in Supporting information S6.

Looking at the score plot (Figure 1), three outlying groups can be

observed, mainly based on the sugar composition: the molecules

containing four (125–127 and 88), five (100 and 55) and six (104)

sugar-derived moieties are classified in different groups. An in-

depth study of the different clusters was performed using the

dendrogram of the HCA analysis (Supporting information S7). This

visual representation categorizes the a-GalCer analogues contain-

ing two or three sugar molecules (56, 58, 59, 79–84, 86, 87, 89–

93, 103, and 230) in one cluster. This chemical segregation can be

linked to functional segregation with previous studies showing that

the extra sugar groups have to be accommodated by the iNKT

TCR, resulting in loss of energy and thus weaker antigens [18].

The further hierarchical clustering results (dendrogram) are

described in Supporting information S8.

Immunological space
Before transforming the immunological responses in dimen-

sionless desirability (d) values for the structure-immune modelling,

the biological data were investigated with the objective of (1)

evaluating the value of each test-model, and (2) examining the

currently assumed relations between IFN-c, IL-4 and IL-13.

To gain more insight in the different test-models, we compared

the intra-variability and the inter-variability of the analogues in the

different test-models and looked at their relations. The intra-

variability or intrinsic method variation was quantified by the

relative standard deviation for every analogue that had identical

biological responses from more than one study. In ideal conditions,

the responses for the same analogue in different studies are equal,

represented by a very low relative standard deviation. The

available results are shown in Figure 2A, overall suggesting that

IL-4 and IFN-c variability are the lowest in the human/in vitro test-

model. This means that human/in vitro test-models are more precise

to uniformly compare IL-4 and IFN-c biological activity of a-

GalCer analogues than mice/in vitro or mice/in vivo test-models,

where the variation intrinsic to the test-model is high. The inter-

variability or variation between different analogues for a specific

test-model is indicative for its discriminating power. In the worst-

case scenario, the inter-variability for a given test-model is zero,

which means that all the analogues give the same biological

response and the test-model is non-discriminating. Figure 2B

visualizes the inter-variability or discriminating power for IFN-c
and IL-4 in 3 different test-models. The IL-2 and IL-13 data were

Table 1 Distribution of methodologies used in a-GalCer
immunological studies.

Test-model Marker
Number of
results %

Mice/in vivo IL-2 3 0.35

IFN-c 120 14.10

IL-4 113 13.28

IL-13 1 0.12

Mice/in vitro/cell-cell IL-2 87 10.22

IFN-c 77 9.05

IL-4 67 7.87

IL-13 13 1.53

Mice/in vitro/cell-plate IL-2 66 7.76

IFN-c 1 0.12

IL-4 1 0.12

IL-13 1 0.12

Human/in vitro/cell-cell IL-2 19 2.23

IFN-c 121 14.22

IL-4 96 11.28

IL-13 56 6.58

Human/in vitro/cell-plate IL-2 5 0.59

IFN-c 2 0.24

IL-4 1 0.12

IL-13 1 0.12

Total 851 100

doi:10.1371/journal.pone.0087000.t001

Figure 1. PCA score plot with the two first principal component vectors t(1) and t(2). Each PCA vector represents a specific combination of
the 1656 chemical descriptors. The three most outlying groups can be observed. An in depth study was performed with HCA analysis.
doi:10.1371/journal.pone.0087000.g001

Modelling Cytokine Polarizing iNKT Cell Agonists

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e87000



not available in sufficient amounts in different test-models for

comparison and are therefore not included. From the relative

standard deviation for IFN-c and IL-4 (Figure 2B), it is observed

that the human/in vitro test-model, similar to the mice/in vivo test-

model, is more discriminating than the mice/in vitro test-model.

This implies that, when similar analogues are to be fine-tuned in a

differentiation study, preference should be given to the human/in

vitro or mice/in vivo test-model when possible. Beside the superiority

of the human/in vitro and mice/in vivo test-models in discriminating

power, it is also observed that mice results are closely related to the

human results for the in vitro test-systems (Figure 2C-D). The mice/in

vivo test-model did not show any meaningful relation with the other

systems (Supporting information S9): this test-model is thus delivering

new information next to the mice/in vitro and human/in vitro test-

models, which are giving rather similar information.

In conclusion, these three studied aspects of comparison imply

that if one has to make test-model choices, the mice/in vitro test-

model is becoming superfluous, while the mice/in vivo and the

human/in vitro test-models are giving the most discriminative and

orthogonal information.

When we plotted IFN-c versus IL-4 in the three test-models

under evaluation (Figure 3), it was interesting to see that stronger

Th1 or Th2 polarized analogues existed in the in vivo test-model:

quite some points are in the outer parts of the graph (Figure 3A).

Much less outward points are observed with the in vitro test-models

(Figure 3B and 3C). This can be explained by the relative lack of

bystander cells in the in vitro test-models, such as NK-cells, which

are supposed to play an important role in cytokine-polarization

[19,20]. Supporting this view is the fact that the cytokine-

polarization is less with the human/in vitro model compared to the

mice/in vitro model. We hypothesize that this is due to the frequent

use of mice spleen-extracts in the mice/in vitro model, where other

cells than iNKTs and APCs are also present. Beside the presence

of bystander cells to explain the cytokine-polarization, a distinct

APC profile in vivo versus in vitro could also play a role [21]. The

position of the data-points in Figure 3B also implies that there is a

Figure 2. Comparison of the different test-models. (A) Intra-variability. Box-plots of relative standard deviations are shown. Each value
represents a compound with its relative standard deviation. The human test-model shows a lower median than the mice test-models, which means
that in the human test-model more compounds have uniform cytokine-responses between different research groups (IL-4 p = 0.015, IFN-c p = 0.13,
Kruskal-Wallis test). (B) Inter-variability. The height of the bars represents the discriminating power of a specific test-model for a specific cytokine. This
is calculated by a relative standard deviation of the biological responses in a specific test-model (corrected for the intrinsic intra-variability). (C + D)
Relation between mice/in vitro and human/in vitro assay for (C) IFN-c (rs = 0.56, p = 0.002) and (D) IL-4 (rs = 0.38, p = 0.18).
doi:10.1371/journal.pone.0087000.g002
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Th2-overestimation with the mice/in vitro test-models compared to

the other test-models.

The well-accepted association between the two Th2-cytokines

IL-4 and IL-13 was also confirmed in the human and mice models

by our data (not shown).

Structure-immune modelling
Based on both the chemical space and the immunological space,

structure-immune models were computed. The immunological

response variable of these models is represented by a D(esirability)-

value, which is a combination of desired cytokine-values. For

example, an analogue with high IFN-c and low IL-4 values has a

high Th1 D-value. The human and mice in vitro data were combined

in one model because of a gain in sample size/power and the high

correlation between these two test-systems (see Immunological space).

Supporting information S10 gives the chemical descriptors and their

respective coefficients for both the in vivo and in vitro models. To

validate our models, internal cross-validation was used, which

involves repeatedly leaving a sample out of the model and test this

sample in the model made by the remaining data. From the

goodness-of-fit R2 values (0.64–0.96) as well as from the predictive

Q2 values (0.51–0.78) (S10) can be derived that our structure-

immune models well explain the variability observed. Figure 4 gives

a visual representation of the prediction-models in a ROC curve,

where the dichotomic cut-off is set at the D-value of a-GalCer.

This gives an idea about the power of our models to select

analogues with stronger Th1 or Th2 response than a-GalCer.

From these ROC curves, it can again be concluded that the Th1 in

vivo, Th2 in vivo and Th1 in vitro models are excellent tests (AUC .

0.9) and the Th2 in vitro a good test (AUC . 0.8) to distinguish the

strong a-GalCer analogues from the weak ones.

In our laboratory, we analysed 16 new analogues (138–140,

142, 143, 145, 154–157, 159–161, 163–165) using mice/in vivo

experiments and found only compounds 138 and 142, with

aromatic substitutions on the 6-OH of a galacturonic acid sugar, to

be of further interest: these molecules had a higher Th1 in vivo

desirability than a-GalCer 1. Our computed model also indicated

only these two analogues, i.e. 138 and 142, as more desirable than

a-GalCer 1, which examplifies the good R2 and Q2 of our model.

Analyzing these regression models gives information about the

chemical characteristics of the a-GalCer analogues which are

important for their immunological behaviour. In literature, to

Figure 3. Th1/Th2 polarization in the different test-models. The graph has a color-gradient with the darker parts representing stronger
polarizers. a-GalCer is shown in red on the y = x line.
doi:10.1371/journal.pone.0087000.g003
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explain the Th1/Th2 balance, it is demonstrated that a Th1

cytokine pattern requires longer TCR stimulation than a Th2

cytokine pattern [22]. Therefore the overall stability of the CD1d-

glycolipid-TCR complex is often analyzed, including the stability

of the glycolipid antigen in vivo [19,22–25]. In the following

section, this information is used to evaluate the calculated in vivo

and in vitro models. The meaning of the chemical descriptors used

in the text below is given in Supporting Information S11.

Our models (S10) suggest that strong Th2 analogues depend of

many more chemical properties than Th1 analogues. For the in

vivo models for example, a similar R2 is computed with more than

double the amount of chemical descriptors needed to explain the

Th2 versus Th1 model. With the in vitro data, we were not able to

build an excellent Th2 model with a limited set of chemical

descriptors, suggesting the dependence of many more chemical

descriptors.

From the Th1 in vivo model (e.g. descriptors nROCON,, C-041

and Morxxe/m), it is clear that the presence of a carbamate or

ureum linker is preferred for Th1 activity. This is in accordance

with previous crystallographic data, demonstrating that the linker

between the 6-OH galactose and the aromatic group is very

important, affecting TCR affinity and thus antigenicity; the

Figure 4. ROC curves. The AUC is an estimate of the goodness of fit. (A) Th1 mice/in vivo (AUC = 0.948). (B) Th2 mice/in vivo (AUC = 0.991). (C) Th1
in vitro (mice+human) (AUC = 0.961). (D) Th2 in vitro (mice+human) (AUC = 0.843). AUC: Area Under the Curve.
doi:10.1371/journal.pone.0087000.g004

Modelling Cytokine Polarizing iNKT Cell Agonists

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e87000



carbamate analogues analyzed in our lab (129–135 and 195)

displayed a significantly stronger Th1 profile due to higher IFN-c
and IL-12 production compared to a-GalCer 1 [26,27]. Next, the

presence of a fluor atom is recommended for a high Th1 response

as well: the PLS and MLR models both indicate many F-

descriptive parameters, e.g. F-084 and Bx[C-F]. This is confirmed

by molecules 134, 137 and 325, inducing comparable levels of

IFN-c as a-GalCer 1 with only marginal levels of IL-4; this effect is

caused by a higher binding strength and stability with the TCR of

iNKT cells [28].

The Th1 in vitro model is characterized by the presence of urea

derived moieties (nCONN descriptor), similar to the Th1 in vivo

model. This again complies with crystallographic results: the urea

linker has an optimal length to induce the formation of a third

small anchor (hydrophobic) pocket, as well as the correct spacing

between the carbonyl oxygen and the galactose to form the

conserved H-bond with Thr159, without significantly affecting the

galactose orientation [26]. Next, modifications at the long N-acyl

tail of the ceramide by (F-substituted) aromatic groups (nCb-, B09

[C-F] and autocorrelation descriptors evaluating the chain length)

influence the Th1 activity as well: the stability of the GalCer-

CD1d complex is increased due to additional hydrophobic forces

between the aromatic goups and the A’-pocket, leading to higher

Th1 activity levels. Phenyl modifications on the sphingosine

moiety decrease the glycolipid flexibility, stabilizing the F’-pocket

of the CD1d binding site and thereby increasing CD1d affinity for

the iNKT TCR [28,29].

With only these limited number of described structural

characteristics, the high Th1 activity of already 10/22 (in vivo)

and 27/35 (in vitro) a-GalCer analogues (activity . a-GalCer 1)

could be explained.

For high Th2 activity, in vivo or in vitro, aliphatic desaturations

should be present (e.g. nR = Cs, Ui, nBM and nCconj descriptors,

based on MLR and PLS models). This correlates with previous

studies where increased hydrophilicity in the acyl or sphingosine

chain, e.g. by the addition of desaturations (C20:2), was associated

with a reduced stability of the GalCer-CD1d complex, leading to

Th2 polarization and relatively weak iNKT cell activation [22–

25]. The increase in Th2 activity by higher hydrophilicity is

confirmed by e.g. the Mp, nHBonds and nOHp descriptors of the

Th2 in vitro model. The high Th2 activity of molecule 99 (OCH),

the prototypical Th2 biasing a-GalCer analogue with a truncated

sphingosine chain and a reduced acyl chain [22,23], can be

explained by the negative coefficient values of the ECC

(eccentricity) and W3D (shape) descriptors, favouring thus

compact conformations. Next, 6’’-triazole-substituted a-GalCer

analogues were reported to exhibit a small Th2 cytokine-biasing

response as well [30]. These findings also appear in both the Th2

in vivo and in vitro model, e.g. the Bx[N-N], Fx[N-N], nTriazoles, H-

048, C-034 and N-073 descriptors. Interestingly, the C-041

descriptor (ureum/carbamate), which was found to be important

for Th1 activity, shows a negative coefficient value in the Th2 in

vivo model. This again confirms the Th1/Th2 biasing potential of

urea and carbamate analogues.

About half of the molecules with high Th2 activity, i.e. Th2

activity higher than the activity of a-GalCer 1 (in vivo: 10/19; in

vitro: 13/29) could be confirmed as potent Th2-biasing analogues,

based on the limited characteristics described above.

We can thus conclude that our prediction models correspond

well with the current binding hypotheses explaining the polariza-

tion of the cytokine profile after iNKT cell activation and that they

have a good to excellent accuracy to identify a-GalCer analogues

with strong polarizing properties. Therefore, we propose these

novel models to be used in a high-throughput screening approach,

decreasing analysis time and costs for functionality analysis.
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