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Crocins (CRs) and the related active constituents derived from Crocus sativus L.
(Saffron) have demonstrated protective effects against cerebral ischemia and
ischemic stroke, with various bioactivities including neuroprotection, anti-
neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin
(CR) has been shown to act on multiple mechanisms and signaling pathways involved
in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain
enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and
vascular endothelial growth factor-A. CR is generally safe and well-tolerated.
Pharmacokinetic studies indicate that CR has poor bioavailability and needs to
convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies
have shown the efficacy of saffron and CR in treating various conditions, including
metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease.
There is evidence supporting CR as a treatment for ischemic stroke, although further
studies are needed to confirm their efficacy and safety in clinical settings.
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INTRODUCTION

Stroke (cerebral apoplexy) is a serious cerebrovascular disease and the second leading cause of death
globally (WHO, 2020). There are three different categories of stroke, namely ischemic stroke (IS),
hemorrhagic stroke (Waziry et al., 2020), and transient ischemic attack (Martinez et al., 2020). The
prevalence of stroke varies in different countries, with a high incidence in Oceania, Asia, North
Africa, and parts of America (Venketasubramanian, 2021; Zhou et al., 2021). Globally, 101.5 million
people suffered from a stroke in 2019, causing 6.6 million deaths. Of these, 77.2 million were IS,
resulting in 3.3 million deaths (AMA, 2021; Yang et al., 2021).
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IS is caused by a blood clot formed in the brain vasculature
(thrombotic stroke) or in the peripheral system travelling to the
brain through the bloodstream (embolic stroke) (Shiber et al.,
2010; Khan et al., 2017; Ye et al., 2021). Currently, there are still
limited therapies for IS, either by surgical intervention to remove
the thrombus via thrombectomy (Yoo and Andersson, 2017) or
pharmacological interventions using recombinant tissue
plasminogen activator (rtPA) intravenous (IV) and lipid-
lowering drugs such as statins (Fuentes et al., 2009; Kazley
et al., 2013; Alakbarzade and Pereira, 2020; Barthels and Das,
2020; Wechsler, 2020; Orset et al., 2021). These therapies have
limited efficacy (Singh and Singh, 2019), low prognosis, and are
associated with adverse reactions and the risk of complications
(Zheng et al., 2019; Cui et al., 2020; Pergolizzi Jr et al., 2020). In
addition, IS patients often have limited access to rtPA (Barthels
and Das, 2020) due to the narrow therapeutic window (which
must be administered within 4.5 h of IS onset) (Fukuta et al.,
2017; Barthels and Das, 2020). The adverse effects of rtPA, such as
hemorrhagic transformation with increased matrix
metalloprotein (MMP) (Orset et al., 2021), anaphylaxis and
systemic bleeding (Chapman et al., 2014; Khandelwal et al.,
2021) have restricted its clinical prescription (Cao et al., 2021).

Due to the limitations of the aforementioned therapies, there
have been continuing efforts to discover, develop, research, and
implement new therapies for IS (Marquez-Romero et al., 2020;
Williams et al., 2020). A number of natural ingredients and
traditional herbal medicines have been investigated as potential
therapies for IS, including ginsenoside Rg1 and Rb1 (Gao, Bai et al.,
2020), Naoxinqing (NXQ) (Bei et al., 2004), Buyang Huanwu
Decoction (Hao et al., 2012), saffron (SF) (Sharma et al., 2020)
and related formulas including Naodesheng (Sugawara and Chan,
2003; Hao et al., 2015), Weinaokang (Zhang et al., 2010), also
known as Sailoutong (SLT) (Fan et al., 2021). SLT is a standardized
combination of SF that has been shown to be effective for vascular
dementia in Phase I and Phase II clinical trials and is currently
under the phase III trial for vascular dementia (Chang et al., 2016;
Jia et al., 2018; Steiner et al., 2018). NXQ and SLT have shown
vigorous antioxidant activity that may play a role in their

neuroprotective effects (Bei et al., 2004; Bei et al., 2009; Fan
et al., 2021). Ginsenoside Rg1 was demonstrated with a
protective effect in animal models against ischemia/reperfusion
(I/R) induced injuries (Xie et al., 2015b; Chen et al., 2019; Gao et al.,
2020) possibly via alleviating blood-brain barrier (BBB) disruption
(Zhou et al., 2014), downregulating inflammatory mediators
(Zheng et al., 2019) and ameliorating protease-activated
receptor-1 expression (Xie et al., 2015a). Additionally, Gj-4, a
CR enrichment extract from Gardenia Jasminoides J. Ellis
improved neurovascular protection, mitigating endothelial cell
damage (Yang, 2020) and protecting memory deficit in rodents
focal cerebral ischemia (Li et al., 2014; Pang et al., 2020; Liu et al.,
2021a).

C. sativus L. (Iridaceae) in the superorder of monocots and
subdivision of spermatophytes (Crocus-sativus, 2010) yields
saffron (SF—the dried stigma) which demonstrated various
pharmacological effects, including aphrodisiac (Kashani et al.,
2013), anticonvulsant (El Khoudri et al., 2021), antitussive, and
antianxiety (Khazdair et al., 2019). SF has long been used as a
folk medicine to treat a variety of diseases and conditions,
including neurodegenerative diseases, memory disorders,
atherosclerosis, hyperlipidaemia, diabetes, high blood
pressure, ulcers, and fatty liver disease (Abe and Saito, 2000;
Sheikhani et al., 2017; Awasthi and Kulkarni, 2020). C. sativus L.
is known to be native to Greece and Iran, and has been
extensively cultivated in other countries such as southern
Europe, Tibet, and India (Jan et al., 2014). The global
production of SF is expected to increase by 12.09% in
2020–2027 (Kothari et al., 2021b), with 90% from Iran (Dhar
and Mir, 1997; Kothari et al., 2021a). Iran has been reported as a
country with a highly sustainable cultivation source of C. sativus
L. based on climatic and edaphic conditions, and production
and processing practices (Ghorbani and Koocheki, 2017). CR
compounds can also be obtained from other sustainable species.
For example, an extraction containing 17% of CRs can be
obtained from Gardenia Jasminoides (Sommano et al., 2020).
In addition petals of C. sativus L. which are considered a waste
product in saffron production, may also be a sustainable source
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TABLE 1 | CR and related compounds of SF.

Compound CAS reg no. Structure Synonym M. W
(g/Mol)

MF Isomeric SMILE Ref.

CR 42553-65-1 Crocin I; alpha-crocin; CR1, CR 977 C44H64O24 C/C(=C\C=C\C=C(\C)/C=C/C=C(/C)\C(=O)O
[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO
[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)
O)O)O)O)O)O)/C=C/C=C(\C)/C(=O)O[C@H]3
[C@@H]([C@H]([C@@H]([C@H](O3)CO[C@H]4
[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O)O)
O)O

(Hadizadeh et al., 2010;
Alavizadeh and
Hosseinzadeh, 2014a)

CR 2 55750-84-0 Crocin II; tricrocin, trans-crocin 3,
crocin B, CR2

814.8 C38H54O19 C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C(=O)O
[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO
[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)
O)O)O)O)O)O)/C=C/C=C(\C)/C(=O)O[C@H]3
[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O

(Pfister et al., 1996; Wang
et al., 2009)

CR 3 55750-85-1 Beta-D-gentiobiosyl crocetin;
crocin C, CR3

652.7 C32H44O14 C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C(=O)O
[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO
[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)
O)O)O)O)O)O)/C=C/C=C(\C)/C(=O)O

(Chen et al., 2008; Lech
et al., 2009)

CR 4 55750-86-2 Crocin IV, CR4 504.6 C27H36O9 C/C(=C\C=C\C=C(\C)/C=C/C=C(\C)/C(=O)
OC1C(C(C(C(O1)CO)O)O)O)/C=C/C=C(/
C)\C(=O)OC

(Zhang et al., 2001;
Karkoula et al., 2018)

CR 5 174916-30-4 Trans crocin 5, CR5 434.4 C22H26O9 C([C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)
OC(=O)/C=C/C=C/C=C/C=C/C=C/C=C/C=C/C
(=O)O)O)O)O)O

(Zhang et al., 2001;
Hadizadeh et al., 2010)

CR 6 164455-25-8 (13Z)-8,8’-Diapo-Psi, Psi-
Carotene-8,8’-Dioic Acid 8-[6-O-
(6-O-beta-D-glucopyranosyl-
beta-D-glucopyranosyl)-beta-D-
glucopyranosyl]8’-(6-O-beta-D-
glucopyranosyl-beta-D-
glucopyranosyl) ester, CR6

1139.1 C50H74O29 C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C(=O)O
[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO
[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO
[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)
O)O)O)O)O)O)O)O)O)/C=C/C=C(\C)/C(=O)O[C@
H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO[C@H]
5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)
O)O)O

(Carmona et al., 2006;
Hadizadeh et al., 2010;
Verma and Middha, 2010)

CR 7 864547-06-8
(Unspecified)

CR7 1301.2 C56H84O34 C/C(=C\C=C\C=C(\C=C\C=C(\C(=O)O[C@@H]
1O[C@@H]([C@H]([C@@H]([C@H]1O)O)O)CO
[C@@H]2O[C@@H]([C@H]([C@@H]([C@H]2O)O)
O)CO[C@@H]3O[C@@H]([C@H]([C@@H]([C@H]
3O)O)O)CO)/C)/C)/C=C/C=C(/C(=O)O[C@@H]
4O[C@@H]([C@H]([C@@H]([C@H]4O)O)O)CO
[C@@H]5O[C@@H]([C@H]([C@@H]([C@H]5O)O)

(Zougagh et al., 2005;
NCBI, 2021)
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of CR (Zeka et al., 2020) with an estimated 0.6% (w/w) of CR can
be recovered from dried petals (Zeka et al., 2015).

More than 100 compounds have been identified from SF, mainly
terpenes, flavonoids, and anthraquinones (Chang et al., 2013),
including CRs and crocetin (CC), which are responsible for the
color of SF (Akbari et al., 2018; Kermanshahi et al., 2020; Csupor
et al., 2021; Pandita, 2021). Given that CR is the main active
ingredient of SF and SF-containing products such as SLT, it is of
prime interest to review the current evidence for CRs in IS and related
conditions. The effect of SF on IS has recently been briefly reviewed,
although CRs and related compounds were not covered in detail
(Azami et al., 2021). Thus, the focus of this review is to evaluate the
current evidence on CR and associated analogues for IS, including
pre-clinical and clinical studies, molecular mechanisms, toxicity, and
safety, as well as current gaps and future directions.

LITERATURE SEARCH STRATEGY

Electronic databases including PubMed, Cochrane Library,
Medline, Embase, Scopus, China National Knowledge
Infrastructure (CNKI), and Web of Science were searched for
relevant studies from their inception to 16 February 2022. The
search terms include “crocin and analogues,” AND “Saffron” OR
“Crocus sativus L.” AND “stroke” OR “ischemic stroke” AND
“clinical trials” AND “pharmacokinetics,” “crocin” AND
“neurons, astrocytes, microglial cells” OR “neuroprotection”
OR “cytokines” OR “neuroinflammation” OR “neurotoxicity”
OR “antioxidant” OR “apoptosis” OR “signaling pathways”
OR “molecular targets” OR “mitochondria” OR
“pharmacokinetics” OR “acute/chronic toxicity” OR “clinical
trial,” OR “nanoparticle formulation,” “safranal,” “picrocrocin,”
“crocetin” and their combinations. 287 research items including
peer-reviewed papers, websites, and Chinese data-related
research papers were considered suitable according to the
review search criterion. Our inclusion criterion was all
primary studies involving ischemic stroke, CR, and related
compounds OR stroke OR ischemia OR hypoxia. All items
identified were screened for relevant references excluding
duplicates and non-peer-reviewed articles. Chemical structures
of CR compounds were drawn using ChemDraw software
(Table 1). Structural information of CRs such as isomeric
SMILE was retrieved from PubChem and SciFinder Databases.
Human metabolomics data were retrieved from the Human
Metabolome Database v4 (HMDB) Canadian Database System
(Wishart et al., 2018). All the diagrams (Figure 1) have been
created with Adobe Illustrator (Adobe Inc., 2019), Preview
MacOS v10.0 (944.5) and BioRender.com.

CROCIN AND RELATED COMPOUNDS

Crocins (CRs) are a group of carotenoid compounds isolated
from SF that also contain other active compounds, including
picrocrocin and safranal (Suchareau et al., 2021). Seven different
natural CR analogues have been identified from SF, namely CR
(crocin 1, CR, CR1), CR 2 (crocin 2, CR II), CR 3 (crocin 3), CR 4T
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(crocin 4), CR 5 (crocin 5), CR 6 (crocin 6), and CR 7 (crocin 7)
(Zhang et al., 2004; Mehrnia et al., 2017; Song et al., 2021b). All
are mono or di glycosyl polyene esters of CC (Mohajeri et al.,
2010a; Nam et al., 2010; Pang et al., 2020). CR and CR2 are the
disaccharide analogues, whilst CR3 and CR4 are the
monosaccharide analogues, which are more potent than CR
and CR2 because of their structural orientations (Ulbricht
et al., 2011). The biosynthesis of CRs is related to several
enzymes such as cytochrome p450 (Gao et al., 2021),
carotenoid cleavage dioxygenase (CCD), UDP-glycosyl
transferase (UGT), and aldehyde dehydrogenase (Nagatoshi
et al., 2012; Liu et al., 2020; Pu et al., 2020).

CR is one of the main bioactive ingredients in SF (Kothari
et al., 2021b). The level of CRs in SF depends on their origin and
quality. A high-quality SF contains about 30% of CRs (Azami
et al., 2021). It was shown that Spanish SF contains more CRs,
especially CR (9%), than that from other sources (Li et al., 1999).
According to the Chinese Pharmacopeia, the total content of CR
and CR2 in dried SF used in traditional Chinese medicine shall
not be less than 10.0%, and the content of picrocrocin shall not be
less than 5.0% (PPRC, 2020). On the other hand, dicrocin and
CR3 are the isomers. Tricrocin, CR II or CR 2 are synonyms with
the same molecular structure amidst isomeric structural
orientation differentiations. To date, studies on CR3, CR4,

CR5, CR6, and CR7 are still lacking. Table 1 shows the
chemical structures of CR and related compounds.

CR molecule embodies two D-gentiobiose moieties (Mohajeri
et al., 2010b; Ebrahim-Habibi et al., 2010). Studies on its
structural activity relationship (SAR) revealed that the sugar
moieties of CR related to its antioxidant activity and water
solubility (Akhtari et al., 2013; Rahaiee et al., 2015; Akbari
et al., 2018). Gentiobiose terminus is known to be involved in
the conversion of CR to CC in enterocytes (Singla and Giliyaru,
2011). On the other hand, some synthetic CR analogues have
been developed. For example, a-glucosyl-(1-6)-trans CRs have
been shown with improved water solubility, and antioxidant and
neuroprotective activities in mouse neuronal cell line (HT22)
neuronal cells (Mok et al., 2020).

CC is a carotenoid (lacking provitamin functionality)
recognized by diterpenic and symmetrical structure along with
seven double bonds, four methyl functional groups, and two
carboxylic groups (Giaccio, 2004) (Table 1). Its sodium salt,
trans-sodium crocetinate (TSC), has been developed as a
potential drug candidate (Gainer, 2000; Xi and Qian, 2006;
Gainer, 2008; Wang et al., 2014; Shah et al., 2021). CC and
TSC have similar pharmacological activities as CR (see below).
Some bioactive synthetic analogues of CC have also been
synthesized such as the diamide derivative of CC (Gao et al., 2017).

FIGURE 1 | Schematic diagram of the mechanistic actions of crocin on the molecular pathways involved in IS.
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TABLE 2 | Bioactivity of CRs in vitro and in vivo.

Compound Animal/cell line Type
of

study

Treatment Effect Mechanism Reference

CR Rat microglia In vitro 10–50 µM Antioxidant Inhibited ROS production (Mehri et al., 2011;
Rao et al., 2019a)

Mice brain slices In vitro 10–20 µM Anti-inflammation Inhibited cytokines such as TNF-α,
ROS, NO, and IL-1β

(Nam et al., 2010;
Salama et al.,
2020)

Mice/rat brain In vitro 0.5–2 µM/3 h Anti-apoptosis Inhibited Ca2+ overload
inhibited ROS

(Mehri et al., 2011;
Wang et al., 2019)

Pheochromocytoma cell
line-12 (PC-12 cells)/rats

In vitro/
in vivo

10 mg/kg Inhibited mRNA expression of p38,
CASP-3 lowers brain
damage, ROS

(Nam et al., 2010;
Huang and Jia,
2019a)

Pheochromocytoma cell
line-12 (PC-12 cells)

In vitro 10 µM/6 days Inhibited peroxide lipids (Ochiai et al.,
2004a; Wang
et al., 2019)

Regulated SOD level

Pheochromocytoma cell
line-12 (PC-12 cells)

In vitro 10 µM Inhibited TNF-α (Soeda et al.,
2001; Huang and
Jia, 2019a)

Inhibited caspase-3

Mouse neuroblastoma
neuro-2a (N2a)/
APP695swe cells.

In vitro 100–200 µM Inhibited ROS (Ochiai et al.,
2004a; Du et al.,
2021)

Inhibited caspase-3
Inhibited cytochrome release,
reduced apoptosis

AMI rats In vivo 15 and 30 mg/kg Decreased mitochondrial stress Increased viability of mitochondrial
respiratory enzymes, Increased
ATP, Increased Na + -K + -ATP
enzyme and Increased Ca2+-ATP
enzyme and Inhibited
mitochondrial Ca2+

Leijiao Fan,
(2021a)

Adult albino mice (CFT-
Swiss mice)

In vivo 25 mg/kg/day; i.p. Reduced rotenone-induced
neurotoxicity; improved
performance of mice in
behavioral tests.

Inhibition of ROS generation; an
increase of antioxidant enzymes
activities; modulation of
mitochondrial function; restored
levels of dopamine, α-synuclein,
and AChE activity in the striatum

Rao et al. (2019a)

Wistar rats In vivo 30 mg/kg/day; i.p. Improved behavioral tests,
Increased dopamine level in
striatum

Activation of PI3K/Akt/mTOR
pathways and enhanced miRNA-7
and miRNA-

Salama et al.
(2020)

Diabetic rats In vivo 10−9 –10−5 mol/L Downregulated vasoconstriction Increased endothelial nitric oxide
synthase

Sai Li, (2017)

Hemorrhagic shock rats In vivo 60 mg/kg Antioxidant properties Increased MDA in the lungs,
kidneys, and liver

Yang (2020)

Rat In vivo 50 mg/kg Neuroprotection Suppresses caspase-3 Chen et al. (2015)
Rat In vivo 15, 30, 60,

120 mg/kg, I.p
Neuroprotection; Lowered infarct
size

Inhibited MDA and increased GPx
and SOD

Vakili et al. (2014)

Rat hippocampus In vivo 12.5, 25, and
50 mg/kg/
21 day, I.p

Antidepressant effect Increased BDNF and CREB levels Vahdati Hassani
et al. (2014)

Rat In vivo 40 mg/kg/day
orally for 10 day

Neuroprotection Suppressed ROS, HIF-1a and
caspase-3

Oruc et al. (2016)

Rat In vivo 50, 100, and
200 mg/kg Ip

Neuroprotection Improved biochemical indices, and
enzyme level

Hariri et al. (2010)

Rat In vivo 10, 20, and
40 mg/kg, i.p.

once/day

Neuroprotection Suppressed ROS, increasedMDA,
SOD, and CAT activities, and
inhibited cytokines including TNF,
IL-1β, and IL-6 and IFN-γ

Bin Wen et al.
(2020)

Bovine Aortic endothelial
cells (EC)

In vivo 25, 50,
100 mg/kg/day

Antiatherosclerosis Decreased LDL and EC apoptosis;
lowers MDA, NO, and
Intracellular Ca++

He et al. (2005)

Rat In vivo 4.84, 9.69, and
19.38 mg/kg for

5 days

Antioxidant Decreased total cholesterol,
Triglycerides, SOD, CAT, GSH,
MDA, and alkaline phosphatase

(Asdaq and
Inamdar, 2010)

Rats In vivo 50 and 150 mg/kg Antihyperglycemic Lowers HbA1c, fasting blood
glucose (FBS), and Upregulated
blood insulin level

Kianbakht and
Hajiaghaee,
(2011)

(Continued on following page)
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PHARMACOLOGICAL ACTIONS OF
CROCIN AND RELATED COMPOUNDS
AGAINST ISCHEMIC STROKE
Effect on Experimental Ischemic Stroke
The injuries caused by cerebral ischemic and IS are mainly caused
by oxidative and nitrosative stress, and are also related to
inflammation, apoptosis, BBB dysfunction, and edema
formation, which increases the intracranial pressure and
decreases the cerebral blood perfusion of ischemic areas
(Akbari et al., 2018). The commonly used animal models of
cerebral ischemia and IS injuries include middle cerebral artery
occlusion (MCAO) in rodents to mimic the I/R injuries in
humans after stroke. A number of studies have demonstrated
the protective effects of CRs in vitro and in vivo (Table 2). Similar
findings were reported by a group showing the protective effects
of CR (20 mg/kg) and Weinaokang (10 and 20 mg/kg, which
contains CR), against cerebral microvessel injury induced by
global ischemia (Zheng et al., 2010). Vakili et al. (2014)
reported CR (30, 60, and 120 mg/kg, i.p., given at the start of
ischemia) dose-dependently decreased the infarct volume of
cerebral I/R injuries. They also found that CR (60 mg/kg,
given 1 h before, at the start, or 1 h after ischemia) reduced
brain edema by 48%, 52%, and 51%, respectively. Sarshoori et al.
(2014) showed in MCAO rats that CR (50 and 80 mg/kg, p.o.)
reduced the cortical infarct volume by 48%–60%, and decreased
striatal infarct volume by 45%–75%, respectively, with improved
neurological deficit scores and decreased number of eosinophilic
(prenecrotic) neurons,fiber demyelination and axonal damage in
ischemic regions. Similar findings were obtained by Oruc et al.
(2016) who used a global cerebral I/R model in rats (bilateral
occlusion for 30 min followed by 30 min of reperfusion) and
demonstrated that CR (40 mg/kg/day, orally) reduced the
histopathological changes and apoptosis, and improved tissues
oxidative index (Oruc et al., 2016). CR (10, 20, and 40 mg/kg/day
i.p., given 7 days before the operation) attenuated the brain injury
compared to that of the model group, with improved symptom
score, attenuated brain edema, and improved pathological
morphological and structural changes (Finley et al., 2017).
Furthermore, CR was also shown to protect the BBB function
during cerebral hypoxia/ischemia (Zhang et al., 2017). Similarly,
Huang et al. (2019) demonstrated that CR at 50 and 100 mg/kg
(p.o. for 7 days) decreased infarct volume and neurological scores
in MCAO rats. Bin Wen et al. (2020) found significant results,

stating that CR protected brain tissue against cerebral I/R
damage, and that this effect was linked to its anti-oxidant and
anti-inflammatory properties.

In addition, the curative effect of CR has also been demonstrated.
Zheng et al. (2007) used a transient global cerebral ischemia mice
model and demonstrated that CR (5, 10, and 20mg/kg, given
intragastrically from day 0 to day 21 after ischemia) significantly
improved the capillary integrity and reduced mitochondria damage
caused by I/R. Ochiai et al. (2004) reported that CR (10 mg/kg, IV,
administrated immediately and 3 h after MCAO) significantly
reduced the infarct volume in mice. They also showed that CR
was more effective than other CR analogues and SF compounds
(tricrocin, dicrocin, and picrocrocin) in promoting the expression of
γ-glutamylcysteinyl synthase (γ-GCS) mRNA. γ-GCS is involved in
the de novo synthesis of glutathione (GSH) as a rate-limiting
enzyme reaction and plays a crucial role in IS (Su et al., 2020;
Wu et al., 2020). CR (10 mg/kg) has also been shown to reduce the
brain edema and infarct areas induced by hypoxia-ischemia when
given immediately or after hypoxia-ischemia in post-natal C57BL/
6J mice (Huang et al., 2019). Furthermore, it has been reported
recently that CR (30mg/kg and 60mg/kg, p.o. for 7 days,
administrated after cerebral ischemia) improved the memory
loss in a rat model of cerebral ischemia, which was linked to
increased hippocampal acetylcholine (ACh) level and reduced
apoptosis (Yuan et al., 2020), a finding similar to an earlier
observation using CR (25 mg/kg, i.p.) and hydroalcoholic extract
of SF (250 mg/kg, i.p.) in a rat model of vascular dementia after
permanent bilateral ligation of the common carotid arteries
(Hosseinzadeh et al., 2012).

A recent study reported that the cerebral-protective effects of
CR against cerebral I/R injury may involve gut microbiota (Zhang
et al., 2019). Using a rat transient MCAOmodel, the investigators
showed that the oral administration of CR was more effective
than IV injection in reducing infarct volume and improving
neurological behaviour changes. Since CC was detected in
plasma after oral administration of CR but not after IV
injection of CR, and the orally administered CC showed
similar protection to that of CR, it indicated the importance of
gut microbiota in facilitating the transformation of CR into CC.
This was confirmed by the finding that CR could be
deglycosylated to CC in the gut content of normal rats, but
not in pseudo-germ-free rats. Metabolomics studies also
indicated that gut microbiota facilitated the transformation of
CR into CC (Zhang et al., 2019).

TABLE 2 | (Continued) Bioactivity of CRs in vitro and in vivo.

Compound Animal/cell line Type
of

study

Treatment Effect Mechanism Reference

CR & CR 2 Rat I/R Injury Model In vivo 50 mg/kg Neuroprotection ROS suppression, decreased
Bcl2, Bax, caspase 3, P38, NFkB,
and increased total SOD

Lv et al. (2019)

TNF-a, tumor necrosis factor-alpha; OGD, oxygen glucose deprivation; iSOD, intracellular superoxide dismutase; NO, nitric oxide; ROS, reactive oxygen species; AMI, acute myocardial
infarction; CREB, cAMP response element-binding protein; BDNF, brain-derived neurotrophic factor; NFkB, nuclear factor kappa light chain enhancer of B cells; IL-6, interleukin-6; ATP,
adenosine triphosphate; AChE, acetylhydrolase; HIF-1a, hypoxia inducible factor-1a.
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CC has demonstrated similar pharmacological actions to CR,
including neuroprotection, anti-oxidation, and anti-
inflammation (Tseng et al., 1995; Li et al., 2018; Hashemi and
Hosseinzadeh, 2019; Cerdá-Bernad et al., 2020) as well as
protective against cardiac ischemic mitochondrial injury (Gao
et al., 2017). Recently Liu et al. (2021) showed that CC (5–50 mg/
L) protected hypoxia-induced cell injuries and inhibited
apoptosis in cultured human U87 glioma cells, and CC (5,10,
and 50 mg/kg) reduced the infarct size and apoptotic cell
numbers in brain tissue and improved pathological status in
rats. These effects were associated with modulation of miR145-
5p, toll-like receptor 4 (TLR4) and nuclear factor kappa light
chain enhancer of B cells (NFκB) (p65) (Liu et al., 2021b). CC and
related oxygen diffusion-enhancing compounds have been
recently reviewed (Shah et al., 2021). These compounds have
been shown with properties that improve the diffusion of oxygen
in plasma, thus increasing oxygenation in ischemic brain tissue
(Manabe et al., 2010;Wang et al., 2014; Bahr-Hosseini et al., 2021;
Shah et al., 2021). TSC has shown potential as a therapeutic drug
for early stroke intervention reducing the infarct and
hemorrhagic volume in rodent models of ischemic and
hemorrhagic stroke (Lapchak, 2010; Wang et al., 2014; Shah
et al., 2021). In obese MCAO mice, TSC (0.14 mg/kg) showed a
significant improvement in neurological deficit and
neuroprotective effects evidenced by lowered brain edema,
MMP-2, MMP-9, and inflammatory cytokine markers in brain
tissues (Deng et al., 2015).

Neuroprotection
One strategy for developing new therapies for IS to target
neuroprotective signaling pathways (Rodriguez et al., 2021; Liu
et al., 2012). CR has been extensively studied for its
neuroprotective effects in vitro and in vivo (Table 2) (Yuan
et al., 2020). Studies have shown that CR and related
compounds protected CNS neurons in various conditions. For
example, CR was demonstrated to protect against PC-12 cells
injury in rats by increasing the synthesis of GSH (Ochiai et al.,
2004b; Soeda et al., 2007), nitric oxide (NO), and decreasing
MMP (Zheng et al., 2007). It induced the proliferation and
migration of neural stem cells and inhibited the apoptosis of
neural stem cells in cerebral I/R conditions, the effect involved
Notch1 signaling and inhibition of inflammatory factors (An
et al., 2020). CC also modulated the amyloidogenic pathway and
tau misprocessing in neuronal cells (Shah et al., 2021). In the
retinal ganglionic cells (RGC), CR prevented apoptosis induced
by ischemic injury (Qi et al., 2013). In diabetic rats, CR was shown
to act as a neuroprotective agent by lowering the
malondialdehyde (MDA) and xanthine oxidase levels in the
brain and cerebellum tissue (Altinzo et al., 2014). In addition,
CR dose-dependently inhibited the ischemic cerebral neuronal
apoptosis of proinflammatory cytokines in the ischemic tissue
(Oruc et al., 2016). Huo et al. (2012) investigated the
neuroprotective effect of CR in mice with traumatic brain
injury. It was found that the intraperitoneal injection of CR
(50–200 mg/kg) markedly reduced brain edema and motor
functional deficits after the traumatic brain injury induced by
physical damage from cortical impact injury. The traumatic brain

injury restricted the supply of blood and oxygen in the area which
led to the accumulation of reactive oxygen species and subsequent
neuronal death.

Recently, CR was found to protect against hippocampal
neuron damage in IS (Wu et al., 2020) and dopaminergic
neuron damage in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced Parkinson’s disease
mouse models (Haeri et al., 2019). CR (25 mg/kg) has also
been shown to protect neurons against neurotoxicity induced
by rotenone, methamphetamine, and acrylamide in mice and
Wistar rats (Rao et al., 2019b; Salama et al., 2020; Mehri et al.,
2015; Shafahi et al., 2018), as well as improving neuronal survival
in hypoxic ischemia related brain damage (Huang and Jia,
2019b). Another study showed that CR (30 mg/kg) alleviated
apoptosis, neurodegeneration, and enhanced protection in
rotenone-induced Parkinson’s disease rats via mammalian
target of rapamycin (mTOR) pathway activation (Salama
et al., 2020). CR, via its metabolite crocetin monoglucuronide
(CM), was also shown to inhibit ACh activity as predicted by
docking studies (Zhu et al., 2019b). In addition, CR improved gut
microbiota in stressed mice and decreased serum levels of
interleukin (IL-6) and necrosis factor—α (TNF-α) (Wu et al.,
2020).

Both CR and CR2 have been shown to enhance neuronal
survival by downregulating caspase-3 (Casp3) and Nfkb1 mRNA
expression after hypoxic ischemic CNS amelioration (Lv et al.,
2019). In addition, CR has been shown to reduce the neurological
deficit in a heme oxygenase-1 (HO-1) knockout mouse model of
intracerebral hemorrhage (Duan et al., 2019) and reduce
cytotoxicity induced by lethal agents. In glutamate-damaged
HT22 cells, CR improved cell viability, suppressed reactive
oxygen species (ROS) accumulation, calcium ion (Ca+2) load,
and apoptosis (Wang et al., 2019). In diazinon induced subacute
toxicities, CR at 50, 100, or 200 mg/kg doses (i.p.) significantly
ameliorated the adverse effect of diazinon on enzyme levels, and
biochemical indices and downregulated the levels of
S100 calcium-binding protein B (S100B) (Hariri et al., 2010).
Interestingly, S100B is the prime secretary cytokine from
astrocyte during metabolic stress and is related to astrocyte
activation (Gerlach et al., 2006). Thus, CR may affect the
function of astrocytes in its anti-IS action, although its exact
effect is still not clear, it has been suggested that neuroprotection
in the central nervous system (CNS) may involve astrocyte
support (Teo and Bourne, 2018). Targeting astrocytic survival
has been shown to lead to lowered neurodegeneration (Freitas-
Andrade and Naus, 2016), especially in IS conditiosn (Becerra-
Calixto and Cardona-Gómez, 2017).

Anti-Neuroinflammation
There is strong evidence for the involvement of CRs anti-
neuroinflammatory effects in their neuroprotective actions
(Deslauriers et al., 2011; Ahmed et al., 2020). Studies have
shown that CR inhibited the production of certain
inflammatory mediators such as TNF-α and interleukin-1B
(IL-1B) in microglial cells (Nam et al., 2010; Bin Wen et al.,
2020). CR at a dose of 40 mg/kg significantly lowered levels of IL-
6 and TNF-α in chronic restraint stress mice (Xiao et al., 2020), as
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well as inhibited IL-1B in depression-induced mice (Xiao et al.,
2019). The anti-neuroinflammatory effect of CR was also shown
in the methamphetamine-induced neurotoxicity model in rats
(Shafahi et al., 2018), and inhibited inflammation-related
microglial activation in mice (Fernández-Albarral et al., 2019),
and also mitigated neuroinflammation in rat striatum (Eteghadi
et al., 2021). CR (50 mg/kg and 100 mg/kg) inhibited
lipopolysaccharide (LPS) induced neuroinflammation in rats,
whilst the effect was not dose-dependent (Azmand and Rajaei,
2021). Furthermore, CR downregulated IL-1β, NO, IL-6, and
TNF-α generation in rats with hemorrhagic shock (HS) and
increased the level of IL-10 (Yang and Dong, 2017). IL-10 is
an anti-neuroinflammatory cytokine expressed by immune cells
(Saraiva and O’garra, 2010). The upregulation of IL-10 by CR is
also supported by other studies (Bakshi et al., 2018; Badavi et al.,
2020; Yousefi et al., 2021), although there is a contradictory
finding that CR decreased IL-10 level (Dianat and Radan, 2014).
The reason for this discrepancy is not clear. It may be related to
experimental or disease conditions. CR (10 mg/kg) attenuated
TNF-a, inducible nitric oxide synthase (iNOS), NFκB
expressions during doxorubicin-induced nephrotoxicity in
rats (Hussain et al., 2021). In addition, CR has also been
shown to regulate cyclooxygenase-1 (COX-1) and COX-2
enzymes in LPS induced RAW264.7 cells (Xu et al., 2009). In
5XFAD (5X Familial AD) mice, CR (10 mg/kg/day) improved
BBB integrity and lowered amyloid ß (Aß) associated
neuroinflammation while this effect was accompanied by
suppressing mitogen-activated protein kinase (MAPK) and
NFκB but activating nuclear factor-erythroid factor 2 related
factor 2 (Nrf2) pathways (Batarseh et al., 2017; Hashemzaei
et al., 2020). The role of anti-inflammatory effect of CRs on
neuronal pain has been recently reviewed, showing suppression
of NFκB in turn downregulates the levels of IL-6, IL-10, IL-1β,
and TNF-α (Hashemzaei et al., 2020). NFκB relates closely to IS
involving inflammatory biosensors (Harari and Liao, 2010).
Similarly, anti-neuroinflammatory activities of CC and TSC
have also been demonstrated, including inhibiting the
formation of proinflammatory mediators, such as NO and
cytokines, and regulating NFκB pathway (Deng et al., 2015;
Hashemi and Hosseinzadeh, 2019; Liu et al., 2021b; Shah et al.,
2021).

Antioxidant Activity
Numerous studies have demonstrated that endogenous
antioxidant levels were lowered after acute IS due to oxidative
stress (Ullegaddi et al., 2006), and increased cellular ROS levels
could ultimately lead to mitochondrial injury and cell death
(Shahbaz, 2017a; Shahbaz, 2017b). Hence, antioxidants have
long been investigated as a potential therapy for reducing IS
injury (Shirley et al., 2014; Cichoń et al., 2017). The antioxidant
activity of CR and related compounds have been well established,
with increasing superoxide dismutase (SOD) and GSH synthesis
and activities in brain tissue (Bandegi et al., 2014; Chen et al.,
2015; Mehri et al., 2015; Zhang et al., 2017a; Krishnaswamy et al.,
2020; Yousefi et al., 2021), decreasing oxidized lipids and
oxidative stress in PC-12 cells (Ochiai et al., 2004b; Soeda
et al., 2007), and reducing hypoxia-induced cell damage

(Javandoost et al., 2017; Bukhari et al., 2018; Ghaffari and
Roshanravan, 2019). In human myoblast cells, 0.3 μM CR
inhibited hydrogen peroxide (H2O2) induced toxicity
accompanied by decreased ROS and increased antioxidant
enzyme activity (Nassar et al., 2020). In addition, CR was
shown to upregulate MMP-2 and MMP-9 protein expression
which contributes to neuroprotection and maintenance of BBB
integrity (Yang and Rosenberg, 2015; Zhang et al., 2017a). In
particular, Vakili et al. (2014) showed that the anti-IS effect of CR
was associated with increased SOD and glutathione peroxidase
(GPx) activity and reduced MDA content in the ischemic cortex.
Oruc et al. (2016) reported that CR-induced protection of
cerebral I/R is associated with improved tissues oxidative
index. CR was also shown to curb ROS in depression-induced
mice (Xiao et al., 2019). In addition, a study indicates that the
antioxidant effect of CR may contribute to its protection against
organ damage in HS (Yang and Dong, 2017). Similarly, the
antioxidant activity of CC and TSC have been demonstrated,
including inhibition of ROS formation, improving antioxidant
enzyme activities, and suppression of related mitochondrial
apoptosis, and Aβ mechanisms (Hashemi and Hosseinzadeh,
2019; Shah et al., 2021). It has been reported that the free
radical quenching activity of CR is weaker than SF, indicating
that SF may contain other antioxidant constituents or has a
synergistic effect among its ingredients (Asdaq and Inamdar,
2010). It was found that trans-crocin-4 exhibited more potent
antioxidant activity than CC in the human brain cells, indicating
the sugar molecules in CR may be important for its antioxidant
activity and Aß fibril formation inhibition (Papandreou et al.,
2006). In addition, SLT, a CR-containing formula was shown to
reduce H2O2 related injury in EA hy926 cells (Seto et al., 2017).
However, it is not clear if this effect of SLT relates to CR.

Cardiovascular Protection
Cardiovascular function is important for blood supply to the
brain, thus the effect of CRs on cardiovascular functions may
affect or contribute to their effects against IS. CR has
demonstrated anti-ischemia effects in cardiac and vascular
tissue. For example, CR (20 mg/kg) was shown to exhibit
cardioprotective activity in I/R-related myocardial injury and
decreased infarct size in ischemia the rats’ hearts by altering
antioxidant status (Jahanbakhsh et al., 2012; Dianat et al.,
2014). CR (100 mg/kg/day) attenuated cardiac inflammation
and improved antioxidant capacity in female rats (Kocaman
et al., 2021). Additionally, a study using cardiac ischemic rats
showed CR at 20 mg/kg/day i.p. protected cardiac injury and
increased SOD, MDA, and GSH antioxidant markers
(Jahanbakhsh et al., 2012). Another study found that pre-
treatment with CR followed by I/R (2 h hypoxia, 4 h
reoxygenation) protected myocardial ischemic injury and
regulated autophagy AMP-activated protein kinase
(AMPK) mechanistic pathway (Zeng et al., 2016). Fan
et al. (2021) showed CR protected myocardial
mitochondria injury and acute myocardial infarction in
rats (Leijiao Fan, 2021b). CR (15 and 30 mg/kg)
significantly attenuated mitochondrial damage by
increasing the membrane potential and reducing the
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mitochondrial permeability transition pore openness. The
mechanism was associated with increased viability of
mitochondrial respiratory enzymes, adenosine triphosphate
(ATP), Na+-K+-ATP enzyme and Ca2+-ATP enzyme, and
reduced mitochondrial Ca2+ concentration (Leijiao Fan,
2021b). Similar activities have been reported for CC and
TCS, including cardioprotective effects against I/R injury,
inhibiting myocardial infraction and cardiac hypertrophy,
reducing blood pressure, and inhibiting platelet aggregation
(Hashemi and Hosseinzadeh, 2019; Shah et al., 2021). For
example, in a myocardial I/R rats model TSC (50 and
100 µg/kg) significantly alleviated I/R-induced cell injury
via the SIRT3/FOXO3a/SOD2 signaling pathway (Chang
et al., 2019). CR and related compounds have also been
shown to possess vascular protective activity which may
also contribute to their anti-IS actions. For example, CR
improved vasodilation by acting on endogenous NO and
endothelial NO synthase (Sai Li and ding, 2017) and
reduced I/R injury in mice cerebral microvessels (Zheng
et al., 2007). CC (25 and 50 mg/kg/day) was also shown to
protect vascular function in stroke-prone spontaneously
hypertensive rats (SHRSPs), with downregulated
thrombogenesis, improved vasodilation, and endothelial
function (elicits NO production), and antioxidant capacity
(Higashino et al., 2014).

MECHANISM OF ACTIONS OF CROCIN
AND RELATED COMPOUNDS

Potential Cellular Targets
CR has been shown to act on multiple brain cells including
microglia, neurons, and astrocytes (Hosseinzadeh et al., 2014b;
Zhu et al., 2019a). Table 2 shows the effects of CR and related
compounds on different cells including microglia, endothelial
cells and neurons (Table 2). For example, in syncytin-1-expressed
primary human foetal astrocytes, CR (100, 200, and 400 µM)
inhibited endoplasmic reticulum (ER) stress and nitric oxide
synthase 2 and interferon gamma (IFN-α) expressions
(Deslauriers et al., 2011). Although CR mitigated TNF-a
release in astrocytes, microglia, and neurons after LPS
stimulation (Gullo et al., 2017), the effect of CRs on astrocytes
involving IS microvessels is still not clear. Astrocytes may play a
critical role in neuroprotection during IS through their
specialized functional and structural properties in the CNS
(Liu and Chopp, 2016; Sun et al., 2019) including regulation
of metabolic and homeostasis (Liddelow et al., 2017; Escartin
et al., 2021). It is also necessary to investigate the effect of CRs on
different phenotypes of astrocytes such as A1
(neuroinflammatory), A2 (neuroprotective), and A0 (nascent
astrocytes).

Potential Molecular Targets
As mentioned above, CRs have therapeutic action on multiple
pathways, related to cell signalingsignaling, transportations,
energy production, and redox homeostasis (Hosseinzadeh
et al., 2014a), in particular neuroinflammation, antioxidation,

and apoptosis mechanisms (Table 2). For example, CR inhibited
hypoxia-inducible factor-1α which is an important molecular
target in IS (Oruc et al., 2016) (Table 2). The action of CR on
mitochondrial apoptosis is also important for their
neuroprotective effects against IS (Li et al., 2021; Yousefsani
et al., 2021), including casp 3, casp 8, casp 9, B-cell
lymphoma-2 (Bcl-2), and Bcl-2 Associated X-protein (Bax)
(Table 2). The key ROS-related enzymes targeted by CR and
associated compounds or analogues include SOD, reduced
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, and GPx (Bandegi et al., 2014; Chen et al., 2015;
Zhang et al., 2017b). In addition, it has been suggested that
matrix MMPs activation plays a role in IS (Yang and Rosenberg,
2015) and amelioration of MMP-2 and MMP-9 expressions by
CR may provide neuroprotection and protection of BBB
functions under cerebral ischemia (Zhang et al., 2017b). The
key inflammatory signaling molecules influenced by CR and
related compounds include TNF-α, IL-1β, IL-1α, IL-6, IL-1,
and MMP-9, monocyte chemoattractant protein-1 (MCP-1),
macrophage inflammatory proten-1α (MIP-1α), vascular
adhesion molecule-1 (VCAM-1), E-selectin and fractalkine
(CX3CL1) and related signaling pathways namely NFκB,
MAPK, TLR4, c-Jun N-terminal kinase (JNK), and P38 (Che
et al., 2001; Hussein et al., 2019; Barthels and Das, 2020). In
addition, autophagy is another important cellular mechanism
involved in various cellular functions (Shen et al., 2021), and is a
significant adaptive mechanism in IS (Ajoolabady et al., 2021). It
has been suggested that activation of autophagy is involved in the
protective effect of CR against IS (Zeng et al., 2016) CR enhanced
autophagy by downregulating the LC3-II/I and upregulating the
p62 and mTOR expression in IS model of HT22 cells (Huang
et al., 2019). CC and TSC have shown with similar activities
affecting cellular redox signaling and inflammatory pathways, as
well as regulating autophagy, which contribute to their anti-IS
and neuroprotective pharmacological actions (Tseng et al., 1995;
Hashemi and Hosseinzadeh, 2019; Cerdá-Bernad et al., 2020;
Shah et al., 2021; Wani et al., 2021).

Table 3 shows the IS-related human proteins potentially
regulated by CR, based on the human metabolomic data
retrieved from the standard HMDB Canadian Database System.
We identified 11 proteins as the possible targets of CRs, including
S100β, vascular endothelial growth factor (VEGF), glial fibrillary
acidic protein (GFAP) and compliment component 1q (C1q).
Since S100B is elevated in patients after IS (Lasek-Bal et al.,
2019) and higher S100B levels were observed in the hospitalized
IS patients (Shotar et al., 2019), S100B may be a potential
diagnostic and therapeutic biomarker of IS. Intracellularly
S100B can act as a regulator of Ca++ homeostasis (Donato
et al., 2009). Extracellularly, it can activate inflammatory and
other signaling pathways, such as the mitogenic Ras-MEK-
ERK1/2-NF-κB pathway. SF has also been shown to regulate
glial GFAP, VEGF, and C1q in MCAO animals (Yang et al.,
2019; Abdel-Rahman et al., 2020; Zhong et al., 2020), although
the exact role of CR and related compounds in these actions is not
clear. Further studies are mandatory to elucidate the mechanisms
involved in the actions of CRs against IS and related conditions in
human (Karkoula et al., 2020).
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PHARMACOKINETICS OF CROCINS

The pharmacokinetics of CR and related compounds have been
reviewed (Xi andQian, 2006; Khorasany andHosseinzadeh, 2016;
Hosseini et al., 2018; Hashemi and Hosseinzadeh, 2019; Veisi
et al., 2020; Song et al., 2021a; Shah et al., 2021).

Asai et al. (2005) studied the absorption of CR and CC in mice
and showed that neither CR nor CR2 were detectable in the
plasma after the oral administration of a mixed micelle
solution containing CC or CRs, whereas CC was rapidly
absorbed into the blood and detected in plasma as free
form and glucuronide conjugates, indicating the metabolism
of CRs mainly involves glucuronidation in the intestine and
liver. Another study confirmed that CM (CR metabolite) was
detected in blood and brain after oral administration of CR
(Zhang et al., 2012). Xi et al. (2007) studied the absorption of
CR and CC in rats after single or repeated oral doses (40 mg/kg
by oral gavage), and found that CR was not detectable, while
CC was present in the plasma at low concentrations. They also
demonstrated that CR was excreted through the intestinal tract
following oral administration, indicating the intestinal tract
may serve as a site for CR via hydrolysis. Another study in
stroke-prone spontaneously hypertensive rats found a high

level of CC in plasma and brain after oral administration of
100 mg/kg CC (Yoshino et al., 2011). The elimination half-life
(t1/2k) after an oral dose of CR (1 mg/kg) was reported as 3.0 ±
0.6 h (Zhang et al., 2012). Studies in humans confirm that CC is
rapidly absorbed after oral administration (Hosseini et al.,
2018). In healthy adult volunteers, it was reported that the
peak plasm (Cmax) level of CC after receiving 7.5, 15, and
22.5 mg doses was 100.9–279.7 ng/ml, and the mean time to
reach maximum concentration (Tmax) was 4–4.8 h,
AUC0–24 h ranged from 556.5 to 1720.8 ng h/ml and the
mean elimination half-life (T1/2) was 6.1–7.5 h (Umigai
et al., 2011). The pharmacokinetics of CC after oral and IV
administrations is consistent with a two-compartment model
(Xi and Qian, 2006).

There is evidence that CR could not penetrate Caco-2
monolayers, while trans-crocetin permeated the intestinal barrier
(Lautenschläger et al., 2015). It has been suggested that CRs are
hydrolyzed in the intestine by intestinal cells to the deglycosylated
trans-crocetin, which is subsequently absorbed by passive
transcellular diffusion (Lautenschläger et al., 2015; Karkoula et al.,
2018; Shah et al., 2021), most likely via gut microbiota mediated
biotransformation as mentioned above (Zhang et al., 2019). This
mechanism may be important for CRs to exert their anti-IS and

TABLE 3 | IS-related human proteins targeted by CR, based on the metabolomic data by CRs (retrieved from the HMDB Canadian Database System).

Protein Effect of CR HMBD
protein Id

Cellular
location

Chromosome
location

Main function Metabolites

S100B Downregulate HMDBP07977 Nucleus and
cytoplasm

Chr. 2 Involved in Ca2+ ion binding Ca2+, Olopatadine

FIH-1 — HMDBP01023 Nucleus
(Potential),

Chr. 10 Oxygen sensing inhibits
HIF1-a

Oxoglutaric acid, succinic acid, Fe2+, and
CO2, O2, D-tartaric acid

VEGFA Downregulated HMDBP02130 Membrane Chr. 6 Growth factor activity in
angiogenesis and endothelial
cell proliferation

Atorvastatin, pyroglutamic acid, heparin, and
simvastatin

C1q — HMDBP02512 Secreted Chr. 3 Involved in cytokine activity Cyclic AMP

S100A10 — HMDBP07984 — Chr. 1 Ca2+ ion binding Ca2+

Vimentin Up-regulation HMDBP01682 — Chr. 1 Structural molecular activity Carnosine

PHD1 Up-regulation HMDBP09211 Nucleus and
cytoplasm

Chr.19 Oxidoreductase activity Ascorbic acid, L-proline, oxoglutaric acid,
succinic acid, O2, and 4-hydroxyproline

NSE Downregulate HMDBP01086 Cell membrane Chr. 12 Neuroprotective Water, Ca2+, magnesium, 2-phospho-d-
glyceric acid, phosphoenolpyrovic acid, and
3-dehydroquinic acid

MMP9 Downregulation HMDBP02128 Secreted,
extracellular
matrix

Chr. 2 Metallopeptidase activity Simvastatin, marimastat, Ca2+, minocycline,
Zinc, and Captopril

IL-1B
(catabolin)

Downregulation HMDBP02072 Secreted Chr. 2 IL-1 receptor binding,
inflammatory response

Minocycline

TNF-a
(cachectin)

Downregulation HMDBP02070 Enzymatic
protein secreted

Chr. 6 TNFR binding Butyric acid, isopropyl alcohol, glucosamine,
atorvastatin, simvastatin, cis,trans-5′
hydroxythalidomide, chloroquine,
clenbuterol, pranlukast, amrinone, and ethyl
pyruvate

IL-6 Downregulate HMDBP02087 Enzymatic
protein secreted

Chr. 7 Cytokine activity, IL-6 receptor
binding

Simvastatin

Chr, chromosome number; “-”, No data as per human metabolomic database; TNFR, tumor necrosis factor receptor.
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neuroprotective actions in the brain, as CC has been shown to be
able to permeate BBB and accumulate in the brain (Lautenschläger
et al., 2015; Karkoula et al., 2018). On the other hand, someCRs such
as trans-crocin 4were shown to be able to across BBB inmice after ip
administration despite its highly hydrophilic character
(Lautenschläger et al., 2015; Karkoula et al., 2018). Studies
showed that CC can be rapidly distributed into different tissues,
including the liver and kidneys, partly due to its weak binding to
plasma albumin (Xi and Qian, 2006; Hosseini et al., 2018;
Christodoulou et al., 2019; Hashemi and Hosseinzadeh, 2019;
Shah et al., 2021). A study on rats by Zhang et al., showed that
T1/2 was estimated as 2.5–2.9 h after oral administration of different
doses of CC (Zhang et al., 2017a). CR is excreted primarily through
the intestinal tract in feces after oral administration (40 mg/kg), with
59.507% ± 13.56% excreted (Asai et al., 2005), and via urine after IV
administration with a cumulative excretion fraction of 67.17% ±
4.79% within 48 h (Zhang et al., 2019).

Nanoparticle Formulation and Green
Synthesis
Nanoscale drug delivery is an important tool to improve the
pharmacokinetics and bioavailability of drugs and natural drugs
(Puglia et al., 2010). Nanoparticle (NP)-based drug delivery
systems have shown advantages in improvised bioavailability,
bioadhesion, and controlled drug release in the gastrointestinal
(GI) tract (Kim et al., 2006; Dudhani and Kosaraju, 2010). For
example, some chitosan-alginate biofilm forming agents have been
used for pH-sensitive nanomolecular formulations to control drug
movement across the GI tract (George and Abraham, 2006). Thus,
NP-based formulations can be used to enhance the bioavailability
and activity of CRs and CC (Shah et al., 2021). A nano-
encapsulated formulation of chitosan alginate biofilm-forming
agents has been shown with improved CR stability and
bioavailability, and controlled release (Rahaiee et al., 2015)
(Mirhadi et al., 2020). CR chitosan-alginate NPs also showed
improved antioxidant and anticancer activities in vivo,
suggesting potential therapeutic applications for these
preparations (Rahaiee et al., 2017). Another recent study
explored an NP-CR formulation with dextran/chitosan sulphate
(DS/CH) coated NPs loaded with CR, and demonstrated its activity
in downregulating VEGF and AB142 levels accompanied by a
stronger antioxidant capacity in SHSY5Y cells (Song et al., 2022).
In addition, a water-soluble crocetin-γ-cyclodextrin formulation
significantly increased the bioavailability of CC and facilitated it
crossing the BBB to enter the brain (Wong et al., 2020).
Furthermore, CR-NPs have been formulated with polymeric
carriers to improve the stability of CR (Mirhadi et al., 2020).

Green synthesis is an advanced method that uses natural
reducing agents, plugs, and stabilizers surpassing the
employment of toxic and expensive chemicals and high energy
costs (Hussain et al., 2016). There is an increasing need for
optimal eco-friendly and non-toxic methods of developing
NPs such as gold NPs (AuNPs) preparation with CR (Hoshyar
et al., 2016) and SF (Abootorabi et al., 2016). Solid lipid
nanoparticles belong to the lipid nanotransporter family that
can solubilize hydrophilic and lipophilic molecules in

physiological environments. This is controlling their release
and protects them from degradation (Tapeinos et al., 2017).
CC and CR solid lipid nanoparticles can be prepared using
Softisan 100 (hydrogenated coco glyceride) and Pluronic F68
(Poloxamer 188) with these lipid substrates commonly regarded
as the best with low melting point (35°C), which is an important
property related to the stability of NPs (Puglia et al., 2019). These
nanoparticles have been tested in cancer cell lines and showed a
prolonged antioxidant activity, and better antitumor cytotoxicity
than free CR (Puglia et al., 2019).

Clinical Evidence
A number of clinical studies on SF and CR have been conducted,
involving healthy subjects or patients with various conditions such as
metabolic syndrome (Kermani et al., 2017), depression, and coronary
artery disease (CAD) (Abedimanesh et al., 2017). Table 4
summarizes the clinical studies on SF and CR. For example, a
study with SF extract capsules (200mg/day) showed that it was
effective against IS with a long term (up to 3months) neuroprotective
effect, based on theNational Institute of Health Stroke Scale (NIHSS),
with improved Barthel index and brain-derived neurotrophic factor
(BDNF) levels, and decreased stroke severity with lowered levels of
serum neuron-specific enolase (NSE) and S100 (Asadollahi et al.,
2019). A similar finding was obtained in an RCT involving 40
patients with acute IS, and revealed that SF at 400mg/day
decreased the severity of stroke as assessed by the NIHSS score,
with an improved MDA level (Gudarzi et al., 2020). Other studies
demonstrated the effectiveness of SF, in combination with Ritalin, for
patients with attention deficit hyperactivity disorder (ADHD)
(Pazoki et al., 2022), or CAD with a significant inhibition of
circulating MCP-1 (Abedimanesh et al., 2020). In addition, a
study showed that 30mg of SF supplement for 16 weeks
improved cognition function (change in both AD Scale-cognitive
subscale (ADAS-cog) and clinical dementia ratings-scale sums of
boxes (CDR-SB) in patients with mild to moderate Alzheimer’s
disease (Akhondzadeh et al., 2010). This is supported by a recent
systematic review of five RCTs involving 325 subjects on AD and
mild cognitive impairment, suggesting that SF may be as efficacious
as common drugs against AD, although it should be taken with
caution as there may be an unknown or high risk of bias due to the
low quality of some of the studies included (Avgerinos et al., 2020).
On the other hand, a recent trial involving 50 patients with type 2
diabetes (T2D) confirmed a significant improvement in glycaemic
control and insulin resistance after administration of 15mg CR twice
daily for up to 12 weeks (Behrouz et al., 2020). Furthermore, a
double-blind RCT involving 62 participants with mild erectile
dysfunction (ED) showed that administering 15mg SF twice a
day improved erectile function without obvious side effects,
indicating it may be effective against ED, especially in patients
reluctant to accept the prescription of phosphodiesterase type 5
inhibitors (Najafabadi et al., 2022). A small trial (40 patients) on
depression compared the effect of SF (30mg/day) and fluoxetine
(40mg/day) and found no significant difference between the two
groups in reduction of Hamilton depression rating scale, and the
frequency of adverse events, indicating SF has similar antidepressant
activity as fluoxetine, although further research with larger sample
size is needed (Shahmansouri et al., 2014). Currently, there is no
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published RCT onCRor related compounds for treating IS. Zhu et al.
(2010) described earlier a study using a CR injection (40 and 80mg/
day for 2 weeks) treating 60 patients with thrombotic cerebral
infarction, and showed a significant improvement in symptoms,
with an overall effective rate of 91% and 80%, respectively, and
without obvious side effects. Given that CR has been demonstrated
with efficacy in various conditions (Table 4), further clinical trials on
the effect of CR on IS are mandatory. On the other hand, TSC has
been studied as a synthetic carotenoid drug to enhance oxygenation
of hypoxic tissue in addition to the standard of care, including Covid-
19 and a Phase 2 trial on efficacy and safety for suspected stroke.
However, the stroke trial was terminated due to the COVID-19

pandemic, according to the information posted on Clinicaltrials.gov
(Zhu, 2010; Shah et al., 2021; Streinu-Cercel et al., 2021).

Toxicity and Safety of Saffron, Crocin, and
Related Compounds
The toxicity of SF has been well studied (Alavizadeh and
Hosseinzadeh, 2014b; Abu-Izneid et al., 2020) with a lethal dose
(LD50) ranging from 1 to 5 g/kg, indicating it is mildly toxic
compared to nontoxic compounds (LD50 > 5 g/kg) (Abu-Izneid
et al., 2020). A recent study on the acute toxicity of orally
administrated SF showed its LD50 as 4.12 ± 0.55 g/kg in mice

TABLE 4 | Clinical studies on CR and SF.

Testing
agent

Study design Treatment Key finding Reference

SF RCT on IS (n = 39) SF extract (200 mg/kg) for 4 days
and 3 months follow-up

Lowered stroke severity, higher Barthel index,
short- and long-term protective effect

Asadollahi et al. (2019)

Placebo n = 20
SF treatment n = 19

SF RCT on IS SF capsule 400 mg/day for 4 days Lowered stroke severity on NIHSS score Gudarzi et al. (2020)
Placebo (n = 20) Oxidative stress markers decreased
Treatment (n = 40) Decreased NSE

SF Double-blind, RCT in healthy
subjects (n = 60)

200–400 mg/day for a week Not affecting coagulant or anti-coagulant system Ayatollahi et al. (2014)
Placebo (n = 20)
SF (n = 20)

SF Healthy subjects (n = 10) 200 mg/day Modaghegh et al. (2008)

Safranal & CR
(Affron)

RCT Placebo controlled trial on
depression n = 128)

Placebo (n = 3) Reduced anxiety and the doses were safe Kell et al. (2017)
22 mg/day (n = 41) No side effects observed
28 mg/day (n = 42)

CR Placebo controlled trial in patient with
metabolic syndrome n = 30)

15 mg/twice per day for 8 weeks
placebo n = 30

Decreased Serum PAB Nikbakht-Jam et al.
(2016)

treatment n = 30

No side effect

CR Placebo-RCT on diabetic
maculopathy (n = 60); (n = 101 eyes)

5–15 mg/day tablet for 3 months CR 5mg/day improves central macular thickness
(CMT), HbA1c, and FBS levels

Sepahi et al. (2018)

third group as Placebo (n = 34) Some side effects reported such as feet swelling and
polyphagiaCR 5 mg/day n = 34

CR 15 mg/day n = 33

CR Placebo RCT of MMT (methadone
maintenance treatment) patient

CR, 15 mg twice a day, CR n = 25 Improved mental health status Khalatbari-mohseni et al.
(2019)Placebo, 15 mg twice a day, n = 25

CR RCT Methadone maintenance
treatment (MTT) patients

15 mg/day for 8 days Improved mental health and metabolic profile Ghaderi et al. (2019)
CR (n = 26), placebo (n = 27)

SF Alzheimer’s disease 30 mg/day capsule for 16 days Improved cognitive function Akhondzadeh et al.
(2010)

CR Healthy volunteers 42 healthy volunteers CR tablet
20 mg/day for a month (n = 22)

Mohamadpour et al.
(2013)

To check the safety profile

Lowered amylase and WBCs after 1-month
treatment. No significant changes in kidney and liver
functions.
No major adverse events were observed

CR RCT 100 mg/day tablet for 6 weeks
n = 24 placebo n = 24 CR

Lowered cholesterol and TG Kermani et al. (2017)
Metabolic syndrome

CR RCT 30 mg/8 weeks 45–55 years CAD
patients

Reduced depression Abedimanesh et al.
(2017)CAD depression

CR RCT Metabolic Syndrome 30 mg/day for 8 weeks 44 patients
n = 22 CR n = 22 placebo

Increased serum cholesteryl ester transfer protein,
no effect on HDL, LDL, TG, FBG

Javandoost et al. (2017)

PAB, pro-oxidant–antioxidant balance; TG, triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein; FBG, fasting blood glucose; RCT, randomized controlled trial; CAD,
coronary artery disease.
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(Gupta and Pandey, 2020). SF at the therapeutic doses (30–60mg/
day) has been shown with certain side effects including hypomania,
sedation, nausea, mild headache and anxiety, dry mouth, dizziness,
vomiting, and fatigue after 6 or 22 weeks (Akhondzadeh et al., 2005;
Akhondzadeh et al., 2010). In general, SF at 1.5 g/day has been
considered to be safewith no significant adverse drug effects (Ghaffari
and Roshanravan, 2019). At a high dosage of 10 g/day in humans, SF
manifested abortion or life-threatening complications (Mollazadeh
et al., 2015), such as temporary paralysis after hallucination and
abortion accompanied by maternal morbidity (Moghaddasi, 2010;
Ghorbani and Koocheki, 2017). In comparison, the LD50 for CR
could not be obtained as it did not cause mortality in mice after i.p.
administration at 0.5–3 g/kg (Hosseinzadeh et al., 2010). An early
study found that a high dose of CR (100mg/kg for 2 weeks) caused
liver injury and black pigmentation in rats (Wang et al., 1984).
However, a recent comprehensive study on the acute and subacute
toxicity of CR (up to 3 g/kg po and i.p.) in rodent found it did not
cause damage to major organs (Hosseinzadeh et al., 2010). Another
study found that CR at doses of 50,100, and 200mg/kg (once a week
for 4 weeks, i.p.) in rats did not cause significant changes in liver
enzymatic profile and non-pathological tissue changes (Hariri et al.,
2010). Rats fed with 1% CR for 4months showed a reversible
pigmentation (Wang et al., 1984; Imran et al., 2019). These
findings indicate that CR is generally safe and well-tolerated.
However, CR at 200 and 600mg/kg i.p. was found to affect
skeleton formation in pregnant mice indicating it may have
developmental toxicity at very high doses (Moallem et al., 2016).
On the other hand, CC was reported with a teratogenic effect at high
concentration (200 µM) in frog (Xenopus) embryos (Martin et al.,
2002), although no genotoxicity was observed for CC in V79 Chinese
hamster cells (Ozaki et al., 2002), and no retinal toxicity was observed
for CC in rabbit eyes (Wang et al., 2019). CR and CC have been well
demonstrated for their cytotoxic activity against several cancer cells
(Hoshyar andMollaei, 2017; Hashemi andHosseinzadeh, 2019; Veisi
et al., 2020).

The clinical safety of CR has been demonstrated in several human
trials (Ahmed et al., 2020). In a randomized double-blind placebo-
controlled trial in healthy volunteers (n = 42), CR at 20mg/day
administrated for 1month showed a safe profile of CR, with only
minor adverse reactions in conjunction with decreased partial
thromboplastin time, amylase, and mixed monocytes, basophils,
and eosinophils (Mohamadpour et al., 2013). Another double-
blind placebo-controlled study in schizophrenic patients (n = 22)
found that CR tablet (15mg/twice a day) caused no side effects or
significant changes in liver, kidney, and thyroid markers and
hepatological components (Mousavi et al., 2015). A randomized
trial on diabetic maculopathy diagnosed 60 patients, and showed
that CR tablets (5 or 15mg/day for 3months) caused some minor
adverse reactions including polyphagia (4 patients), foot swelling (2
patients ), burning of eyes (3 patient), red-eye (2 patients),
subconjunctival hemorrhage (5 patients), eye swelling (3 patients )
and stomach ache (1 patient) (Sepahi et al., 2018). Another clinical
trial on CR as an adjunct therapy to methadone against opioid
withdrawal in 50 patients found that CR at 15mg twice a day for
8 weeks caused some minor side effects including headache,
insomnia, nausea, and dyspnoea (Khalatbari-mohseni et al., 2019).
Similarly, CC at 7.5mg/day for 14 days in a randomized, double-

blind, placebo-controlled, crossover trial on sleep quality was found to
improve subjective sleep quality and no obvious adverse events linked
to CC intake were observed, indicating that CC at this dose and
treatment protocol is safe (Umigai et al., 2011). A 12-week RCT
involving 32 healthy adult volunteers showed that CC (7.5 mg/day)
had no significant adverse effects (Yamashita et al., 2018) while
increased delta power and enhanced the refreshing feeling while
waking up (Umigai et al., 2018). Overall, CR and CC at common
therapeutic doses are generally safe in humans. Animal toxicology
studies and phase I clinical trials had been conducted for TSC and
showed it was well tolerated and safe in humans, although no
published data are available (Gainer, 2008). Nevertheless, Mohler
III et al. (2011) showed that TSC at a dose range (0.25 to 2.0mg/kg,
IV, once daily for 5 days) was safe and well-tolerated in patients with
peripheral artery disease (PAD).

FURTHER REMARKS AND CONCLUSIONS

Significant progress has been made recently in understanding the
actions of CR and related compounds on IS-related conditions and
the mechanisms involved. The current pre-clinical and clinical
evidence indicates a great potential of CR, CC, and TSC to treat
IS and related conditions. However, these studies have some
limitations and there are still gaps that curb the clinical translation
of research findings. For example, although there is strong pre-clinical
evidence for the beneficial actions of CR against IS, the current clinical
trials on CR and related compounds are limited to other conditions,
and specific clinical trials on IS are still lacking. In addition, many
published studies are with small sample sizes and some are subject to
potential bias, thus, high-quality clinical studies are needed to further
confirm their efficacy and safety. It is also important to establish the
proper treatment protocol and compare the effects of these
compounds under short-term and long-term treatments. More
research is needed to improve the bioavailability of CR, including
developing formulations or delivery systems to maximize their
efficacy and safety, with proper dosage regimen and route of
administration. Further research is also needed to elucidate
the mechanism(s) involved in the actions of CR and related
compounds, including transformation and site of actions,
molecular targets, and sensitive markers. Among these, the
synergy of these compounds with other drugs or ingredients
needs to be explored. For example, it has been shown that TSC,
given in combination with rtPA either before or after
embolization, improved the treatment outcomes in
experimental acute IS (Lapchak, 2010). CR has also been
shown with a synergistic effect with zinc sulfate to reduce
hepatic I/R injury in Rats (Mard et al., 2017). Further
research in this area will warrant the potential therapeutic value
of these compounds not only as drug candidates by themselves but
also as a complementary therapy with existing therapies and other
drugs available. Finally, current studies have focused on CR and
CC, more research on other forms of CRs is needed.

In conclusion CRs, most importantly CR, are key active
compounds of C. sativus L. (SF). These compounds have been
demonstrated with beneficial pharmacological actions in preventing
or reducing IS-induced injury via multiple mechanisms including
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neuroprotective, antioxidant, anti-inflammation, and other cerebral
protective activities. CR can act on various cellular and molecular
mechanisms related to IS in particular neuroinflammatory
mitochondrial signaling pathways, HIF1a, VEGF, and cytokines.
CR has low bioavailability and its conversion to CC by gut
microbiota may be important in mediating its therapeutic effect.
Toxicological and clinical studies indicate that CR is generally safe
in humans. The current evidence indicates that CR and related
products may have potential as stand-alone or adjuvant therapy
for treating IS, although further confirming clinical studies are
needed. The elucidation of CRs molecular targets and synergistic
mechanisms with other drugs or ingredients may help translate
preclinical findings into novel therapies for the intervention,
management, and prognosis of IS and related conditions.
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