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In Brief

Genetic mutations are key factors for

complex diseases. Comprehensively

understanding the genetic contribution

will improve the mechanism study and

treatment of diseases. However, genetic

causalities are complex and mutation

specific. To extensively dissect the

unknown genetic causality, we propose

deep association kernel learning (DAK)

that utilizes the power of deep learning to

automatically infer complex, non-linear,

various causal loci from gene sequence at

pathway level. On four real datasets

covering cancers and mental disease, we

demonstrate that DAK can discover

unseen yet meaningful suspicious

pathways.
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THE BIGGER PICTURE Genetic mutations cause complex diseases in many different ways. Comprehen-
sively identifying the genetic causality can lead to valuable insights into the development and treatment
of diseases. However, existing genome-wide association study (GWAS) approaches are always built under
linear assumption and simple disease models, restricting their generalization in discovering the compli-
cated causality. DAK (deep association kernel learning) is a GWAS method that is constructed in a deep-
learning framework and can simultaneously identify multiple types of genetic causalities without any mod-
ifications to the model. For biological contributions, the proposed approach enables the understanding of
non-linear, complex genetic causalities and improves functional studies of the disease; for computational
contributions, our method unifies kernel learning and association analysis in a joint explainable deep-
learning framework.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The genetic effect explains the causality from genetic mutations to the development of complex diseases.
Existing genome-wide association study (GWAS) approaches are always built under a linear assumption, re-
stricting their generalization in dissecting complicated causality such as the recessive genetic effect. There-
fore, a sophisticated and general GWAS model that can work with different types of genetic effects is highly
desired. Here, we introduce a deep association kernel learning (DAK) model to enable automatic causal ge-
notype encoding for GWAS at pathway level. DAK can detect both common and rare variants with compli-
cated genetic effects where existing approaches fail. When applied to four real-world GWAS datasets
including cancers and schizophrenia, our DAK discovered potential casual pathways, including the associ-
ation between dilated cardiomyopathy pathway and schizophrenia.
1–3
INTRODUCTION

The genome-wide association study (GWAS) is extensively used

for uncovering potential causal loci from complex biological phe-
This is an open access article under the CC BY-N
notypes. The classical GWAS models assume that single lo-

cus contributes to the disease independently and the risk in-

creases linearly with the number of minor alleles. These linear

models are only powerful in discovering variants with strong
Patterns 1, 100057, August 14, 2020 ª 2020 The Authors. 1
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Figure 1. The Framework of DAK

SNPs are grouped into pathway-level gene set and coded into one-hot format. Convolutional layers are employed to encode causal loci into deep features. Kernel

machine regression is incorporated to enable statistical tests of association via SKAT framework. Multiple-instance learning selects themost suspicious pathway

at individual level. Parameters of thewhole framework are optimized in an end-to-endmanner through back-propagation. For ease of illustration, three individuals

and four pathways are shown in the figure (N = 3; P = 4). Genotype of each SNP was further encoded into one-hot format before feeding into DAK model

(Experimental Procedures).
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and direct associations.4 As an improvement, pathway-based

methods were proposed by taking groups of biologically mean-

ingful genes into consideration.5–7 For instance, gene-set enrich-

ment methods derive pathway-level statistical scores by comb-

ing p values from single-locus tests,8–10 SKAT (sequence kernel

association test),11 and its variants12,13 perform association tests

using kernel regression. However, these existing approaches

rely on some pre-assumed genetic models to conduct hand-

crafted genotype encoding. Unfortunately, in practice, the ge-

netic effect of complex disease is unknown and can hardly be

appropriately modeled in advance. Therefore, a genetic-

model-free GWAS approach that can reasonably model the

inherent relation between genotype and phenotype is urgently

needed.

We introduce a deep-learning framework, deep association

kernel learning (DAK), to conduct pathway-level GWAS (Figure 1).

While the successes of deep learning for genomic studies has

been witnessed in variant calling,14 mutation effects predic-

tion,15 and binding motif identifications,16 it has not been estab-

lished for solving general GWAS problems. Our DAK framework

incorporates convolutional layers to encode raw SNPs as latent

genetic representation. Kernel regression layers are then con-

nected with these encoded genetic representations to predict

the disease status. More importantly, this kernel regression layer

allows one to perform statistical significance tests on the learned

genetic representations to uncover the disease-associated

pathways. Both the convolutional and kernel regression layers

are trained jointly using multiple-instance loss in an end-to-end

manner. Therefore, DAK relies on no pre-assumed genetic

model and can learn all model parameters in a pure data-driven

manner.

We compared DAK with seven representative gene/pathway-

based methods: classical statistic method (Burden test),17

enrichmentmethods (GATES, HYST, and aSPU)9,18,19 and kernel

methods (SKAT and SKAT-o).11,12 DAK is the only approach that

consistently performs well under a wide range of genetic models
2 Patterns 1, 100057, August 14, 2020
including additive, multiplicative, dominant, recessive, and het-

erozygous effects.We further applied ourmethod to four disease

datasets, namely gastric cancer (GC), colorectal cancer (CRC),

lung cancer (LC), and psychiatric disorder.

RESULTS

Deep Association Kernel Learning
We introduced DAK to achieve the detection of complex associ-

ations and enhance the interpretability of GWAS (Figure 1 and

Experimental Procedures). Here, alleles are coded in the one-

hot representations to enable flexible modeling of genotype ef-

fects for each locus. Variants in the same biological pathway

are grouped together and the combinational effects of multiple

SNPs within a pathway are considered at the same time. Next,

pathway-level features are extracted by convolutional layers

(Figure S1), followed by a kernel regression layer to derive the

statistical significance (Figure S2). To allow learning from labels

at the individual level, the whole framework is trained with a mul-

tiple-instance loss in an end-to-endmanner. Finally, the variance

tests used in SKAT are performed on the learned kernel matrix to

derive statistical p values (Figures S3 and S4).

Type I Errors on Non-causal Pathways on Simulated
Datasets
In each simulation experiment, we simulated datasets under null

(no causal pathway) or alternative (disease was caused by

different genetic associations) hypothesis (Figure 2A and Exper-

imental Procedures). All seven methods were tested on simu-

lated datasets. Performances of different approaches were eval-

uated using type I error rates (corresponding to null hypothesis)

and empirical powers (corresponding to alternative hypothesis)

(Experimental Procedures) in 100 replicates.

We first report the type I error. If no causal loci existed in all

pathways (null hypothesis), all methods showed a low error-

rate level (Figure S5). Changing the sample size had little
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Figure 2. Performance Evaluations on Asso-

ciations with Single Variant

(A) Disease risk levels for different genotypes in five

genetic models.

(B) Performances to discover the disease pathway

resulting from single common variant. Effect size

was set to 0.2 and simulated phenotypes were

generated under five effect models. Under each

sample size (3,000, 5,000), seven methods (four

showed here and three in Figure S13) were used

to discover the disease pathway. Power was

calculated from 100 replicates after Bonferroni

correction.

(C) Performances to discover the disease pathway

resulting from single rare variant. Effect size was set

to 0.8 to simulate phenotypes; 3,000 and 5,000

samples were considered.
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effect on the results. The training curve showed that DAK

converged within several iterations (Figure S6).

Powers on Pathways with Single Effects on Simulated
Datasets
We then considered that the disease was caused by a single

common variant. To illustrate different functional pathways of

genes to the disease, we assumed that the allele of the causal lo-

cus contributed to the disease in five different geneticmodels: (1)

additive model, minor homozygous genotype had 2-fold effect

over the heterozygous type; (2) dominant mode, two genotypes

showed the same effect size; (3) multiplicative model, minor al-

leles increased the disease risk exponentially; (4) recessive

model, only minor homozygous genotypes had effects; and (5)
heterozygous model, only heterozygous

alleles had effects (Figure 2A).

On the most widely used additive dis-

ease mode, we found that all methods

showed reasonable accuracy in identi-

fying the pathway with disease locus (Fig-

ures 2B and S7). However, when the

fundamental genetic model changed, the

power of all comparison methods drop-

ped dramatically while DAK maintained a

reliable performance with best power

across all conditions. Specifically, for the

challenging recessive genetic model, ac-

curacies of all comparison methods

greatly decreased and were far below

the performances of DAK. The perfor-

mance of DAK was further improved

when increasing the effect size while

other methods were still of low accuracy

(Figure S8). We further noted that when

the sample size was increased to 5,000,

powers of all methods were increased

and DAK maintained the best perfor-

mance (Figures 2B and S7). With further

increase in sample size (to 100,000),

DAK is capable of detecting associations

as weak as 0.01 (Figure S9). We also cali-
brated the performance of DAK on imbalanced datasets (Fig-

ure S10) and in datasets with known strong/weak linkage

disequilibrium (LD) structures and LD scores (Figures S11

and S12).

The discovery of rare variants (minor allele frequency <1%)

is a challenging task in GWAS due to the low gene frequency.

We simulated a rare dataset of 5,000 samples where the dis-

ease was caused by single rare variant under five genotype

models. Again, DAK obtained much higher performances

than others on recessive and multiplicative genetic models

(Figures 2C [bottom] and S13). We demonstrated that DAK

could discover the causal rare variant at power around 0.8

on datasets even with only 3,000 samples (Figure 2C, top),

which was a challenging task for other methods.
Patterns 1, 100057, August 14, 2020 3
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Figure 3. Performance Evaluations on Associations with Multiple Variants

(A) Performances to discover the disease pathway resulting from three common variants. Effect size was set to 0.1, 0.2, and 0.3 and simulated phenotypes were

generated under five effect models. Under each sample size (3,000, 5,000), seven methods (four illustrated here) were used to discover the disease pathway. The

power was calculated from 100 repeats after Bonferroni correction.

(B) Performances to discover the disease pathway resulting from three rare variants. Effect size was set to 0.8; 3,000 and 5,000 samples were considered.
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We further analyzed the performance of DAK on causal

variants with different minor allele frequency (MAF) ranges.

DAK maintained high-power performances even with a small ef-

fect size (0.2) when MAF was >0.005 (Figure S14A). In

simulations focusing on human leukocyte antigen regions, DAK

also maintained similar accuracy with both common and rare

variants (Figure S15). Lengths of pathways also showed little ef-

fect on the power of DAK (Figure S16). We also considered ex-

periments with complex phenotype by hundreds of SNPs with

small effect sizes (0.005). DAK showed greatly advantageous re-

sults compared with competitors (Figure S17).

Powers on Pathways with Joint Effects on Simulated
Datasets
Most diseases are the result of the joint effect of multiple genes.

However, it can be more challenging to identify the combined

and mixed effect signals from multiple causal variants. Here,
4 Patterns 1, 100057, August 14, 2020
we simulated joint effects by randomly assigning three causal

common variants and generated phenotype under five genetic

models (Experimental Procedures). Performances of all methods

were much lower compared with results under the single variant.

However, DAK still dramatically outperformed other methods

and achieved the most stable performance among all experi-

ments (Figures 3A and S18). The performances of all methods

were enhanced when the effect size was increased. The advan-

tages of DAKweremore obvious when the causal positions were

rare variants (Figures 3B and S19).

To analyze the effect from LD structures, we further quantified

the power of DAK on two simulated datasets with known

strong or weak LD patterns. DAK also showed promising perfor-

mances in discovering associations by multiple variants with

small effect size (Figure S11). Further analysis of DAK onmultiple

causal variants with various MAF ranges was also performed

(Figure S14B).
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Figure 4. Explanable Analysis of DAK on Identifying Association Signals

DAK improves the detection ability of causal pathways by increasing the difference of convolution outputs between causal regions and non-causal regions (A and

B) and enlarging similarities between samples carrying causal alleles (C and D).

(A) Locus indicated by the red arrow was selected as the causal position in the pathway (top). The learned weights of convolution layers (bottom) exhibit large

responses in the causal position.

(B) Rank-sum tests on convolution outputs show significant differences between causal and non-causal regions.

(C) Sequence kernel association test (SKAT) on deep features obtains smaller p values than on original sequence (7.563 10�5 versus 8.933 10�3). Samples with

disease alleles (‘‘Aa’’/‘‘aa,’’ indicated by red/blue arrows) show higher similarity in deep features.

(D) Deep kernel matrix shows a near-Gaussian distribution; while original SKAT kernel shows a long-tail distribution with several extremely large outliers (in

red box).

ll
OPEN ACCESSArticle
Explaining the Rationale of DAK with Simulated
Pathways
To explain the rationale of how DAK improves the detection of

association, we visualized and analyzed the functions of

different deep layers. We simulated pathway sequences and

phenotypes with a randomly assigned causal position (indi-

cated by the red arrow in Figure 4A) using an additive genomic

model.

We firstly showed that convolution layers could efficiently

identify the causal regions. With learned weight matrices

(Figure 4A, bottom), convolution layers exhibited larger re-

sponses in the region of the causal locus (Figures 4A [top

curve] and S20). To statistically quantify changes between

causal and non-causal regions, we employed rank-sum
statistical tests20 to calculate the rank difference of outputs

from convolutional layers. p values indicated that most kernels

had significantly different outputs between two regions

(Figure 4B).

We next showed that deep kernel matrices could better

define the sample similarity than original kernel matrices.

Samples with disease alleles showed stronger similarities in

deep-feature kernel than in original-sequence kernel (Fig-

ure 4C). When comparing sample similarities with and without

disease genotypes (‘‘AA’’ versus ‘‘Aa/aa’’), the differences are

minor in the original kernel matrix and but are obviously re-

flected in the deep kernel matrix (Figure S21). All entries in

deep and original kernel matrices exhibited a near-Gaussian

and long-tail distribution, respectively (Figures 4D and S22).
Patterns 1, 100057, August 14, 2020 5
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In the subsequent significance test on kernels, the large values

in long-tail distribution can reduce the power and lead to weak

association results.

The multiple-instance learning layer in DAK selected the

pathway with maximal signal into the loss function. To eval-

uate whether DAK can prioritize pathways with true associa-

tions, we output indices of selected pathways and compared

them with the true index of associated pathways based on the

experiments in Figure 2B. From the precision score, we

observed that DAK could accurately identify the pathway

with true association from all candidates for most genetic

models (Figure S23).

Applications to Real Datasets
We performed DAK on four disease datasets: GC, CRC, LC, and

schizophrenia (SP) (Table S1). After the quality control steps, we

divided all SNPs into pathway groups by their genetic coordi-

nates (Experimental Procedures). DAK was optimized on one-

hot coded pathways, and the score test was conducted on

each pathway using learned neural network parameters to

obtain the statistical p value.

For the GC dataset, three Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways exhibited genome-wide signifi-

cance after Bonferroni correction (a = 0.05/186 = 2.68 3 10�4).

Two of them (terpenoid backbone biosynthesis and oxidative

phosphorylation) showed strong associations (Figure 5A and

Table S2). In a previous study, terpenoid backbone biosynthesis

was identified as having a strong relation with hepatocellular

carcinoma using microRNA and mRNA high-throughput

sequencing.21 Oxidative phosphorylation is closely related to

the biological process in mitochondria and plays an essential

role in the development of tumors.22 Existing studies have shown

its association with endometrial carcinoma, leukemias, and lym-

phomas.23 Recent work also indicated that it could be an impor-

tant target to treat cancer using a relevant inhibitor.24 The focal

adhesion pathway is important for cell proliferation, cell survival,

and cell migration. In cancer, activities of focal adhesion are

altered during tumor formation and development.25 It is also a

widely known target for cancer therapy development.26 For the

other three pathways showing borderline significance, alpha li-

nolenic acid metabolism was discovered to downregulate hu-

man and mouse colon cancers;27 the function of ubiquitin medi-

ated proteolysis on cancers is also widely known.28

For the CRC dataset, DAK identified two KEGG pathways

showing genome-wide significance (Figure 5B and Table S3).

The most significant pathway, allograft rejection, is well known

as an immune action pathway. The relation between allograft

rejection, blood transfusion, and colorectal cancer recurrence

was reported as early as 1987.29 The other significant pathway,

glyoxylate and dicarboxylate metabolism, was recently identified

to be related to the metabolic switch in colorectal cancer cells.30

Another three pathways, one carbon pool by folate, oocyte

meiosis, and amino sugar and nucleotide sugar metabolism,

were also discovered as high-risk pathways to CRC. The mech-

anism between one-carbon metabolism and CRC has been

studied,31 and several key mutations in this pathway have

been related toCRC.32Oocytemeiosiswas identified to be asso-

ciated with colonic diseases in a previous study based on

expression data,33 and amino sugar and nucleotide sugar meta-
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bolism may contribute to the lipid metabolism abnormality in

CRC.34 For this dataset, we also ran DAK with and without the

adjustment of population structures. DAKmaintained stable per-

formances in both conditions (Table S4 and Figure S24).

For the LC dataset, DAK reported two significant pathways:

lysine degradation and proteasome (Figure 5C and Table S5).

In LC treatment, proteasome inhibitor has been used to treat

non-small cell LC and small cell LC35–37 while lysine modification

was discovered to affect a wide range of cancer types.38 The

other three pathways also had relatively small p values. The

CRC pathway indicates that LC may share causal genes with

certain types of CRC. Lysosome was reported to support the

development LC.39 The primary immunodeficiency pathway is

known to lead to infections and cancers.40 To evaluate the stabil-

ity of associated pathways, we further performed analysis on

another independent LC dataset with 14,803 cases and 12,262

controls. In the new dataset, we successfully replicated signifi-

cantly associated pathways identified from the previous LC da-

taset (Table S5). We also discovered two interesting pathways

in the new dataset showing strong associations with LC: drug

metabolism cytochrome P450 (p = 0.00229) and nicotinate and

nicotinamide metabolism (P = 0.00103) (Table S6). These two

pathways were closely related to the metabolism of chemicals

in smoking, which is widely known as a major risk factor for LC.

For the SP dataset, we did not identify pathways reaching

genome-wide significance after statistical correction (Figure 5D

and Table S7). Interestingly, one pathway, dilated cardiomyopa-

thy (DCM), showed borderline significance with SP. This

pathway is related to heart muscle disease and can lead to heart

failure. There is no existing study indicating its biological connec-

tion to SP. However, one clinical investigation has shown that

after neuroleptics to treat SP, patients had a significantly

increased possibility of developing DCM.41 In other detailed

case reports, the use of clozapine as treatment for SP finally

led to DCM.42–44 This implies that SP and DCM may share bio-

logical pathways and that the treatment may target the process

that is important to both.

We also performed analysis on these real datasets with

permuted labels to assess null distributions (Figure S25). Taken

together, DAK efficiently discovered pathways that were known

to be associated with diseases and also revealed potential asso-

ciated pathways.

DISCUSSION

The identification of genetic causality can lead to valuable in-

sights into the development of complex diseases. In this work,

we employed DAK to discover disease-associated pathways

by deep kernel learning. We demonstrated that DAK had prom-

ising and stable accuracies in discovering different types of

causal variants, including common/rare loci, single/joint causal

effects, various gene-disease models, and strong/weak effect

levels, meanwhile controlling well the overfitting problem. DAK

is computationally efficient (Figure S26) and is able to work

with large-scale datasets due to the batch-training mechanism.

To our knowledge, this is the first work that takes all of these

important disease conditions into consideration. We also

demonstrated the usability of DAK on four real datasets including

cancers and mental disease.
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Figure 5. Scatterplots of p Values of KEGG Pathways by DAK on Four Real Datasets

Datasets from (A) gastric cancer, (B) colorectal cancer, (C) lung cancer, and (D) schizophrenia. Pathways showing genome-wide significances after Bonferroni

correction (a = 0.05/186 = 2.68 3 10�4) are marked in red.
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Beyond current analyses, it is potentially interesting to explore

DAK’s performances from other directions in the future, given the

availability of proper datasets. Large-scale datasets can bemore

informative in association analyses and can cover more complex

population structures. In this work, we have not fully considered

complex genetic variations such as similar biological functions

from multiple SNPs and single genetic variation with multiple

functional consequences. It would be meaningful to incorporate

such complexity with the development of new simulation tools.

DAK also shows potential to be used for other genomic research

problems including disease risk predictions and gene-level

GWASs. For real experiments,wediscussed results fromexisting

studies to gather evidence to support our discoveries. However,

we note here that these can only be viewed as ‘‘partial evidence’’

and cannot yet be regarded as ground truth for evaluations.

Future analyses of datasets with clinical evidence would an ideal

way to evaluate the performance of DAK on real data.

Taken together, DAK offers an advanced and interpretable

tool for GWASs at pathway level.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Qionghai Dai, PhD; qhdai@tsinghua.edu.cn.

Materials Availability

This study did not include new materials.

Data and Code Availability

The genotyping data of GWASs of GC and SP were deposited in dbGaP:

phs000361 and phs000021, separately. The genotyping data of GWAS of

colorectal cancer and LC were derived from previous studies.45,46

DAK is available from Github: https://github.com/fbaothu/DAK.

Other tools used in this work can be downloaded from:

Plink: http://zzz.bwh.harvard.edu/plink/; HAPGEN 2: https://mathgen.stats.

ox.ac.uk/genetics_software/hapgen/hapgen2.html; The 1000 Genomes Proj-

ect: http://www.1000genomes.org/; UCSC Genome Browser: https://

genome.ucsc.edu/; SKAT and SKAT-o: https://www.hsph.harvard.edu/skat/;

GATES, HYST, and aSPU: https://cran.r-project.org/web/packages/aSPU/

index.html.
DAK Architecture

For the ith individual from a total number of N samples, yi denotes the pheno-

type (such as disease or control); xi˛RK is an adjusted vector composed of K

environmental related factors (e.g., gender, stratification, and bias). The geno-

type of each SNP belongs to one of three types: major homozygous, heterozy-

gous, and minor homozygous genotypes. Therefore, it is natural to represent

the genotype of each SNP by a one-hot vector with the non-zero entry indi-

cating its particular genotype.

We group all lðpÞ SNPs on the pth pathway of individual i together and obtain

the corresponding pathway-level genotype matrix g
ðpÞ
i ˛RlðpÞ33. After pathway

assembling, we obtain a total number of P pathways for all samples.

We transform each g
ðpÞ
i through convolutional layers convð ,jQcÞ with M

convolutional operators:

f
ðpÞ
i = covðgðpÞ

i

��QcÞ=
�
max

�
fc1

�
g
ðpÞ
i

��qc1 ��;
max

�
fc2

�
g
ðpÞ
i

��qc2 ��;.;max
�
fcM

�
g
ðpÞ
i

��qcM ���T˛RM;

where fcj ð,
��qcj Þ represents the jth convolutional operator with parameter qcj

and max½ ,� is the max-pooling operator. Qc = fqc1 ;.qcM g denotes all learn-

able parameters of the convolutional layer.

By applying the output of the convolutional layers through a hN layer,47 we

obtained the kernel representation of the pth pathway for individual i,
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hN

�
f
ðpÞ
i

�
=
h
k
�
f
ðpÞ
i ; f

ðpÞ
1

�
;.k

�
f
ðpÞ
i ; f

ðpÞ
j

�
.k

�
f
ðpÞ
i ; f

ðpÞ
N

�i
;

where kð ,; ,Þ is a kernel function12 (Supplemental Experimental Procedures)

and N is the number of samples. Because the kernel function is applied to

deep features f
ðpÞ
i instead of raw sequences, we note here that weighed kernel

functions by MAF are not applicable.

We then define a pathway-level kernel regression function:

l
ðpÞ
i = L�xi ;hN

�
f
ðpÞ
i

���u�=axi + bhN

�
f
ðpÞ
i

�
;

where u= fa;bg contains learnable regression coefficients for environment

factor and genotype features, respectively. For individual i, we can obtain

½lð1Þi .l
ðPÞ
i � from a total number of P pathways.

We noticed that the labels (disease versus non-disease) are only provided at

the individual level while not at each single pathway level. We hence consider

multiple-instance learning loss48 and define the individual level label for sam-

ple i as

Li = max
�
l
ð1Þ
i .l

ðPÞ
i

�
:

Multiple-instance learning selects the pathway with the maximal response

from all pathways into the next layer. This multiple-instance learning loss is

naturally explained in the context of GWAS: a sample is treated as a patient

if at least one of his or her pathways is associatedwith the disease. The training

loss is defined as

C =
1

N

XN
i =1

costðyi ;sðLiÞÞ;

where sð ,Þ is the sigmoid function that converts regression outcomes into

probabilities and costð ,Þ is the cost function that calculates losses between

true labels and predicted labels. Here we used cross entropy. This loss func-

tion is optimized by TensorFlow in batches.

After well training, the kernel machine regression is used to model the rela-

tion between phenotype and kernel matrix. Kernel method has been validated

as a powerful approach to quantify the statistical significance of each pathway

and is widely used in a number of GWAS methods12,19 (Supplemental Exper-

imental Procedures). For each pathway p, the statistical score was derived

from the kernel similarity matrix KðpÞ = ½hNðf ðpÞ1 Þ;.hNðf ðpÞi Þ.hNðf ðpÞN Þ�T via

Qp = ðL� YÞTKðpÞðL�YÞ;

where L= ½lðpÞ1 ;.; l
ðpÞ
N � (resp. Y = ½y1;.;yN�) is the predicted (resp. ground truth)

disease statues for the pathway p across N samples. As introduced in SKAT,

the Qp was compared with the mixture of c2 distributions to obtain p value.

Simulation of Genotype and Data Preprocessing

We downloaded haplotypes of the CEU population from the 1000 Genomes

Project.49 Based on this reference, we simulated full genome data of 10,000

samples using HapGen 2 software.50 On simulated dataset, we performed the

following data quality control steps using Plink:4 removing individualswithmiss-

ingness >0.05; removingSNPswithmissing rate>0.05orHardy-Weinberg equi-

librium <13 10�5. Thereafter, all data were converted into raw files.

Simulation of Phenotypes

Phenotypes for samples were simulated based on statistical hypothesis. Un-

der null hypothesis that no causal pathway existed, case/control (represented

in 1/0) labels were assigned randomly. Under alternative hypotheses, pheno-

types were generated using linear models:

log

	
rk

1� rk



= a+ bTxk +gck + e;

where rk is the probability for sample k being a disease; xk˛RK is the vector of

environmental factors as already mentioned and b˛RK is the corresponding

effect weights; ck˛R is the genotype of pre-selected causal SNP and is coded

according to the genetic model assumption: for example, ck = 0; 1; 0 for the

mailto:qhdai@tsinghua.edu.cn
https://github.com/fbaothu/DAK
http://zzz.bwh.harvard.edu/plink/
https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html
https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html
http://www.1000genomes.org/
https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://www.hsph.harvard.edu/skat/
https://cran.r-project.org/web/packages/aSPU/index.html
https://cran.r-project.org/web/packages/aSPU/index.html
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genotype ‘‘AA,’’ ‘‘Aa,’’ ‘‘aa,’’ respectively. For a multiplicative genetic model

where the disease increased exponentially, we first determine the risk rk for

samples with ‘‘Aa’’ allele and then exponentially increase the risk for ‘‘aa’’ sam-

ples. g is the effect size of genotype. We followed the same setting in SKAT,13

with a 0.2 effect size equivalent to odds ratio of 1.22.We note here that in type I

error analysis, different genetic models will have no effect to the simulated

phenotype because the g was set to zero. Therefore, we did not evaluate

the error-rate performance with different genetic models.

For simulation of disease caused by joint effects, we extend the linear

model to

log

	
rk

1� rk



= a+ bTxk +

XNc

j = 1

gðjÞcðjÞ
k + e;

where Nc is the number of causal SNPs. After simulating phenotypes, we

randomly selected 50% cases and 50% controls for analyses.

Pathway Set Assembling

A total of 186 KEGG pathways were downloaded from the Molecular Signa-

tures Database (MSigDB) in the items of ‘‘C2: curated gene sets.’’51 The

whole-genome SNPs were firstly mapped to genes based on their positions

(RefSeq hg19),52 then genes within the same pathway were further assembled

together. Finally, pathway-level SNP sets were used as input for analysis. If

variants had multiple gene mappings, we assigned them to different gene

sets. We also tested the performance of DAK on pathway sets with random

gene orders and on regulatory regions (Figures S27 and S28).

Real Dataset Collections

All GWAS datasets are described in Table S1. In brief, the raw genotypes were

firstly imputed using SHAPEIT and IMPUTE2 based on the 1000 Genomes

Project (Phase I, version 3, 1,092 individuals). The imputed SNPs were then

cleaned with the criteria of (1) MAF <0.01, (2) call rate <95%, (3) Hardy-Wein-

berg equilibrium p < 1.0 3 10�6, (4) info score <0.3. The population structure

was estimated by a principal components analysis using EIGENSOFT 5.0.1,

and the principal components were extracted as covariates, corresponding

with age, sex, and variables if appropriate for modeling adjustment. Perfor-

mances with different MAF filtering depths were also provided (Figure S29).

The study protocol was performed in accordance with the Institutional Review

Board of Nanjing Medical University and Massachusetts General Hospital, the

Human Subjects Committee of the Harvard School of Public Health, and the

research use statements in the database of Genotypes and Pheno-

types (dbGaP).

Evaluation

Performances of all methods were quantified under two metrics, type I error

rate and empirical power, corresponding to experiments conducted under

the assumption that no disease existed or no causal pathway existed. On

simulated datasets, all comparison methods were used to derive pathway-

level p values. Under each experimental setting, the association analysis

was repeated 100 times on different datasets that were randomly sampled

from simulated data. The type I error rate/empirical power was then defined

as the proportion of experiments detecting significant pathways among 100

repeats.

Comparison Methods

HYST combines extended Simes’ test and scaled c2 test from single SNP as-

sociation results.

Burden test uses MAF as weights and additively combines all SNPs.

GATES takes extended Simes’ test to aggregate single SNP test results.

SKAT employs kernels to model the similarity between individuals and

directly calculates the association significance between sample kernels and

sample phenotypes. Here we used the default kernel setting (‘‘linear.-

weighted’’) and default parameters.

aSPU is amethod for adaptive testing of association analysis. It employs the

sum of powered score tests to combine single SNPs.

SKAT-o combines SKAT and Burden test and selects the best results from

them. We also used the default settings for SKAT.
The detailed structure of DAK is illustrated in Figure S1. We also employed

linear kernel to be comparable with SKAT and provided performance evalua-

tions of DAK using other alternative kernels (Figure S30). The model was con-

structed in TensorFlow framework and was run on a machine with Nvidia Titan

X GPU. We set the training epoch to 100 and optimized parameters using

ADAM optimizer. Performances with changing structure parameters were

also provided (Figure S31).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100057.
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