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Anterior insula (aIns) is thought to play a crucial role in rapid adaptation in an ever-
changing environment. Mathematically, it is known to track risk and surprise. Modern
theories of learning, however, assign a dominant role to signed prediction errors (PEs),
not to risk and surprise. Risk and surprise only enter to the extent that they modulate
the learning rate, in an attempt to approximate Bayesian learning. Even without such
modulation, adaptation is still possible, albeit slow. Here, I propose a new theory of
learning, reference-model based learning (RMBL), where risk and surprise are central,
and PEs play a secondary, though still crucial, role. The primary goal is to bring outcomes
in line with expectations in the reference model (RM). Learning is modulated by how
large the PEs are relative to model anticipation, i.e., to surprise as defined by the RM. In
a target location prediction task where participants were continuously required to adapt,
choices appeared to be closer with to RMBL predictions than to Bayesian learning. aIns
reaction to surprise was more acute in the more difficult treatment, consistent with its
hypothesized role in metacognition. I discuss links with related theories, such as Active
Inference, Actor-Critic Models and Reference-Model Based Adaptive Control.

Keywords: reference-model based learning, surprise, approximately Bayesian delta-rule learning, Bayesian
learning, anterior insula (aIns), risk prediction error, reference model adaptive control (RMAC), active learning

INTRODUCTION

Change is a defining characteristic of the human environment. As a result, the need for humans
to continuously adapt has made them a most versatile species, whose main skill appears to be
the ability to recognize change and learn. Anterior insula (aIns) has long been thought to be a
brain structure that is crucial to such rapid adaptation. To recognize that the uncertainty in one’s
surroundings has become unusual requires appropriate integration of external sensory signals
and ensuing bodily reactions (emotions), while fast behavioral adaptation demands continued
awareness, two aspects of learning that evolutionary biologists have attributed to aIns (Craig, 2009,
2011).

Learning signals that have been identified in neural activation within aIns appear to be related
to risk and surprise. That is, neural signals correlate with the size of prediction errors (PEs), i.e.,
the un-signed PE (it is always non-negative) (Fouragnan et al., 2017, 2018). aIns neural signals
encode the anticipated size of upcoming PEs, which means that they track risk. When uncertainty
materializes, aIns neural signals encode surprise, i.e., the extent to which the size of the PE is greater
or less than anticipated (Preuschoff et al., 2008).
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Yet the dominant model of learning in computational
neuroscience is that of reinforcement learning (RL), where
surprise does not play a role. Instead, central to RL is the
signed reward PE (positive if the reward is higher than predicted,
negative otherwise). It is this PE which drives updates to estimates
of the values associated with stimuli and actions. Encoding of
reward PEs has not been associated with aIns; instead, the central
role of RL has been attributed to the dopaminergic system,
where the reward PE appears to be encoded in phasic firing of
dopaminergic neurons of the ventral tegmental area (VTA), as
originally discovered in Schultz et al. (1997).

Risk and surprise (risk PEs) at best play an indirect role in
RL, in a class of models referred to as approximate-Bayesian
delta-rule models (Nassar et al., 2010). There, the learning rate
increases, and hence, learning accelerates, when an outcome is
dissimilar to outcomes experienced in the past; it decreases if
surprise is low (Pearce and Hall, 1980; Behrens et al., 2007;
Preuschoff and Bossaerts, 2007; Payzan-LeNestour et al., 2013;
McGuire et al., 2014). This modulation makes adaptation faster.
One could do without it, at the cost of slower adaptation when
outcomes are dissimilar to the past (which would suggest that
the environment may have changed), or unnecessary adaptation,
when outcomes are similar to the past (which would suggest that
the environment remained the same, and hence, learning could
gradually be halted). Even in more advanced, model-based forms
of learning, PE remains the key variable driving updating (Daw
et al., 2005; Gläscher et al., 2010). In model-based RL, the learner
has an explicit representation of the potential environments she
can be in. The goal is to speed up learning after surprises.
This becomes possible since she merely has to identify what
environment the new outcomes are most likely to come from;
she can thus make more effective predictions after identifying the
right environment (Hampton et al., 2006).

As a result, we are left with a puzzle. On the one hand,
evolutionary biologists suggest that aIns plays a crucial role in
learning and adaptation, yet computational neuroscientists insist
on learning models driven by a variable, the PE, that is generally
not associated with neural activation in aIns.

The goal of this essay is to propose a solution to this paradox,
and to provide provisional evidence of its veracity.

Key to the proposed solution is a novel model of learning,
where PE is not the key driver. Instead, learning is meant to bring
outcomes as close as possible to predictions from a reference
model (RM). Learning increases upon surprises, defined as
outcomes that are larger than the RM expected. Learning stops
as soon as PEs are in line (or lower than) anticipated in the RM.
This leads to novel predictions. In particular, learning may stop
even if PEs are non-zero; it will stop if there are no surprises, i.e.,
the size of the PEs is equal to or less than expected.

In approximately Bayesian delta-rule models, learning is also
modulated by the size of the PE relative to expectation. However,
such models form these expectations from past outcomes.
Learning continues as long as the PEs are non-zero. If the
PEs are dissimilar (in size) to recent outcomes, learning may
even accelerate. Learning will stop if the PEs remain similar to
previous experience, but even then, learning will be reduced only
gradually.

The RM could be viewed as encapsulating the notion of
ambition and aspirations. As such, the learning model generates
“satisficing,” meaning that the learner will be satisfied if she can
match the performance of the RM. These notions are absent in
the traditional RL model, which aims at optimizing. Psychologists
have long criticized this aspect of learning models. Humans,
it has been argued, appear to merely spend effort to reach
satisfaction, and not to reach optimality. Humans have ambitions
and aspirations, will work to reach them, and stop there, even
if actions could be improved. Herbert Simon called this form of
behavior “satisficing” (Simon, 1957, 1959). But he did not provide
a formal model. The learning approach proposed here fills this
gap.

The ambition and aspirations are encapsulated in the RM, and
the learner is satisfied with her efforts as long as she manages to
generate outcomes that are not surprising in view of the model.
She could do better (she could still reduce the PE) but if the size of
the PE is what is expected in the RM, the learner no longer works
toward improving performance.

In this reference-model based learning (RMBL), the PE still
plays a crucial role, but it is not central to high-level decisions
such as when to start or stop learning, how much effort to spend,
whether to explore, etc. That is, PE is not central to metacognition
(Fleming and Dolan, 2012); surprise is – relative to the RM.

The remainder of this essay is organized as follows. In the next
section, I summarize evidence on identification of mathematical
learning signals in aIns. Subsequently, I provide a mathematical
account of the proposed RMBL in the context of a task that
requires rapid adaptation, involving frequent and salient outliers
(“leptokurtosis”). I show that RMBL explains how humans learn
in this task. I then position RMBL within the recent literature on
learning and control, in engineering as well as in computational
neuroscience, and in animal learning. For indeed, the ideas
behind RMBL resonate with many aspects of extant modeling.
I close with providing perspective, including raising unanswered
questions.

ANTERIOR INSULA ANTICIPATES AND
TRACKS SURPRISE

The first indication that aIns is engaged in tracking surprise came
from studies that showed increased correlation of activation with
the chance of making mistakes in a task (Klein et al., 2007; Eichele
et al., 2008). At the same time, evidence emerged of activation in
aIns related to risk and uncertainty (Critchley et al., 2001; Ernst
et al., 2002; Paulus et al., 2003; Huettel et al., 2005, 2006). As such,
the neural signals revealed a previously unsuspected function of
aIns, namely, anticipating the size of PE, or in statistical language,
measuring risk.

In addition to risk anticipation, aIns evidently tracks risk PEs
(Figure 1). These are the difference between the size of the actual
PE and its expectation. In other words, it is the unanticipated part
of risk, or surprise.

There is confusion in the literature, because some would refer
to the entire unsigned PE, i.e., the size of the PE, as surprise
(see, e.g., Fouragnan et al., 2018). Here, however, we explicitly
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FIGURE 1 | (Left) Anterior insula (aIns) activation correlates with surprise, defined as the difference between the size of the prediction error (PE) and the expectation
of this size (risk). Results from a card game where potential reward profiles, including expected reward and reward variance (risk) change upon two consecutive
draws of cards. (Right) Plot of neural activation as a function of risk PE. For control, activation under zero risk, and hence, zero risk PE is shown as well, but not
included in the regression line (dotted line) (Preuschoff et al., 2008) (Reproduced by permission #4422210891259).

distinguish between anticipation of the unsigned PE and the
mistake in this anticipation. The former is referred to as risk,
while the latter is surprise. Interestingly, aIns encodes both the
anticipation (risk) and the mistake (surprise).

In the context of reward prediction, aIns activation does not
appear to correlate with the (signed) reward PE (Preuschoff et al.,
2008; D’Acremont et al., 2009; Fouragnan et al., 2018). This is
in contrast to activation in the dopaminergic system, including
VTA and its projection regions in striatum (nucleus accumbens)
and prefrontal cortex (O’Doherty et al., 2003; Fouragnan et al.,
2018). As such, aIns does not encode the key variable that drives
belief updating in traditional accounts of learning. Instead, aIns
activation appears to focus on the higher statistical moments: risk
and surprise.

A FORMAL ROLE FOR SURPRISE IN
LEARNING

Here, I propose a novel theory of learning which reconciles the
importance of surprise in guiding learning, on the one hand, with
the traditional view that belief updating ultimately relies on PEs,
on the other hand. In this theory, both PEs and surprise about the
PE play an important role. Surprise is defined as the magnitude
of the PE relative to its anticipation according to a RM. The
signed PE is used as in the traditional account of learning, namely,
to update forecasts. Surprise is used to change the intensity of
learning (i.e., the learning rate).

I present the theory in a simple prediction paradigm. The
task is to forecast the next outcome of a sequence of random
outcomes generated by a continuously changing underlying state.

One can think of the outcomes as a target that moves in space, and
the task is to predict the subsequent move (change in location).
I will use y(t) to symbolize the location at time (in trial) t
(t = 1, 2, . . .). The underlying, unobservable state is denoted x(t).
The observable location y(t) and the underlying state x(t) are
related through a traditional state-space model (Dayan and Yu,
2003):

y(t) = x(t)+ o(t)

x(t+ 1) = x(t)+ s(t)

Here, o(t) is traditionally referred to as the (random)
observation error, and s(t) is known as the (random) state
transition. For simplicity, I will assume that all outcomes are
scalars, and that the observation error and state transitions are
independent from each other and over time.

Figure 2 illustrates the type of sample paths one can generate
with this paradigm. Plot A shows the moves over time of the
target when the state is subject to frequent, salient outliers, also
known as tail risk. Technically, the state transition is governed
by a leptokurtic distribution, which is a distribution that is more
peaked and has fatter tails than the Gaussian distribution. The
observation error, instead, is Gaussian, as usual. In plot B, the
observation error displays tail risk: relative to the underlying
state, the target sometimes deviates substantially, but this does
not have a lasting effect, i.e., the outliers revert. We shall refer
to the former as the P treatment, for Permanent (because the
outliers have a permanent effect on the location of the target),
while the latter will be called the T treatment, for Transitory
(because the effect of outliers disappears immediately).
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FIGURE 2 | Target movements when state transitions are subject to tail risk
(A) against when observation error is subject to tail risk (B). (B) Outliers
therefore revert within one trial (D’Acremont and Bossaerts, 2013)
(Reproduced by permission #4422211361599).

Imagine that the task of our decision-maker, or agent, is to
predict moves of the target one step ahead. The agent does
not know whether she is in the P or T treatment, and hence,
forecasting performance will depend crucially on how effectively
she learns. If she is told the basic structure of the stochastics
driving the target, she could apply full-fledged model-based
learning, in the form of Bayesian inference, or use a good
approximation based on the delta-rule model. This, however, is
very complex. An alternative is to apply (model-free) RL, but
one can show that this is extremely slow, and therefore does
not match performance of humans, who manage to dissociate
between the two treatments within a few trials (D’Acremont and
Bossaerts, 2013).

Here, I propose a third possibility. The agent posits a RM
against which she evaluates her performance on the task. Imagine
that this RM ignores the leptokurtosis, and instead treats all
random outcomes as Gaussian. As a result, the agent’s RM is a
standard Gaussian state-space model. The best forecast of the
target location is based on the Kalman filter.

The RM Kalman filter works as follows: the location forecast
one step ahead is simply the past location forecast plus a fraction
of the present forecast PE. The fraction, referred to as the Kalman
“gain,” is fixed over time (provided the filter has reached its
steady state). In RL parlance, this gain would be referred to
as the learning rate. Significantly, if the observation error and
state transitions are indeed Gaussian, the Kalman filter is Bayes-
optimal (Meinhold and Singpurwalla, 1983).

Importantly, the RM provides a prediction of the expected size
of the forecast error. This expectation remains constant, provided
again that the steady state has been reached. Using the square as a

measure of size, let Z denote the expected squared forecast error
from the Kalman filter.

The goal of the agent is to match the performance of the RM.
She is not trying to get the best forecasts, as in Bayesian updating.
She only wishes to perform as well as anticipated under the RM.
In particular, her forecasts are to be formulated so as to reach the
same expected squared forecast error. Surprises (actual forecast
errors that are bigger or smaller than expected) lead her to change
her forecasting rule.

Imagine that her actual forecasting rule is the same as that in
the Kalman filter, except that she allows tuning of the gain. That
is, her forecasts equal the past forecast plus a fraction of the PE,
where this fraction, the “gain”/learning rate, may be changed as a
function of surprise. That is, the prediction y∗(t) of y(t) equals:

y∗(t) = y∗(t− 1)+ G[y(t− 1) − y∗(t− 1)],

where the gain G is to be adjusted in order to minimize the
surprise relative to the RM.

The surprise is derived as follows. Let e(t) denote the difference
between the actual forecast error in the task and the expected
forecast error according to the RM. Since the latter is zero (this is
a property of the Kalman filter), e(t) is simply the actual forecast
error:

e(t) = y(t) − y∗(t),

or:

e(t) = y(t) − y∗(t− 1) − G e(t− 1).

The realized magnitude of the forecast error equals (e(t))2.
As a result, the surprise (difference between actual outcome and
expectation) �(t) becomes:

�(t) = (e(t))2
− Z.

(Remember, Z denotes the expected squared forecast error
from the Kalman filter.) The agent sets the gain in order to
minimize the size of the surprise. That is, she chooses G to
minimize (�(t))2:

MinG(�(t))2.

G can be found through the first-order conditions for
optimality. These imply that G is to be chosen such that:

4�(t) e(t) e(t− 1) = 0.

Generically, the surprise �(t) is non-zero. So, the only way the
condition can be satisfied is for G to be set so that the product of
e(t) and e(t-1) is zero. That is, the product of the actual forecast
error in trial t and t-1 is to be set equal to zero.

Since this cannot be done trial-by-trial (after all, the forecast
error is random), G is to be set so that the expectation of this
product, i.e., the autocorrelation of the forecast errors, is expected
to be zero. As a result, the policy adjustment is simple: G is to be
changed so that forecast errors become serially independent.
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So, if a positive forecast error in trial t-1 tends to be followed
by a positive forecast error in trial t (e(t) e(t-1) > 0), forecast
adjustments are too timid, and G has to be increased. Conversely,
if negative forecast errors in a trial tend to follow positive
forecast errors in the previous trial (so e(t) e(t-1) < 0), forecast
adjustments are too extreme, and G has to be decreased.

So far, our agent adjusts the gain G in order to minimize the
size of the surprise. A more sensible criterion would be to adjust
the gain G only if the surprise is negative, i.e., when the size of
the actual forecast error is bigger than expected. Indeed, if the
actual forecast errors are tinier than expected, why change one’s
policy? If so, the above gain adjustment policy only kicks in when
�(t) > 0. (It may be confusing to call surprise negative when
in fact �(t) > 0, but hopefully this will not create confusion.)
Effectively, this means that gain adjustment only happens upon
an outlier, i.e., when a forecast error is bigger than expected in
the RM.

Summarizing, the adjustment policy is as follows:

• When the size of the forecast error is smaller than expected
under the RM, i.e., in the absence of an outlier, keep the gain
G constant, at some level G◦.
• Upon a forecast outlier, i.e., when the surprise is negative

(i.e., �(t) > 0), adjust G as follows:

◦ Increase G if actual forecast errors are experienced to be
positively correlated.
◦ Decrease G if actual forecast errors are experienced to be

negatively correlated.

Interestingly, this appears to be exactly what humans do
(D’Acremont and Bossaerts, 2013). The above policy fits human

FIGURE 3 | Gain (learning rate) around outlier trials (outlier = target moves
more than 1 standard deviation). Green: Bayes-optimal gain in P (solid line)
and T (dashed line) treatments. Magenta: RMBL gain in P (line moving up in
outlier trial) and T (dashed line moving down) treatments. Black: average
participant gains, stratified by treatment. As in the RMBL model, participants’
gain upon an outlier in the T treatment is about three times higher than optimal
(D’Acremont and Bossaerts, 2013) (Reproduced by permission
#4422211361599).

forecasts in the location prediction task. In particular, it explains
why, in the T treatment (where the observation error is
leptokurtic), humans tend to under-estimate the reversals: their
forecasts only partially adjust for the fact that large movements
in the target constitute mostly noise, and hence, should be
discounted when forecasting the subsequent location. The gain
they apply is about three times higher than the Bayes-optimal
gain. In the P treatment, it is closer to the Bayes-optimal gain:
it equals 80% of the Bayes-optimal gain. See Figure 3. As a result
of differential policies in the treatments, humans do much better
in the P than in the T treatment.

In our example of RMBL, both forecast errors and surprise
(unanticipated sizes of forecast errors) play a direct role in policy
adaptation. In a delta-rule based RL that approximates the Bayes-
optimal policy, surprise also plays a role in modulating the
learning rate. There, however, surprise is defined differently: it
obtains as a result of a comparison of the size of the current
forecast error with the typical size of previously experienced
forecast errors. In RMBL, surprise is defined as the difference
between the size of the latest forecast error and the prediction
(of this size) according to the reference Kalman filter model.
Figure 3 demonstrates that approximately Bayesian delta-rule
learning does not match human choices as well as the RMBL.

Figure 4 provides a schematic overview of RMBL and
contrasts it with the scheme for RL when applied to reward
prediction (as opposed to location prediction). In RL (Scheme
B), the goal is to minimize the error of value estimates (values
are the sum of future rewards), and the action is chosen to
maximize value. Value estimates are updated based on the history
of PEs. In approximately Bayesian delta-rule learning, the speed
of updating depends on a comparison between the size of the last
PE and that of previously experienced PEs. In RMBL (Scheme
A), the RM takes basic features of the stimuli to identify the
task, generates expectations of rewards that could be reached, and
estimates of the size of reward PEs. The latter could be conceived
as an estimate of the uncertainty that is left after controlling the
environment. The (separate) controller then takes detailed inputs
from the stimuli, chooses an action based on a policy (that can
be adapted), and generates a reward. This reward is compared
to its expected value according to the RM, which produces a PE.
The size of the PE is compared to the reference-model based
anticipation, which produces a surprise. If this surprise is large
(the size of the PE is bigger than anticipated), the policy is
adapted.

ANTECEDENTS OF REFERENCE-MODEL
BASED LEARNING

In many respects, the idea of minimizing the size of surprise
relative to a RM has appeared in the literature before. That is,
RMBL is not fundamentally new.

It resonates well with active inference (Rao and Ballard,
1999; Friston et al., 2009, 2012; Friston, 2010), whereby the
agent attempts to act upon the environment in a way that
brings outcomes closer (in distribution) to prior expectations.
In active inference, the agent minimizes the distance between
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FIGURE 4 | Schematic view of RMBL and RL. (A) In RMBL, policy parameters are altered indirectly in response to surprise (red channel), defined as the difference
between the size of the PE and its expectation according to a reference model (RM). RM encapsulates the agent’s analysis of the task at hand, including reward and
PE profiles that she expects to be achievable. (B) In RL, the controller optimizes actions based on estimates of values (sum of expected future rewards). Upon an
outcome, the PE is used to update value estimates (red channel). In approximately Bayesian delta-rule models, the updating speed (gain/learning rate) is adjusted as
a function of dissimilarity of the size of the PE relative to recently experienced PEs (channels in light blue).

the distribution of outcomes generated through control of the
environment and what she expects this outcome distribution
could be. Here, surprise is the distance between two distributions:
it is the distance between a distribution that is aspired to, and
the distribution of the actual outcomes. The aspired distribution
remains fixed, in analogy with the RM in RMBL.

The actor-critic model of RL (O’Doherty et al., 2004) also
shares some commonalities. There, one can think of the critic
as the RM, and the actor as the controller. The main difference
with RMBL, however, is that in RL the critic constantly updates

its expectations based on what the actor managed to generate in
the past. In RMBL, the model is autonomous.

Reference-model based learning is related to reference model
adaptive control (RMAC) in engineering (Nguyen, 2018). This
approach to control has been advocated for situations where
the environment is too complex to be modeled directly, or
aspects of the environment change too quickly or remain
unknowable. RMAC was suggested as an alternative to robust
control, which tends to choose actions to guard only against
the worst-case scenario, thereby foregoing huge opportunities
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in case the environment is more benign than expected. Like
in RMBL, optimality is not aimed at; adaptability is, instead.
Ensuing controls are “satisficing,” not optimizing. Control is
satisfactory as long as PEs are in line with the RM; no further
optimization is aimed at.

The specific model that our example generated,
whereby forecasts are adjusted when forecast errors exhibit
autocorrelations, is reminiscent of work by Sutton (1992). In his
case, however, the adjustment policy is exogenously imposed and
does not emerge from a desire to minimize surprise relative to a
RM.

Reference-model based learning makes assumptions about the
prior an actor will bring to a circumstance, in the form of a RM.
Bayesian updating also starts with a prior. But there is a crucial
difference. In Bayesian updating, the model (prior) changes with
experience, and the goal is to ultimately recover the truth. In most
accounts of Bayesian modeling, the truth is ultimately recovered,
and hence the prior model is irrelevant. [It is little appreciated
that this is not generic (Diaconis and Freedman, 1986); but that
need not concern us here.] In RMBL, the model is not updated
(it may in the long run; see below). Because the prior ultimately
has no influence on learning in standard Bayesian paradigms, one
could dispense with it, and this explains why delta-rule models
can be almost as good as Bayesian, or “approximately Bayesian”
even if they do not start from a prior (Nassar et al., 2010).

As a result, RMBL makes very different behavioral predictions
from Bayesian learning or its delta-rule approximations. To
highlight the difference, consider a simple task where participants
have to adjust either to a (single) hidden shift in mean of the
outcome distribution, or to a shift in the variance. Imagine
that, in the latter case, the variance is increased. Both the mean
shift and the variance shift generate marked outliers given prior
experience. Consequently, Bayesian learning, or approximately
Bayesian delta-rule learning, will increase the learning because of
the outlier. Therefore, beliefs quickly adjust to the distributional
shift.

In our RMBL model updating only happens when forecast
errors are significantly auto-correlated, not when outliers occur.
As a result, when the mean shifts, predictions are adjusted,
because PEs become (positively) autocorrelated: either one
constantly over-estimates subsequent outcomes, or one under-
estimates them. So, under mean-shifts, adjustments take place.
In contrast, when only the variance increases, PEs remain
uncorrelated over time, and there is no adjustment. Learning does
not take place!

Interestingly, the latter account appears to be consistent with
the evidence (Filipowicz et al., 2018): human participants learn
effectively in mean-shift paradigms, while they adapt less rapidly
in variance-shifts paradigms.

PERSPECTIVE

I proposed a formal modeling approach to learning, RMBL, that
reconciles the allegedly crucial role of aIns in rapid adaptation,
on the one hand, and the centrality of PEs in learning, on the
other hand. Reconciliation is called for since aIns activation does

not reflect PEs. Instead, neural signals reflect the anticipated size
of PEs and the subsequent surprise if the size is different from
anticipated. In RMBL, anticipation is not based on experience
prior to the surprise, but on a RM that remains rigid throughout
learning.

In the approach, the agent does not attempt to optimize,
as in traditional accounts of learning such as RL or Bayesian
optimization and its delta-rule approximations. Instead, she
works to bring outcomes as close as possible to predictions from
her RM. Instead of maximizing expected value, she minimizes
surprise, defined as the difference between the PE generated in
the environment and the expected PE as anticipated in her RM.
One would want her to minimize surprise only if it is larger
than anticipated, which is what I proposed in the analysis of the
location forecasting paradigm.

The RM encapsulates what the agent ideally expects to obtain
through control of her environment. Actual control of the
environment should match these expectations in the sense that
surprises are minimized. The agent does not optimize. She merely
“satisfices” (Simon, 1957, 1959). The RM reflects her ambition
and her aspiration; if she can match it, she is content. This
is in sharp contrast with Bayesian learning and its delta-rule
approximations, where the goal is to attain control that is optimal
given the environment.

Evidence of “satisficing” behavior has emerged, among others
in a lesion-patient study on the game “rock-paper-scissors”
(Danckert et al., 2012). In this game, the best response to an
opponent who does not mix uniformly as in the Nash equilibrium
is to switch to a pure strategy and choose the particular option
that wins from the option that the opponent chooses most
frequently. Interestingly, healthy controls do not do so. Instead,
they merely match the probabilities of the opponent. As a
result, their payoffs are less than when optimizing. It is as if
participants were satisfied with disequilibrium payoffs that only
slightly improve on the mixed-strategy Nash equilibrium, where
the player wins with 50% chance; it is as if their “reference model”
was the Nash equilibrium, and once they beat it (profits are higher
than anticipated), they stopped learning.

In contrast, left-hemisphere lesion patients, especially those
with lesions in Insula, optimize: they switch to best-responding
(e.g., “rock” if the opponent mostly plays scissors). With insula
lesions, PEs appear to no longer be evaluated against a RM
that expects Nash equilibrium payoffs. This leaves the patients
only with evaluation against recent experience. Paradoxically, this
eventually makes them optimizers, rather than “satisficers.”

Why would one use a rigid RM in learning? I already
mentioned its motivation in engineering: robust control. But
RMBL may also facilitate metacognition. If the agent is to
perform multiple tasks at once, it is important that she
pays attention only to tasks that require adjustment, while
leaving the remaining tasks to automatic (habituated) execution.
A quick way to determine adaptation need is to compute
surprise relative to a rigid RM. It obviates the need to
constantly update priors as in Bayesian learning, for each
task, including those not attended to. Attendance then boils
down to fine-tuning policy (action profiles) only for tasks
that generate negative surprise relative to their respective RMs.
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The remaining tasks are left unattended; they are executed using
learned (habituated) policies.

This model of metacognition squares well with the alleged
role of aIns in awareness (Craig, 2009). As mentioned before,
neural activation in aIns reflects risk and surprise. At the same
time, proper functioning of aIns has been found to be crucial
for awareness. Awareness is needed when surprise occurs, i.e.,
when risk is higher than anticipated. The conjecture is that aIns
contributes to integrating tracking of surprise and allocation of
attention.

In our target location forecasting task, participants performed
worse in the T treatment, and hence this must have generated
bigger surprises. Proper reaction to reverting outliers required
increased vigilance. The finding that aIns activated significantly
more vigorously upon outlier trials in the T treatment is
consistent with aIns’ role in metacognition (Fleming and Dolan,
2012). The increased reaction times in the T treatment are also
consistent with this.

Finally, a natural question still needs answering: where does
the RM come from? In engineering, RMs are chosen to ensure
robust control. In human learning, one can imagine that its
goal is the same. Presumably, this requires that the RMs are
updated as well, but at a slower rate. That is, in case the
agent is unable to avoid negative surprises (she cannot control
her environment as much as she aspires too; the RM is no
longer robust), the RM needs updating. Conversely, if the agent

experiences predominantly positive surprises (her RM constantly
under-estimates how much her environment can be controlled),
ambition may be changed through adaptation of the RM. I leave
it to future work to explore how and how fast this occurs.

Whatever the mechanism behind updating of the RM,
inability to adapt it when needed may be a plausible
way to explain symptoms of mental disorders. Depression
and anxiety may be the consequence of inability to avoid
negative surprises. Compulsive behavior may be the result of
continuous positive surprises. Symptoms could be alleviated by
decoupling learning and the RM, through cognitive-behavioral
therapy, deep-brain stimulation or medication. RMBL may thus
provide fresh insights into, and remediation of, maladaptive
behavior.
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