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The level of surveillance and preparedness against epidemics varies across countries,
resulting in different responses to outbreaks. When conducting an in-depth analysis of
microinfection dynamics, one must account for the substantial heterogeneity across
countries. However, many commonly used statistical model specifications lack the flexi-
bility needed for sound and accurate analysis and prediction in such contexts. Nonlinear
mixed effects models (NLMMs) constitute a specific statistical tool that can overcome these
significant challenges. While compartmental models are well-established in infectious
disease modeling and have seen significant advancements, Nonlinear Mixed Models
(NLMMs) offer a flexible approach for handling heterogeneous and unbalanced repeated
measures data, often with less computational effort than some individual-level compart-
mental modeling techniques. This study provides an overview of their current use and
offers a solid foundation for developing guidelines that may help improve their imple-
mentation in real-world situations. Relevant scientific databases in the Research4life Access
initiative programs were used to search for papers dealing with key aspects of NLMMs in
infectious disease modeling (IDM). From an initial list of 3641 papers, 124 were finally
included and used for this systematic and critical review spanning the last two decades,
following the PRISMA guidelines. NLMMs have evolved rapidly in the last decade, espe-
cially in IDM, with most publications dating from 2017 to 2021 (83.33%). The routine use of
normality assumption appeared inappropriate for IDM, leading to a wealth of literature on
NLMMs with non-normal errors and random effects under various estimation methods.
We noticed that NLMMs have attracted much attention for the latest known epidemics
worldwide (COVID-19, Ebola, Dengue and Lassa) with the robustness and reliability of
relaxed propositions of the normality assumption. A case study of the application of
COVID-19 data helped to highlight NLMMs’ performance in modeling infectious diseases.
Out of this study, estimation methods, assumptions, and random terms specification in
NLMMs are key aspects requiring particular attention for their application in IDM.
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1. Introduction

In recent years, there has been an increased interest in statistical modeling of infectious diseases (ID) based on reported
cumulative cases (Büyüktahtakı et al., 2018; Lee, Hu, Chen, Huang, & Hsueh, 2020; Nishiura et al., 2006; Paul & Held, 2011;
Tovissod�e et al., 2020, 2021). These models capture the behaviour of outbreaks and enable the estimation of critical epide-
miological parameters.

From the review by Gnanvi et al. (Gnanvi, Salako, Kotanmi, & Kakaï, 2021), and Tang et al. (Tang et al., 2020), the first and
most used approaches related to epidemic modeling are compartmental models, which are a type of mathematical model
used by epidemiologists to simulate infectious disease epidemics for over a century. Compartmental models divide a pop-
ulation into mutually exclusive compartments that denote disease status and provide a set of differential equations that
define the flow of the population between compartments (Brauer, Castillo-Chavez, & Castillo-Chavez, 2012). Traditionally,
they are named after their compartments, with examples including the SIR (susceptible-infectious-recovered) model
(Kermack & McKendrick, 1927) and the classic SEIR (Susceptible-Exposed-Infectious-Recovered) model. Other technical
extensions to this basic SIR model, as well as mechanical extensions such as modifications to the three-compartment SIR
model to account for additional components or disease mechanisms, have been developed and widely discussed (Tang et al.,
2020). Moreover, all thesemechanisticmodels are of great interest in analyzing infection dynamics for large populations, such
as countries or states, where most model parameters may be assumed to be homogeneous and represent the entire popu-
lation. Such a macro-modeling approach is particularly valuable in the early phase of a disease outbreak when health ad-
ministrations aim to develop nationwide macro-intervention protocols. Even during the COVID-19 epidemic, numerous
research works have proposed the generalized susceptible, exposed, infectious, removed model to predict the inflexion point
for the growth curve (Peng, Yang, Zhang, Zhuge, & Hong, 2020). Additionally, Yang et al. (Yang et al., 2020) modified the
proposedmodel and considered public health interventions in predicting the trend of COVID-19 in China. Liu et al. (Liu, Magal,
Seydi, & Webb, 2020) proposed a differential equation prediction model to identify the influence of public policies on the
number of patients, while Li et al. (Li, Feng,& Quan, 2020) used a symmetrical function and a long-tail asymmetric function to
analyze daily infections and deaths in Hubei and other places in China. However, a major limitation of these works is that
researchers are typically confined to analyzing data from a single country, thereby neglecting the global nature of the
pandemic.

As the epidemic evolves, surveillance data becomes abundant and attains higher resolution at the community level.
Researchers, in turn, are increasingly interested in estimating the average behaviour of the disease for entire regions while
highlighting specific nuances for different countries. In such circumstances, a macro-model becomes unsuitable for an in-
depth analysis of micro-infection dynamics due to substantial heterogeneity across local communities. It's worth noting
that most existing macro-mechanistic models for the spread of infectious diseases are based on the assumption that the
system is homogeneous in space. This assumption holds that if the population vulnerable to the infectious disease is well-
mixed, human interventions will be uniform across different spatial locations. However, this scenario is only realistic in
certain situations. Substantial heterogeneity in urbanization, ethnic distribution, political views, governance, and economic
composition among different subgroups of individuals distributed over geographical locations influences the spread of in-
fectious diseases.

Infectious disease outbreak data (reported cumulative cases) are often collected within countries or regions. Similarly
shaped profiles with different decay patterns, unexplained variation among repeated measurements within each country or
region, skewness, outliers, or skewed heavy-tailed noises are some inherent features possibly embodied within response
variables (Schumacher, Ferreira, Prates, Lachos, & Lachos, 2021). Countries that experienced an outbreak earlier will likely
have more data than their counterparts within the same region. To be prepared, and due to data scarcity, countries that have
not yet reached the peak of the outbreak tend to utilize existing data from countries within their region to model the average
pattern and make inferences about the epidemic. Moreover, the level of surveillance and preparedness against outbreaks
varies across countries, influencing different countries’ responses to epidemics, which, in turn, may affect epidemiological
parameters. Thus, modeling should consider the variability across and within countries when estimating the dynamic spread
of diseases over different countries. Significant extensions of infectious disease models, incorporating spatial heterogeneity
across various geographical locations into modeling and analysis, have greatly impacted epidemiological research. The recent
development involves integrating classical spatial cellular automata (CA) (Von Neumann Burks et al., 1966) with temporal
multi-compartment models, leading to an important class of spatio-temporal multi-compartment models. This system has
beenwell-studied and is widely discussed, with various propositions highlighted in the latest review by Tang et al. (Tang et al.,
2020), showcasing its usefulness in predicting local infection risk. Moreover, various individual-level modeling techniques are
available. Individual-level models are applied to infectious epidemic data to enhance the understanding of the spatio-
temporal dynamics of infectious diseases. These models, which are flexible and intuitively parameterized under a Bayesian
framework via Markov chain Monte Carlo (MCMC) methods, can be challenging to implement due to intense computational
requirements, especially when calculating the full posterior for large or moderately large susceptible populations or in the
presence of missing data. (Deardon et al., 2010).

The onset of the disease occurs at different periods between and within countries or regions and at different stages of a
pandemic from one country to another. Meanwhile, unless data integration is employed, combining data from different
countries to elicit a solution with a unified view, estimation, or prediction may fail to capture some crucial changes in the
shape of the infection trajectory due to a lack of knowledge about the other stages (Lee, Lei,&Mallick, 2020). Considering the
111



O.M. Ad�eoti, S. Agbla, A. Diop et al. Infectious Disease Modelling 10 (2025) 110e128
different stages of the spread of the disease is crucial information that should be used in modeling. Nonlinear mixed effects
models (NLMMs) constitute a proposed methodology that accommodates the different stages of the diseases and borrows
information from the different time series to provide a more robust and reliable fit and prediction.

In recent years, nonlinear mixed effects models have garnered significant attention in the statistical literature due to their
flexibility in handling heterogeneous and unbalanced repeated measures data with less effort and time consumption than
advanced compartmental/mechanist techniques. This versatility proves particularly valuable in various areas of investigation
(Pinheiro, Bates, & Lindstrom, 1995), including epidemiology, especially in modeling infectious diseases. Rodríguez et al.
(Rodríguez et al., 2017) emphasized the utility of a nonlinearmixed-effects model in infectious diseasemodeling for obtaining
estimates of key epidemiological parameters, such as turning points. These estimates provide crucial information about the
changing trends of the epidemic and can potentially indicate shifts in intervention and control strategies. Furthermore, the
nonlinear mixed-effects model integrates information from within and between both individuals and countries or regions,
outperforming individual-level models that only analyze data within single entities. (Lee, Lei, & Mallick, 2020). Li et al. (Li,
Qian, & Huggins, 2003) modelled diseases with heterogeneous rates by allowing for household heterogeneity, assuming
that the probability of avoiding infection varies randomly in a chain binomial model known to describe outbreaks of in-
fectious diseases in households. Similarly, Davis et al. (Davis, Waller,&Haber, 2006) considered heterogeneity in transmission
probabilities by including household-specific random effects when estimating vaccine efficacy based on outbreak household
data. Zeger and Karim (Zeger& Karim,1991) and Lin and Zhang (Lin& Zhang,1999) used a generalized linear (additive) mixed
model (GLMM) to analyze longitudinal data on respiratory infection in Indonesian children. Paul and Held (Paul&Held, 2011)
introduced random effects into the model discussed in Held et al. (Held, H€ohle, & Hofmann, 2005) and later extended in Paul
et al. (Paul, Held, & Toschke, 2008), where the counts (number of cases of a specific disease) are assumed to follow a Poisson
distribution to accommodate heterogeneous disease transmission and incidence levels.

Recent advancements by Schumacher et al. (Schumacher, Ferreira, et al., 2021), Zeitoun et al. (Zeitoun et al., 2020), and
Kaimann and Tanneberg (Kaimann & Tanneberg, 2021) have introduced a novel class of Nonlinear Mixed Effects Models
(NLMMs) for efficient parameter estimation in infectious disease modeling. This includes essential parameters such as
infection rate, reproduction number, peak time, peak size, and more, with specific applications to the COVID-19 pandemic.
Zeitoun et al. (Zeitoun et al., 2020) utilized NLMMs to assess the association between participants in a national election and
the epidemic spread of COVID-19 in France. Conversely, Kaimann and Tanneberg (Kaimann & Tanneberg, 2021) employed
NLMMs to analyze the relationship between measures taken against the COVID-19 pandemic and the cumulative number of
confirmed COVID-19 cases.

Despite the increasing use of NLMMs, a review of their development trends, estimation methods, and key specifications
has not yet been conducted. NLMMs remain under-explored in the context of infectious disease dynamic modeling. A clear
discussion about the advantages or challenges of using such an approach to handle infectious diseases is necessary to provide
an overview of the current use state and offer a solid foundation for developing guidelines that may help improve its
implementation. In this paper, we conducted a systematic and critical review of studies published between January 1, 2000,
and December 30, 2021, on NLMMs related to infectious diseases. The aim is to (i) summarise the current state of the use of
NLMMs in infectious disease modeling and computational advances, (ii) assess model-building specifications (non-linear
function, random effects and error distributions, estimation methods, etc.) for robust infectious disease modeling, and (iii)
discuss the advantages or limits of using NLMMs to handle infectious disease dynamics.

2. Overview on nonlinear mixed effects models

2.1. Theoretical framework

For general forms illustration, let n denote the number of subjects and ni represent the number of measurements on the ith

subject. It's worth noting that in particular cases of infectious disease modeling, the subjects typically refer to countries or
areas within a country. For notational convenience, let xij (i ¼ 1, 2,…, n; j ¼ 1, 2,…, ni) be a vector incorporating independent
variables, fij ¼ ðf1ij;…;fsijÞu; b ¼ ðb1;…; bpÞu. The NLMMs model can be written as (Lindstrom & Bates, 1990):

yi ¼ miðtij;fijÞ þ ei ; fij ¼ dðxij;b; biÞ; (2.1)

where the subscript i is the subject index; yi ¼ ðyi1;…; yini
Þu, with yij being the response value for individual i at time tij; miðtij;

fijÞ ¼ ðmðti1;fi1Þu;…;mðtini
;fini

ÞÞu, with m(.) being a nonlinear known function, ei ¼ ðei1;…; eini
Þu is a random error vector,

d(.) is an s� dimensional linear function generally expressed as d(xij; b; bi)¼ Aibþ Bibiwith Ai and Bi, designmatrices, b is a p-
dimensional locator vector of fixed-effects, bi ¼ ðb1i;…; bqiÞu is a q-dimensional vector (q � s) of random-effects (assumed
mutually independent across subjects and independent of the within-subject errors 3i) associated with the ith subject.
Nonlinear mixed-effects models have been proposed for analyzing various complex longitudinal data, including epidemic
data. Examples include dengue outbreak data (Rodríguez et al., 2017), HIV viral dynamics (Wu, Liu, & Hu, 2010), and the
spread of COVID-19 (Lee, Lei, & Mallick, 2020). However, it is often assumed that both random errors and random effects
follow a normal distribution. This assumptionmay not always yield reliable results, especially when the data exhibit excessive
skewness and heavy-tailedness. This is particularly pertinent in the case of infectious disease cases/death data (Schumacher,
Ferreira, et al., 2021) or viral load dynamics (Huang & Dagne, 2010; Huang, Dagne, Zhou, & Wang, 2015).
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2.2. Fitting NLMMs with non-normal errors and random effects

Let q be a vector of the model parameters, then classical inference on the parameter vector q is based on the marginal
distribution for Y ¼ ðyu1 ;…; yun Þ. Thus, the integrated likelihood of (2.1) with random errors and random effects distribution
specification does not have, in general, a closed-form expression because the model function is not linear in the random
effects. The model 2.1 can be viewed as a hierarchical model that, in some ways, generalizes both the linear mixed effects
model and the usual nonlinear model for independent data (Pinheiro et al., 1995). In the first stage, the jth observation on the
ith cluster is modelled as:

yij ¼ miðtij;fijÞ þ eij ; i ¼ 1;…;n; j ¼ 1;…;ni; (2.2)

where eij is a normally distributed noise term, while in the second stage, the cluster-specific parameter vector is modelled as

fij ¼ dðxij;b;biÞ ; bi � Nð0;DÞ; (2.3)

with b, a p-dimensional vector of fixed population parameters, bi a q-dimensional random effect vector associated with the ith

cluster and D is a general variance-covariance matrix. It is further assumed that observations made on different clusters are
independent and that the ei follow a Nð0; s2Ini Þ distribution and are independent of the bi.

The systematic review shows that the most common distributions used for random terms were Normal distributions for
both residuals and random effects (Fig. 1). However, such assumptions would be unrealistic or too restrictive when dealing
with epidemic data. Epidemiological, particularly infectious disease data, exhibit skewness, outliers, or heavy-tailed
behaviour (Lachos, Bandyopadhyay, & Dey, 2011; Schumacher, Ferreira, et al., 2021). Therefore, several works have identi-
fied situations where the routine use of the normality assumption appeared inappropriate (see, e.g., Liti�ere et al. (Liti�ere et al.,
2007), Huang (Huang, 2009), Schumacher et al. (Schumacher, Ferreira, et al., 2021)). Being aware of the weakness of this
specification in some cases of complex longitudinal data, other types of distributions (smooth and flexible) have been
considered in the development of NLMMs.

Many alternatives to the normality assumptions involve more flexible distribution assumptions for random effects and
residual errors. These alternatives include nonparametric (Agresti, Caffo, & Ohman-Strickland, 2004), semi-nonparametric
(SNP) (Chen, Zhang, & Davidian, 2002; Zhang & Davidian, 2001), and copula-type distributions (Liu & Yu, 2008; Nelson
et al., 2006), as well as parametric options (Dempster, Laird, & Rubin, 1977; McCulloch & Neuhaus, 2011; Meza, Osorio, &
De la Cruz, 2012; Tovissod�e, 2017).

Within parametric approaches, more flexible distributions, including the normal distribution are particularly interesting
because they can be used to test significant departures from normality. The most general fully parametric existing approach
for NLMMs only accounts for kurtosis using a scale mixture of normal (SMN) distributions (De la Cruz, 2014; Meza et al., 2012;
Russo & Silva, 2013). In this elliptical subclass, the SMN distributions include heavy-tailed multivariate distributions such as
Student-t, the contaminated normal, and slash. Let k be the mixture variable associated to Yij, with cdf Hk(,rn) and pdf hk(,rn).
Likewise, let t be the mixture variable associated to bi, with cdf Ht(,rnb) and pdf ht(,rnb). Under a mixed-effects designwith n
subjects and ni measurements for the ith subject, the SMN-NLMM is given for the jth outcome Yij (i ¼ 1, …, n; j ¼ 1, …, ni) as
Meza et al. (Meza et al., 2012):

ðY ijfiÞ�indSMNniðxi;u2; nÞ; bi�indSMNqðxb;Ub; nbÞ; (2.4)
Fig. 1. Random terms distribution specification in NLMMs.
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wherefi¼ Aibþ Bibi, Ai and Bi are designmatrices (subject-specific covariates), b is a p-vector of fixed (population) effects,
the q-vector of random effects bi and xij, u2, xb and Ub are unique distribution parameters such that E

�
Yij

��xij;fi
� ¼ mij with

mij ¼ m(xijrfi), Var
�
Yij

��xij;fi
� ¼ s2, Efbig ¼ 0, and Varfbig ¼ Gb. Using the stochastic representation Y¼dmþ k�1=2Z with Z,

independent of the mixture variable k ~ H(n), and n a scalar or vector-valued parameter, a hierarchical form of (2.4) is:

ðY ijfi; kiÞ�indNniðmiðti;fiÞ; k�1
i u2Þ; u2 ¼ s2Ini (2.5a)

ind �1
bi�Nqðxb; ti UbÞ: (2.5b)
This approach provides a simple way to identify and control outliers at the residuals and random effects levels (Meza et al.,
2012). Skewness is, however, often present in data from many application fields, including epidemiology, where skewed
variables are generated naturally or follow truncation/censoring processes (see, e.g., Urban et al. (Urban, Bürger, & Bolnick,
2013)). Skew normal nonlinear regression models have been developed by Cancho et al. (Cancho, Lachos, & Ortega, 2010)
and Xie et al. (Xie, Wei, & Lin, 2009) using the skew-normal distribution (Azzalini, 2005). This approach gained more
attention in the last decade, especially in modeling viral load dynamics (Huang and Dagne, 2010, 2012, 2013; Huang et al.,
2015; Lachos, Castro, & Dey, 2013). Taking ni � ni skewness diagonal matrix Di ¼ diagðdi1 ;…; dini Þ and di ¼ ðdi1 ;…; dini

Þu, Db ¼
diagðdb1

;…; dbq
Þ and db ¼ ðdb1

;…; dbq
Þu, a Skew normal nonlinear mixed-effects model can be written as a hierarchical model

as follows:

yi ¼ miðtij;fijÞ þ ei ; ðeiÞ�indSNnið�
ffiffiffiffiffiffiffiffiffi
2=p

p
di; s

2Ini ;DiÞ; (2.6a)

ind ffiffiffiffiffiffiffiffiffip

fij ¼ dðxij;b;biÞ ; bi�SNqð� 2=p db;G;DbÞ: (2.6b)
In real-world data analysis with possible sample size variation, it is generally considered di1 ¼ / ¼ dini
¼ de, then

Di ¼ deIni and di ¼ de1ni , where 1ni ¼ ð1;…;1Þu. Subsequently, nonlinear regression models with residual errors distributed
as a scale mixture of skew-normal distributions (SMSN) were introduced by Garay et al. (Garay, Lachos,& Abanto-Valle, 2011)
and are known for being more computationally advanced, taking advantage of the EM algorithm (Meza et al., 2012;
Schumacher, Dey, & Lachos, 2021; Tovissod�e, 2017). The resulting models allow for the consideration of both skewness and
kurtosis in the data by introducing a few parameters to the traditional regression model. The latest developments in this area
include some important specifications following Tovissod�e (Tovissod�e, 2017). Let l2R and lb2Rq, the shape parameters of
the response Yij and the q-vector of random effects bi, respectively and let us denote the moments of the mixture variables as
ket ¼ Efk�t=2g and tet ¼ Eft�t=2g (t ¼ 1, 2), all assumed finite. Under a mixed effects design with n subjects and ni mea-
surements for the ith subject, the SMSN-NLMM is given for the jth outcome Yij (i ¼ 1, …, n; j ¼ 1, …, ni) as:

�
Yij

��xij;fi
��indSMSN1ðxij;u2; l; nÞ;bi�indSMSNqðxb;Ub; lb; nbÞ; (2.7)

with fi, b, bi, xij,u2, xb andUb as defined above. A hierarchical representation of the randomvector z following scalemixture of
skew-normal distributions denoted SMSNq(m,L, l, n) is (zrk) ~ SNq(m,L, l) and then a convenient stochastic representation for
z is (Tovissod�e, 2017):

ðzjk;T0Þ � Nq

�
mþ T0k

�1=2L1=2d; k�1
�
L�L1=2dduL1=2

		
; (2.8)

where k ~ Hk(n) and T0 ~ HN(0, 1). The mean and the variance of this SMSN vector z are

Efzg ¼ mþ cke1d0 and Varfzg ¼ ke2L� c2k2e1d0d0
u
L1=2; (2.9)

where c ¼
ffiffiffi
2
p

q
and d0 ¼ ð1þ lulÞ�1=2

L1=2l.
Using 2.9 on 2.7, relationships between parameters of the specified distributions, the expectation of the response and the

residual variance and the variance-covariance matrix of random effects are (Tovissod�e, 2017):

xij ¼ mij þ cke1de and u2 ¼ k�1
e2 ðs2 þ c2k2e1d

2
e Þ (2.10)

xb ¼ �cte1db and Ub ¼ t�1
e2 ðGb þ c2t2e1dbdb

uÞ; (2.11)

with de ¼ ulð1þ l2Þ�1=2; db ¼ ð1þ lub lbÞ
�1=2

U
1=2
b lb. Using the stochastic representation 2.8, a hierarchical form of (2.7) is:
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�
Yij

��fi; kij; tij
��indN1

�
mij þ

�
tijk

�1=2
ij � cke1

	
de; k

�1
ij u

̄ 2 	
; (2.12a)

kij�indHkðnÞ and tij�indHNð0;1Þ; (2.12b)

ðbijti;uiÞ�indNq

��
uit

�1=2
i � cte1

	
db; t

�1
i U

̄

b

	
; (2.12c)

ti�indHtðnbÞ and ui�indHNð0;1Þ; (2.12d)

where u
̄ 2

¼ u2 � d2e and U
̄

b ¼ Ub � dbd
u
b .

Based on this latest class of scale mixtures of skew-normal distributions, Schumacher et al. (Schumacher, Ferreira, et al.,
2021) formulated a robust nonlinear mixed-effects model for modeling COVID-19 death data. These models are particularly
valuable in infectious disease data, addressing inherent features such as similarly-shaped profiles with different decay pat-
terns, unexplained variation among repeated measurements within each country, and the presence of skewness, outliers, or
skew-heavy-tailed noises within response variables.
2.3. Parameter estimations in NLMMs

The integrated likelihood of NLMMs (2.1) with random errors and random effects distribution specification does not have,
in general, a closed-form expression because the model function is not linear in the random effects (Kerioui et al., 2020).
Consequently, the model lacks a direct analytical expression for the likelihood function, resulting in a wealth of literature on
approaches for approximating the observed data likelihood to perform inference for the population parameters. These
methods include first-order approximations (Sheiner & Beal, 1983), first-order conditional methods (Lindstrom & Bates,
1990), Gaussian quadrature (Davidian & Gallant, 1993), adaptive Gaussian quadrature (Rabe-Hesketh, Skrondal, & Pickles,
2004), Laplace approximations (Beal & Sheiner, 1985), Markov chain Monte Carlo (MCMC) (Spiegelhalter, Best, Carlin, &
Van der Linde, 2014), Monte Carlo integration (Wakefield, Smith, Racine-Poon, & Gelfand, 1994), and importance sampling
(Geweke, 1989).

In the normal case, various approximations of the integrated likelihood of (2.1) have been proposed to render the nu-
merical optimization of the likelihood function tractable. These approximations often rely on the first-order Taylor series
expansion of the response function around the conditional mode of the random effects, as introduced by Lindstrom and Bates
(Lindstrom& Bates,1990). Additionally, Pereira and Russo (Pereira& Russo, 2019) proposed an EM-type algorithm, combining
elements of the EM algorithm (Dempster et al., 1977) and the Newton-Raphson algorithms. Utilizing a first-order Taylor
expansion of the response as a function of both b and bi, Schumacher et al. (Schumacher, Dey, & Lachos, 2021) derived an
approximate scale mixture of skewed normal (SMSN) marginal distribution for the response, effectively transforming the
NLMM into an approximate linear mixed-effects model. They further proposed an EM algorithm, extending common
linearization-based estimation procedures (Lin &Wang, 2017; Lindstrom & Bates, 1990; Matos, Prates, Chen, & Lachos, 2013;
Pinheiro & Bates, 1995) to SMSN-NLMMs. These approximation methods generally perform well when the variability of
random effects is small, and the number of subject-specific measurements (ni) is large. However, they may result in
considerable errors when these conditions are violated, such as in cases of sparse data or large variability in random effects
(Davidian & Giltinan, 1995; Lindstrom & Bates, 1990; Meza et al., 2012; Pinheiro & Bates, 1995). Due to the involvement of
intractable integrals in the E-step of the EM algorithm for NLMMs, various approximations, like the SAEM (Delyon, Lavielle, &
Moulines, 1999), have been developed. The SAEM has proven to be very efficient in computing NLMM parameters (Kuhn &
Lavielle, 2004; Meza et al., 2012). Moreover, the M-step of the EM algorithm is also often tricky when estimating NLMMs,
requiring nonlinear optimization techniques (Wang, 2015). In such instances, the Expectation Conditional Maximization
(ECM) algorithm of Meng and Rubin (Meng & Rubin, 1993) allows to break off the M-step in several simpler Conditional
Maximization (CM) steps. This consists of updating a set of parameters with explicit and/or more straightforward updates
given fixed values of the rest. However, ML-type estimation may be complicated by the high-dimensional integrals in the
likelihood function if normality and linearity assumptions do not hold. Likewise, the asymptotic theory of maximum like-
lihood estimation may not apply to moderate-size (censored) data (Lachos et al., 2011). For instance, the Bayesian paradigm
was proposed and recommended to be robust to data sparsity and large variability of random effects. Some Bayesian
propositions in the context of heavy-tailed NLMMs models of epidemic data have been proposed Lachos et al. (Lachos et al.,
2011, 2013), Huang and Dagne (Huang and Dagne, 2010, 2012, 2013), Huang et al. (Huang et al., 2015) and their high per-
formance was known in all the cases.
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2.4. Motivations for choosing NLMMs

Infectious disease counts from surveillance systems are typically observed in several administrative geographical areas.
Meanwhile, the analysis of such complex longitudinal data required particular attention relatively to some inherent features
like similarly-shaped profiles with different decay patterns; unexplained variation among repeated measurements within
each area possibly viewed as clustered data as taking on the same country or area at roughly the same time. In recent years,
Nonlinear mixed effects models (NLMMs) have been proposed for modeling many complex longitudinal data (Lindstrom &
Bates, 1990; Wu et al., 2010). Paul and Held (Paul & Held, 2011) has extended the model from the early works of Held et al.
(Held et al., 2005) and Paul et al. (Paul et al., 2008) for the analysis of multiple time series of infectious disease counts to
account for different incidence levels or varying disease transmission via possibly correlated random effects. They have
considered the monthly cases of meningococcal disease caused by the Neisseria meningitidis bacterium in 94 departments of
France in one hand and theweekly number of laboratory confirmed influenza cases in 140 administrative districts in Southern
Germany. With the evidence of geographical heterogeneity within France in meningococcal disease incidence and seasonal
waves spreading of the influenza incidence, the predictive performance has improved as existing heterogeneity is accounted
for.

Note that the data are not available at an individual level but are aggregated and often also subject to under-reporting and
reporting delays, which may give rise to over-dispersion and blurred dependencies (Paul & Held, 2011). Several studies have
proposed NLMMs to deal with heterogeneous disease transmission and incidence levels in wide range of epidemics such as
influenza (Lee et al., 2009; Wang et al., 2020), hospital-acquired infections (Duval et al., 2018), HIV/AIDS (Dinh, Chowell, &
Rothenberg, 2018), and SARS-CoV-2 (Chong et al., 2021; Lee, Lei, & Mallick, 2020). Nonlinear mixed effects models
(NLMMs), derived from dynamic mechanism characterized by a system of differential equations, are often used to model the
viral load trajectories as well as to quantify inter-subject and intra-subject variations in viral load measurements (Huang &
Dagne, 2010). As in their study of single dengue outbreaks analysis based on the reported cumulative cases, the interest
lays on estimating the average behavior of a health area in the population and the variability among and within health areas,
Rodríguez et al. (Rodríguez et al., 2017) have developed and applied a nonlinear mixed-effects model instead of the meth-
odologies performed for each area separately. For such circumstances, the NLMMs approach is highly recommended because
the areas are regarded as sample from a population and it does not ignore variability among and within areas.

For the latest COVID-19 dynamic, NLMMs have been applied by Kaimann and Tanneberg (Kaimann & Tanneberg, 2021) as
integrating information from different subjects to increase the predictive power for the individual (Lee, Lei, & Mallick, 2020)
and allowing the estimation of within and among groups variation. An additional key advantage of NLMMs highlighted by the
authors was the ability to account for nonlinearity. Nonlinear mixed-effects models have since been successfully applied to
analyze the relationship between measures taken against the COVID-19 pandemic and the cumulative number of confirmed
COVID-19 cases. Lee et al. (Lee, Lei, & Mallick, 2020) demonstrated the advantage of NLMMs due to their predictive accuracy
and ability to integrate data from multiple countries, compared to individual country-based COVID-19 spread models.
Schumacher et al. (Schumacher, Ferreira, et al., 2021) explained that the different stages of disease spread are crucial in-
formation that should be incorporated into modeling. In their study of COVID-19 death data, they introduced a new NLMM
methodology that jointly accounts for the different stages of the disease and leverages information frommultiple time series
to provide a more robust and reliable fit and prediction.

3. Nonlinear mixed effects models: a systematic review

3.1. Methods

A systematic search of originally published articles on NLMMs in infectious diseases modeling from January 2000 to
December 2021 was conducted using the Research4life Access initiative programs, such as HINARI (www.who.int/hinari) and
AGORA (www.fao.org/agora). Relevant scientific databases in these programs, such as “PubMed,” “Scopus,” and “Google
Scholar,” were used to search for papers dealing with NLMMs in infectious diseases modeling. The outcomes of the search
queries were initially examined to determine their relevance by reading their titles and abstracts, after which full texts were
downloaded for further scrutiny. From an initial list of 3,641 papers, 124 were finally included in the review. The selection of
papers for the study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines,
as illustrated in Fig. 2.

The contents of these retrieved papers were meticulously examined to eliminate duplicates. Commentaries, purely
descriptive studies, letters, and all articles on applied NLMMs in fields other than infectious disease modeling were excluded.
Additionally, all pharmacokinetics-pharmacodynamics studies were excluded as they did not align with the study scope
criteria. A list of relevant information and basic characteristics of the studies related to NLMMs analysis with applications to
infectious disease modeling was extracted from the selected papers. This included: (1) characteristics of the papers, (2)
estimation methods used, (3) inferential issues, (4) model performance assessment and validation, (5) infectious disease of
interest, the study aspects (spread out or viral load (Huang et al., 2015) dynamic), the considered cluster level, and the
geographical area fromwhich the data originated. The count and relative citation frequency (RFC¼100 � Number of citations/
Sample size with 0% � RFC � 100%; the closer its value is to 100, the stronger the trend) were calculated for trend evaluation
and illustrated using the bar plots or scatter plots built as appropriate in the ggplot2 package (Wickham, Chang, &Wickham,
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Fig. 2. Flow diagram of the identification process for the reports included in this review.
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2016, pp. 1e189) in R software (RCore, 2019). Relationships between various variables collected were investigated through a
factorial correspondence (CA) analysis using the FactoMineR package (Lê et al., 2008) of R software. A critical analysis was
conducted on the advantages and limitations of existing estimation methods, random term distribution specifications, model
assessment, and software implementation.
3.2. Characteristics of the selected papers

The distribution of publications across journals revealed the Journal of Pharmacokinetic-Pharmacodynamic leads with
12.1% of included papers, followed by Statistics in Medicine (11.3%), Computational Statistics and Data Analysis (7.3%), and the
Journal of Applied Statistics (Table 2 in Annexe). Research areas within NLMMs also exhibit distinct trends. Nearly a third
(32.5%) of papers delve primarily into computational and estimation methods development (Fig. 3). Notably, out of the 124
papers reviewed, 19.4% (24 papers) directly tackle infectious disease outbreak dynamics or viral load dynamics through
NLMM applications. Furthermore, 22.5% of the papers propose modeling methods tailored to specific infectious diseases like
dengue, Ebola, Lassa, influenza, and COVID-19. Other frequent themes include heterogeneity issues (12.6%), random term
distribution specification (8.9%), model assessment (4.1%), and advanced programming (3.3 Papers on modeling highlighted,
in some cases, identifiability, autocorrelation, and covariate inclusion issues. Some studies focusing on the Bayesian approach
investigated the sensitivity of estimations to the prior specification.
3.3. NLMMs and computational advances over the last two decades

NLMMs have undergone significant development since the beginning of the 21st century. To gain a clear view of this
development, we depict data from all selected theoretical papers focusing on epidemic case studies (Theoretical_NLMMs)
alongside data from applied NLMMs found in published infectious disease studies (Applied_NLMMs). Fig. 4A summarizes the
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Fig. 3. Technical aspects addressed in NLMMs studies in the last two decades.

Fig. 4. Evolution of NLMMs development and application over time for the last two decades (A) and the usual cluster levels of epidemic spread out data (B).
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evolution of NLMMs over time and shows that the last decade was when NLMMs development and applications evolved
rapidly. Most publications date back from 2017 to 2021 (83.33%). This increasing focus on NLMMs, especially in infectious
diseases modeling, over the last decade is likely due to the last world-known pandemics of Ebola and COVID-19 outbreaks in
2014 and 2020, respectively. In addition, at the cluster level (Fig. 4B) of infectious disease cases data from the selected papers,
regions, countries, departments or states, districts, and areas of the country are considered, but they are usually aggregated at
Fig. 5. NLMMs Computational advances from the last two decades.
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the country level. This finding highlights a practical issue of data recording as it is generally aggregated by country, obscuring
important information on the country for deep analysis.

The most used software for computation and analysis is R (Fig. 5B). The attraction to this statistical software is the
availability and free access to some key packages (Fig. 5D) developed for NLMMs in various application areas. Themost used R
packages in NLMMs are “nlme” for the maximum likelihood approach, “R2winBUGS” and “rstan/brms” for the Bayesian
method, “saemix” for the SAEM method and “nlmixr” for FOCE or SAEM.

In nonlinear-mixed effects modeling, the selection of the nonlinear mean structure and the type of random effects
structure is critical. Additionally, another crucial step in the model-building of mixed-effects models is deciding which of the
coefficients in the model need random effects to account for their between-areas variation andwhich can be treated as purely
fixed effects (Rodríguez et al., 2017). Therefore, care should be taken in choosing the nonlinear link function for specific data.
The axis system of the correspondence analysis depicted in Fig. 6A shows which type of infectious disease data for which
nonlinear function while Fig. 6B shows the growth models as nonlinear function in analyzing ID dynamic data. Specifically,
the result shows that growth models (as Logistic or derivative of logistic model Richards or Gompertz model) are potentially
considered nonlinear mean functions in infectious disease spread out dynamic modeling. In contrast, the Exponential or bi-
exponential function is the most used link function in viral load dynamic study (Fig. 6A).

A- Estimation methods in NLMMs; B- Statistical Softwares in NLMMs; C- Assessment criteria in NLMMs; D- Proposed R
packages for NLMMs; with FOCE: First-Order with Conditional Estimation; nls: Nonlinear Least Squares; CLMML: Compound
Laplace-Metropolis Marginal Likelihood; DIC: Deviance Information Criteria; Basic EM_packages:nlme, nlmeODE, nlm, nlmer,
lme4; Bayes_packages:rstan/brms, R2WinBUGS, R2Cuba, R2jags; SAEM_FOCE_packages: saemix, nlmixr; Flexible_likelihood-
type: sn, mixsmsn, etc.; Others_likelihood-type: others packages.

Model assessment criteria play a pivotal role in selecting and comparing models across various modelling approaches.
Within the NLMM framework, diverse criteria have been employed, with the Akaike Information Criteria (AIC) or Bayesian
Information Criteria (BIC) being the most commonly considered in likelihood-type approaches (Fig. 5C). However, it is
important to note that these criteria may pose challenges in the presence of random effects (Paul & Held, 2011). For Bayesian
analysis methods, selection and comparison commonly leverage: Posterior model probabilities, Watanabe-Akaike Informa-
tion Criterion (WAIC) (Watanabe&Opper, 2010), leave-one-out cross-validation, Bayes factor (Carlin& Louis, 2000), posterior
predictive checks (Gelman et al., 2013), log pseudo marginal likelihood (LPML), and Deviance Information Criteria (DIC)
(Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). Simulation-based studies often consider additional model selection
approaches such as estimated uncertainty (mean square errors, bias, coverage rate). However, certain methods require more
precise definitions, while others lack automation or the ability to be condensed into a single, easily interpretable numerical
summary (Guo& Carlin, 2004). Using a complexity measure for the effective number of parameters based on an information-
theoretic argument, some authors prefer DIC to others. For example, in a complex hierarchical model with the specification of
its dimensionality somewhat arbitrary, in which neither AIC nor BIC is applicable, Huang and Dagne (Huang & Dagne, 2010)
has referred to the DIC approach for comparison. However, as with other model selection criteria, DIC is not intended to
identify the ‘correct’ model but rather as a method for comparing a collection of alternative formulations. Unfortunately,
while this DIC (Spiegelhalter et al., 2002) can be computed, Plummer (Plummer, 2008) has shown that it tends to prefer overly
complex models in situations with many random effects. For instance, Paul and Held (Paul & Held, 2011) proposed the
comparison of successive one-step-ahead forecasts with the observed data as an alternative in such a situation. The latter was
then considered a more natural approach for model selection in time series models than classical model choice criteria. Thus,
for the particular case of infectious disease models with the specification of different flexible distributions for the random
error and random effects, care must be taken in the choice of selection criteria to understand how the assumption of different
flexible distributions contributes to epidemic breakout or viral load responses and parameter estimation compared to that of
the Normal distribution for random error and/or random effects.
Fig. 6. Nonlinear mean functions in NLMMs; with A: Axis system of the correspondence analysis showing the relationship between nonlinear mean functions
and ID data types; B: Usual growth models in NLMMs of ID data.
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Fig. 7. Infectious Diseases modeling based on NLMMs.
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3.4. Use of NLMMs in infectious disease modeling

About 20% of the selected papers mainly applied NLMMs to infectious disease modeling (Fig. 3). From this systematic
review, NLMMs are essentially used for the viral load data and infectious diseases pandemic spread out (Fig. 7). The identified
infectious diseases with at least a paper modeling their spread out or viral load through NLMMs are COVID-19, HIV, influenza,
Dengue, Ebola, Lassa and Zika epidemics. The use of nonlinear mixed models in infectious disease modeling dates back over a
decade but has gained much attention for the last world-known pandemics (COVID-19, Ebola, dengue, and Lassa). Therefore,
apart from its widely known application in pharmacokinetic-pharmacodynamic studies, NLMMs were mainly used for in-
fectious diseases’ viral load dynamics, especially in the case of HIV (Huang& Dagne, 2010; Huang et al., 2015; Wu et al., 2010).
It is essentially applied in the current COVID-19, dengue, influenza and Ebola pandemic spread out dynamic modeling. Some
key examples are Rodríguez et al. (Rodríguez et al., 2017) for Dengue outbreak data modeling, Kaimann and Tanneberg
(Kaimann & Tanneberg, 2021) in analyzing the relationship between the control measures and the cumulated number of
confirmed COVID-19 cases and Schumacher et al. (Schumacher, Ferreira, et al., 2021) for robust COVID-19 death data
modeling.

4. Case study: COVID-19 dynamic

In this section, we seek practical evidence of non-homogeneous characteristics in infectious disease data and the necessity
of considering flexible distributions when using NLMMs in infectious disease modeling. Schumacher et al. (Schumacher,
Ferreira, et al., 2021) highlighted the challenges of underreporting, particularly in understanding the true contamination
numbers of COVID-19 in the population due to varying testing capacities between countries. Meanwhile, studies using the
number of deaths as a proxy measure for COVID-19 cases (Amaro, Dudouet, & Orce, 2021; Maugeri, Barchitta, Battiato, &
Agodi, 2020; Ribeiro Bernardes et al., 2020) are less likely to be affected by detection biases. Similar to Schumacher et al.
(Schumacher, Ferreira, et al., 2021), who focused onmodeling COVID-19 death curves in some Latin American countries as the
new epicentre of the disease, we considered the same dataset from January 22, 2020, to June 24, 2020 (https://github.com/
CSSEGISandData/COVID-19/) from Johns Hopkins University through the Center for Systems Science and Engineering. Given
that a mixed-effect framework borrows information from population-average effects, we included some countries from
Europe and North America that are in a more advanced stage of their COVID-19 death curves. The considered countries are
Peru, Mexico, Chile, Brazil, Colombia, Belgium, Italy, the USA, and the United Kingdom.

Firstly, we emphasized the varied stages and asymmetric structure of the reported data by plotting the number of deaths
against days since the first death for different countries jointly. Subsequently, we conducted a comparative study of the
considered approaches: the normal nonlinear mixed-effects model (N-NLMM) and the scale mixture of skew-normal
nonlinear mixed-effects model (SMSN-NLMM) to showcase the performance of both models.

4.1. Models specifications

Refering to section 2, the NLMMsmodel is written as (Lindstrom& Bates, 1990): yi ¼ mi(tij; fij) þ ei; fij ¼ d(xij; b; bi), where
the subscript i is the subject index. The normal nonlinear mixed-effects model is the initial standard proposition of the
nonlinear mixed-effects model (2.1), where residuals (eij) and random effects (bi) are assumed to be normally distributed. In
contrast, the SMSN-NLMM is the proposition with random terms assumed to come from a scale mixture of skew-normal
distribution, as developed in 2.7.

For this case of application, the intra-individual regression function is the derivative of the generalized logistic as defined:

mðxij;fiÞ ¼
f1f3if4expf�f3ixijg

ðf2i þ expf�f3ixijgÞf4þ1 (4.1)

In this equation, f2i ¼ exp{b2 þ b2i}, f3i ¼ exp{b3 þ b3i}, and fk ¼ exp{bk}, for k ¼ 1; 4, with the exponential transformation
being used to ensure positiveness of the parameters; xij¼ tij is the time of observation j (1� j� ni) on individual i (1� i� n). In
addition to the fact that in (4.1), random effects are included to enable a multivariate approach and borrow information
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Fig. 8. Number of daily reported deaths since first death for the nine countries, until June 24th, 2020.
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between the different time series, all nonlinear parameters are of interest for epidemic interpretations, where f3 control the
infection rate, f4 is an asymmetry parameter, f1, f2 and f4 control the asymptote of the curve, given by f1

f1
f2

f4 , with the peak
occurring at time t ¼ � lnðf2=f4Þ

f3
.

For numerical stability, the data have been standardized (linear transformation, yij ¼ zij/kz, where zij is the number of
reported deaths for the ith country and at the jth day since first death, and kz is chosen to be the sample standard deviation
from the country data, which is the smallest one in the observed data).

4.2. Heterogeneity in infectious disease data

Fig. 8 illustrates the number of daily reported deaths since the first cases for the nine countries, with data clustered by
country. The graph shows that the countries are at different stages of the COVID-19 pandemic. Based on these results, a
possible extension to allow area-specific spread patterns of epidemics is interesting and necessary.

4.3. NLMMs and random term distributions

To demonstrate the impact of random term distribution when applying NLMMs to infectious disease data, we evaluated
two propositions using the same data and considering different distributions. Rodríguez et al. (Rodríguez et al., 2017), Kai-
mann and Tanneberg (Kaimann & Tanneberg, 2021), and Lee et al. (Lee, Lei, & Mallick, 2020) used NLMMs for estimating
epidemic spread curves by integrating global data and borrowing information, assuming normally distributed residuals and
random effects. The second approach, proposed by Schumacher et al. (Schumacher, Ferreira, et al., 2021), formulates a
nonlinear mixed-effects model based on the class of scale mixtures of skew-normal distributions for modeling COVID-19
dynamic data. The Shapiro-Wilk test was performed on standardized residuals when adjusting based on the “nlme” func-
tion of nlme package from R software (RCore, 2019). Fig. 9 highlights the non-normality of the standardized residuals. To
further explore this non-normality across different countries, we conducted a Normality test per cluster (Table 1) and found
no evidence of normality.

Fig. 10 displays the fitted curves for the N-NLMM model (blue line) and SMSN-NLMM model (red line), along with
observed data (Number of daily reported deaths from the first death for the nine countries, until the June 24, 2020, in black)
per country. It shows the usefulness of NLMMs in infectious disease modeling and confirms the importance of random terms
Fig. 9. The density curve and Q-Q plot of standardized number of deaths residuals reported in COVID-19 outbreak study: (a) Density curve; (b) Q-Q plot.
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Table 1
Results of normality test per country.

Countries statistics p-values

Belgium 0.864 2.020 � 10�08

Brazil blue0.971 0.030
Chile 0.544 1.109 � 10�15

Colombia 0.881 3.768 � 10�07

Italy 0.972 0.011
Mexico 0.856 2.761 � 10�08

Peru 0.961 0.003
United Kingdom 0.930 1.256 � 10�06

US 0.977 0.048

Fig. 10. Fitted curve for the N-NLMM model (blue line), SMSN-NLMM model (red line), along with real data (black) per country.
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in the models’ performance. The proposition using a flexible distribution (SMSN-NLMM) is better suited for this data, which
exhibits skewness and outliers (Table 1), than the N-NLMM where residuals and random effects are assumed to be normally
distributed.

5. Discussion

5.1. Heterogeneity issues in infectious diseases data

For the past two decades, infectious diseasemodeling has been one of themost crucial areas in epidemiology, contributing
significantly to understanding the dynamics of epidemic outbreaks and predicting their future course. Most epidemicmodels,
including the well-known SIR and its extensions (Gnanvi et al., 2021; Tang et al., 2020), are compartmental modelsda
mathematical approach that epidemiologists have used for over a century. While highly useful for analyzing infection dy-
namics in large populations, such as countries or states, the SIR-typemodel is most applicablewhenmodel parameters can be
assumed to be homogeneous, representing the entire population. This model is particularly valuable in the early phases of a
disease outbreak when health administrations aim to develop nationwide macro-interventions. However, with the spread of
advanced infectious diseases showing substantial heterogeneity in factors like urbanization, ethnic distribution, political
views, governance, and economic composition across different subgroups of individuals in various geographical locations, it
becomes crucial to explore more advanced modeling approaches.

One possible extension is to employ the Partial Differential Equations (PDEs) approach, as proposed by Murray et al.
(Murray, Stanley, & Brown, 1986), to allow for area-specific spread patterns of epidemics. However, this approach was crit-
icized for its ignorance of the fact that infectious diseases spread through person-to-person interactions rather than a
continuous population (Mollison, 1991). Instead, a General Cellular Automaton (CA), a micromodel that mimics an interactive
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particle system as discussed by Tang et al. (Tang et al., 2020), was suggested as more suitable for modeling spatially varying
infection dynamics. Originating in the works of Von Neumann et al. (Von Neumann Burks et al., 1966) and Ulam et al. (Ulam
et al., 1962), the CA paradigm has been widely used in various applied fields, including modeling infectious diseases.

Furthermore, most existing models fail to account for potential cross-country or regional dependence on the disease
spread. They also neglect the possibility of varying disease stages (e.g., early vs. advanced) across different countries
(Schumacher, Ferreira, et al., 2021). From this study, we believe that the NLMM approach remains underutilized in the field of
infectious disease modeling, particularly when aiming to estimate both the average disease behaviour within specific regions
and the associated variability both between and within these regions.

Acknowledging the limitations of normality assumptions, which can be unreliable for data with skewness and heavy tails
like COVID-19 cases and deaths, Schumacher et al. (Schumacher, Ferreira, et al., 2021) proposed a novel class of asymmetric
NLMMs. This approach efficiently estimates parameters in infectious disease data analysis. In this model, random effects
follow a scale mixture of skew-normal distributions (SMSN; Branco and Dey (Branco & Dey, 2001)), while random errors
follow a symmetric scale mixture of normal distributions (SMN; Lange and Sinsheimer (Lange & Sinsheimer, 1993)). This
novel approach, illustrated in (Fig. 10), presents an advanced alternative to the traditional normal distribution employed by
Rodríguez et al. (Rodríguez et al., 2017).

The comparison of an individual nonlinear model for each area separately with a nonlinear mixed-effects model by
Rodríguez et al. (Rodríguez et al., 2017) indicated that NLMMs are well-suited for modeling dengue outbreak data based on
cumulative cases in different urban areas. Although underexplored in IDM, the method finds wide application in various
epidemics, including influenza (Lee et al., 2009; Wang et al., 2020), hospital-acquired infections (Duval et al., 2018), HIV/AIDS
(Dinh et al., 2018), and SARS-CoV-2 (Chong et al., 2021; Lee, Lei,&Mallick, 2020). Nonlinear mixed-effects models outperform
individual models by pooling information from different areas, thereby enhancing the predictive power for each area indi-
vidually (Lee, Lei, & Mallick, 2020). Similarly, Paul and Held (Paul & Held, 2011) discussed a non-linear model for analyzing
multivariate time series of infectious disease counts, demonstrating that accounting for heterogeneity through random ef-
fects significantly improves predictive performance. In this field, methods for parameter estimation, random term specifi-
cation, and statistical software tools for implementation and model comparison deserve further investigation, as they hold
great promise for informing effective policy recommendations to control present and future infectious disease outbreaks
across large spatial and temporal scales. Moreover, as the main advantage of NLMMs is modeling heterogeneity and flexibly
handle unbalanced data, then it would be beneficial for further research to draw in depth comparisons to spatial compart-
mental models knowing that they have been playing a central role in modeling infectious disease dynamics.
5.2. Software implementation, algorithms/approaches and availability of packages

To make research findings transparent and to place resulting toolboxes into the hands of practitioners, an open-source
software package must be a deliverable. This is so important, as the ease of implementation and numerical stability
impact the choice of statistical models and methods for estimation and prediction. Statistical Software and relative packages
for implementing NLMMs exist but need to be more comprehensive as the existing ones have one or more limits. The latest
studies in NLMMs made available the possibility of implementing this statistical method in some of the most known sta-
tistical software, such as R and SAS, with this first mostly referred to in all fields of applied NLMMs. The SAS NLMIXED
procedure, the R function nlme in the nlme package and the R function nlmer in the lme4 package are available and widely
used for fitting nonlinear mixed-effects models and providing several different implementation variations. While types of
software are available for fitting NLMMsmodels, concerns have been raised about the reliability of these procedures for fitting
mixed-effects models (Stegmann, Jacobucci, Harring,&Grimm, 2018; Zhang&Gen, 2011). Markov chainMonte Carlo (MCMC)
methods to perform estimation and prediction for state-spacemodels is themost known approach in epidemicmodeling. The
SAEM has gained much attention in recent years and is also available through an R package “remix”, but further comparative
studies are needed for its performance on others, especially Bayesian routine in complex longitudinal infectious diseases data
as an extension of Schoemaker et al. (Schoemaker et al., 2019), Makowski and Lavielle (Makowski& Lavielle, 2006). It is worth
noting the observed important interest in the Bayesian method while dealing with infectious disease modeling. The use-
fulness of Bayesian approaches for joint models, especially infectious diseases modeling (viral load dynamic), has known
success with, notably, a dedicated tool that relies on a Gibbs Monte-Carlo byMarkov Chains using BUG Software (R2WinBUGS
package in R), but the computation cost was large (Kerioui et al., 2020). The performances of the Hamiltonian Monte-Carlo
(HMC) algorithm implemented in Stan for inference in a nonlinear mixed model have been demonstrated in others. The No-
U-Turn version of the HamiltonianMonte-Carlo (HMC) algorithmwould optimize the exploration of the target distribution by
relying on Hamiltonian dynamics (Hoffman Gelman et al., 2014). It is theoretically proven that HMC can handle highly
nonlinear estimation problems where Gibbs sampling could fail (Neal et al., 2011), and it has also been demonstrated to be
faster than the combination of Gibbs and Metropolis-Hastings algorithms implemented in BUGS for providing efficient
posterior distributions in case of complexmodels (Monnahan, Thorson,& Branch, 2017). In addition to “rstan” and “brms”, the
R package “rstanarm” has been proposed with a previously compiled regression model using Stan (Gabry & Goodrich, 2017)
for NLMMs implementation in the Bayesian framework. However, this extension is also limited to linear models for the
longitudinal part. More research is still important in NLMMs program in R, especially when dealing with complex hetero-
geneous data exhibiting skewness, such as infectious disease dynamic data.
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5.3. Open questions

A few open questions of great interest that motivate new methodological developments come out from this literature
synthesis.

Q1: Uncertainty in the estimation and prediction of different statistical methods: Are NLMMs the best-performing models
for estimating key parameters in infectious diseases (R0, peak, time-period ahead)?
Q2: Uncertainty in estimating and predicting using different estimation methods in NLMMs: Is the Bayesian approach the
best-performing method in estimating key parameters of infectious diseases (R0, peak, k � time ahead)?
Q3: Modeling and forecasting epidemic outbreaks: Which epidemiological models are best for early predicting the
epidemic peak and infected cases?
Q4: What are the major countrywide covariates that cause infection trajectories of countries to behave differently in terms
of the spread of the disease, providing evidence to explain the heterogeneity in the country-wise infection trajectories
across a region?

6. Conclusion

Understanding the dynamics of the pandemic and predicting its future course is of utmost importance. Epidemic models
have been pivotal in comprehending past and present infectious diseases. They will continue to be valued and enhanced to
better understand infectious disease dynamics. The use of NLMMs in infectious disease modeling is of great significance, and
further research is expected to enhance its performance in modeling infectious disease dynamics. NLMMs possess several
inherent features that make them relevant modeling approaches for dynamic infectious diseases. They are among the top
statistical methods for handling the substantial heterogeneity inherent in infectious disease transmission and intra-
variability analysis. However, relatively few longitudinal data studies have included heterogeneity and skewness features.
This synthesis on NLMMs can guide the selection of appropriate statistical methods for modeling future pandemic data.
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Table 2
Journal of publication of studies in general
Journals
124
Effectifs
 RFC (%)
J Pharmacokinet Pharmacodyn
 15
 12.10

Statistics in Medicine
 14
 11.29

NA (Preprint)
 11
 8.87

Computational Statistics and Data Analysis
 9
 7.26

Journal of Applied Statistics
 9
 7.26

AAPS Journal
 6
 4.84

Journal of Biopharmaceutical Statistics
 5
 4.03

Pharmaceut. Statist.
 5
 4.03

Journal of Agricultural, Biological, and Environmental Statistics
 4
 3.23

MULTIVARIATE BEHAVIORAL RESEARCH
 4
 3.23

PLOS ONE
 3
 2.42

Stat Comput
 3
 2.42

Statistical Methods in Medical Research
 3
 2.42

Biometrical Journal
 2
 1.61

Biostatistics
 2
 1.61
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Table 2 (continued )
Journals
125
Effectifs
 RFC (%)
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 2
 1.61
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 2
 1.61

CPT Pharmacometrics Syst Pharmacol.
 2
 1.61

Journal of the American Statistical Association
 2
 1.61

The International Biometric Society
 2
 1.61

American Society of Animal Science
 1
 0.81

Biological Sciences
 1
 0.81

BIOMETRICS
 1
 0.81

BIOPHYSICS AND MICROBIOLOGY
 1
 0.81

Bulletin of Mathematical Biology
 1
 0.81

Communications in Statistics?Theory and Methods
 1
 0.81
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European Journal of Operational Research
 1
 0.81

Journal of Multivariate Analysis
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 0.81

Journal of Statistical Computation and Simulation
 1
 0.81

Journal of Virology
 1
 0.81

Pharmaceutical Research
 1
 0.81

Pharmacometrics & Systems Pharmacology
 1
 0.81

PLOS COMPUTATIONAL BIOLOGY
 1
 0.81

Poultry Science Association
 1
 0.81

REVISTA INVESTIGACION OPERACIONAL
 1
 0.81

Statistics and Its Interface
 1
 0.81

Structural Equation Modeling: A Multidisciplinary Journal
 1
 0.81

The Journal of Infectious Diseases
 1
 0.81
Table 3
distribution of studies across countries
Countries
 Effectifs
 RFC (%)
USA
 30
 24.19

France
 18
 14.52

Sweden
 13
 10.48

Brazil
 8
 6.45

China
 8
 6.45

South Africa
 7
 5.65

Chile
 5
 4.03

Canada
 3
 2.42

Australia
 2
 1.61

Benin
 2
 1.61

California
 2
 1.61

Italy
 2
 1.61

London
 2
 1.61

NA
 2
 1.61

Switzerland
 2
 1.61

Taiwan
 2
 1.61

The Netherlands
 2
 1.61

Boston
 1
 0.81

Cuba
 1
 0.81

Denmark
 1
 0.81

Germany
 1
 0.81

Iran
 1
 0.81

Manchester-UK
 1
 0.81

Manhattan
 1
 0.81

Massachusetts
 1
 0.81

New York
 1
 0.81

New Zealand
 1
 0.81

Saudi Arabia
 1
 0.81

Sogang
 1
 0.81

Spain
 1
 0.81

Thailand
 1
 0.81
Table 4
Computational/Estimation methods advance in NLMMs
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Estimation methods
126
Effectifs
 RFC (%)
EM approach/M-estimation/MLE
 37
 21.02

Bayesian approaches
 31
 17.61

SAEM
 26
 14.77

FOCE
 15
 8.52

FOCEI
 10
 5.68

LIA
 8
 4.55

(adaptive) Gaussian quadrature approximation
 7
 3.98

penalized likelihood (splines) methodology
 7
 3.98

Approximation approach
 4
 2.27

nonlinear least squares estimators
 4
 2.27

mean imputation method
 2
 1.14

SAEM-pen (stochastic approximation EM-penalized)
 2
 1.14

two-step method
 2
 1.14

Bayesian-Random forest
 1
 0.57

Continuous Discrete Extended Kalman Filter
 1
 0.57

first-order linearization method (FO)
 1
 0.57

FOCE-Extended Kalman Filter
 1
 0.57

FOCE-Extended Least Squares
 1
 0.57

Gauss-Newton method
 1
 0.57

Huber's M-estimation
 1
 0.57

Hybrid Bayesian approach
 1
 0.57

LASSO-type method
 1
 0.57

MCPG:Monte-Carlo proximal-gradient
 1
 0.57

NonParametric Adaptive Grid, NPAG
 1
 0.57

nSCEBE: Simultaneous correction method of empirical Bayesian estimates
 1
 0.57

Ordinary Nonlinear Least Square Estimator (ONLS)
 1
 0.57

parametric power estimation
 1
 0.57

Robust linearized Gaussian likelihood
 1
 0.57

Robust Two-Stage Estimation
 1
 0.57

SAPG:stochastic approximation proximal-gradient
 1
 0.57

Simulated pseudo-maximum likelihood
 1
 0.57

stochastic expectation-maximization (StEM)
 1
 0.57

three-step multiple imputation method
 1
 0.57

truncated power basis functions (TPF-splines)
 1
 0.57
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