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1  | BACKGROUND

Repetitive transcranial magnetic stimulation (rTMS) has been widely 
used for the treatment of neurological and psychiatric diseases, such as 
Alzheimer's disease, Parkinson's disease, epilepsy, stroke, depression 
and anxiety disorder, and sleep disorder (Cao et al., 2018; Feng, Zhang, 
Zhang, Wen, & Zhou, 2019; Lefaucheur et al., 2014; Zhang et al., 
2019). However its therapeutic mechanisms are not completely clear. 
Previous studies have used rodent animals to investigate its potential 
cellular and molecular mechanisms related to synaptic plasticity (Guo, 

Lou, Han, Deng, & Huang, 2017; Ji et al., 2013; Tang, Thickbroom, & 
Rodger, 2015). Unlike humans, it is not practical to keep animals (in‐
cluding mouse or rat) stationary during the delivery of longer rTMS pe‐
riod. Therefore, it is necessary to take some measures to restrain the 
animals. In previous literature, investigators used the anesthesiology 
method (Sasso et al., 2016; Sykes et al., 2016), or by hand (Hesselberg, 
Wegener, & Buchholtz, 2016; Lim, Lee, Yoo, & Kwon, 2014; Sasso et al., 
2016), or cloth, bag and straps (Ljubisavljevic et al., 2015); Tang et al., 
2018), or some undefined devices (Guo et al., 2014). In animals, rTMS 
is often used 1–2 times each day (for minutes to tens of minutes each 
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Abstract
Introduction: Repetitive transcranial magnetic stimulation has been widely used 
for the treatment of neurological and psychiatric diseases. Rodent animals includ‐
ing mice and rats are often used to investigate the potential cellular and molecular 
mechanisms for the therapeutic effects of repetitive transcranial magnetic stimula‐
tion. So far there is no report about an easy‐to‐use device to restrain rodent animals 
for repetitive transcranial magnetic stimulation.
Methods and Results: We introduced the design and use of the restraint device for 
mice or rats. In the mouse device, western blot and real‐time PCR analysis showed 
that，in stimulated mouse frontal cortex, 10 Hz high frequency stimulation for 10 ses‐
sions resulted in enhanced expression of NR2B‐containing N‐methyl‐D‐aspartic acid 
receptors and reduced α1 subunit of inhibitory GABAA receptors, whereas 0.5 Hz low 
frequency stimulation for 10 sessions caused decreased expression of NR2B subunit 
and increased α1 subunit of GABAA receptors. In the rat device, measures of motor 
evoke potentials indicated that 10 Hz stimulation for 10 sessions increased the excit‐
ability of stimulated cortex, whereas 0.5 Hz for 10 sessions reduced it.
Conclusions: These results suggested the effectiveness of the devices. Thus, the two 
devices are practical and easy‐to‐use to investigate the mechanisms of repetitive 
transcranial magnetic stimulation.
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time), lasts for a few of days or tens of days (Fleischmann & Hirschmann, 
1999; Guo et al., 2017; Ji et al., 2013). Thus, daily anesthesia may have 
potentially adverse effects in animals; Restraint by hand or by cloth, 
bag and tape may be laborious, or be potentially inconvenient for the 
delivery of rTMS, especially for a longer stimulation time (over 10 min). 
Here we designed the restraint device for mice and rats, respectively. 
The two devices would be practical and easy‐to‐use in exploring the 
therapeutic mechanisms of rTMS.

2  | MATERIAL S AND METHODS

2.1 | Animals

Animals were purchased from Changzhou Cavens Lab Animal Co. 
Ltd. Adult male C57/B mice (22–28 g) and SD rats (220‐280g) were 
used. Animals were raised at 25°C and 60% humidity and in 12‐hr 
light: 12‐hr dark. Animal experiments were carried out according 
to Institutional Animal Care and Use committee (IACUC) of Nanjing 
Medical University and were approved by the ethics committee of the 
Affiliated Changzhou No.2 People's Hospital (No. 2014Keyan002‐01).

2.2 | Anesthesia

Only Rats were intraperitoneally (i.p.) injected with sodium pento‐
barbital (Sigma, St. Louis, USA) at 70 mg/kg for anesthetization. 
After anesthetization, rats were placed on a brain stereotaxic frame 
(Stoelting Wood Dale, IL) as described previously (Muller et al., 
2014), and the corresponding measures were taken to avoid the dis‐
turbance of potential electrical current during MEP measurement.

2.3 | Electromyographic recording

Motor evoked potentials (MEPs) were recorded with 26G stainless 
steel needle electrodes which were inserted into the right brachiora‐
dialis muscle of rats as described elsewhere (Rotenberg et al., 2010). 
A reference electrode was inserted into the right paw and a ground 
electrode was inserted into the rat tail. The muscle was determined 
by touching the stretched forelimb. Electromyographic (EMG) signal 
was collected and processed by biological signal acquisition and pro‐
cessing system (MedLab‐U/4C501H, Nanjing Meiyi Tecnology Co., 
Nanjing, China). The EMG signal was amplified ×1,000 and band pass 
filtered 10‐1,000Hz, and digitized with 40 Hz sampling. Before rTMS 
(day 0) and 6 hr after rTMS (Day 5), MEPs were performed (n = 6 for 
each group).

2.4 | Transcranial magnetic stimulation

A 70mm figure‐of‐eight coil (YIRUIDE, Wuhan, China, 3.0 Tesla) was 
placed on the left head scalp of the rat. The center of the coil was 
placed over the left motor cortex as described previously (Muller et 
al., 2014). Pulses were delivered at 1Hz to obtain optimal stimulation 
site where the maximal amplitude of MEPs were elicited by adjusting 
the coil location. By visual inspection, such lateralized TMS induced 

a twitch only in the right forepaw and shoulder. Resting motor 
threshold (rMT) was defined as the minimal stimulation intensity to 
obtain MEPs of more than 20 µV peak‐to‐peak amplitude in at least 
five of 10 trials. For low frequency rTMS group, the parameters were 
as follows: 0.5 Hz, 600 pulses, 20 min, 20% intensity of machine out‐
put for mice (causing no significant muscle twitch in the extremities) 
and 80% rMT for rats, in consecutive five days (one session in the 
morning and one session in the afternoon). For high frequency rTMS 
group, 10 Hz, 1 s stimulation, 9 s interval, 10 min stimulation, a total 
of 600 pulses, 30% intensity of machine output for mice (causing 
significant muscle twitch in the extremities) and 110% rMT for rats, 
in consecutive 5 days (one session in the morning and one session in 
the afternoon). Sham rTMS was delivered by the change of the coil 
positioning (perpendicular to the head scalp) with a same protocol of 
high frequency rTMS. To reduce the stressful responses, the naive 
animals were put into the restraint device three times (lasting for 
1–2 min each time) one day before the whole rTMS protocol in order 
to adapt to this restraint condition.

2.5 | Western blot and real‐time PCR

Before rTMS (day 0) and 6 hr after rTMS (Day 5), the two different 
groups (n = 3 for each group) were separately sacrificed by cervical 
dislocation and the brains were quickly removed. Then the front cor‐
tex was separated, cut two parts (one for western blot and the other 
for real‐time PCR), and stored at 80℃ until further use.

Western blot was carried out based on our previous study (Chen 
et al., 2016). The target proteins were immunoblotted with primary 
antibody overnight at 4◦C to anti‐NR2B (1:1,000, Cell signaling 
Technology) and anti‐GABAα1R (1:10,000, Millipore) and anti‐β‐actin 
(1:10,000, Sigma), followed by incubation with horseradish peroxi‐
dase‐conjugated goat anti‐rabbit secondary antibody (1:10,000; Cell 
Signaling Technology). The blots were then thoroughly washed and 
subjected to ECL detection (SuperSignal West Pico; Pierce, Rockford, 
IL). The signal intensity was determined using ScionImage software 
(Scion Corp., Frederick, MD). The NR2B subunit and GABAα1R pro‐
tein level was normalized to β‐actin.

Real‐time PCR was performed by using SYBR® Select Master Mix 
(Applied Biosystems, Austin, TX) in a ViiA™ 7 real‐time PCR system. 
Total RNA from cortical tissue (n = 3 for each group) before stimula‐
tion and after stimulation was extracted using the NucleoSpin RNA 
Kit (MN, Düren, Germany) based on the instructions of the manu‐
facturer. RNA concentration was measured using NanoDrop 1,000 
(Thermo, Waltham, MA). Total RNA (1 µg) was reverse transcribed 
to cDNA with the High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems, Foster City, CA). Primer sequences used 
were	 as	 follows:	 NR2B,	 5′‐AACCTCCTGTGTGAGAGGAAA‐3′	
(forward)	 and	 5′‐CGGGGATAGAAAGGCAGCTT‐3′;	 GABAα1R, 
5′‐ACCATGCCTAATAAGCTCCTGCGT‐3′	 (forward)	 and	 5′‐CAAG 
TGCATTGGGCATTCAGCTCT‐3′	 (reverse);	 β‐actin (as an internal 
control),	 5′‐TCTTGGGTATGGAATCCTGTGGCA‐3′	 (forward	 and	
5′‐ACAGCACTGTGTTGGCATAGAGGT‐3′	 (reverse).	 The	 com‐
parative threshold cycle method was utilized for relative mRNA 
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quantification. All values were normalized to the control and ex‐
pressed as fold change relative to control.

2.6 | Statistical analysis

Statistical analysis was performed using Prism 6 (GraphPad Software, 
San Diego, CA). High frequency rTMS and low frequency rTMS were 
regarded as two independent and significantly different treatments, 
thus student's test was used. Values in real stimulation group were 
normalized to that in sham stimulation, and then comparisons were 
made between pre‐rTMS and post‐rTMS. p < 0.05 was considered 
significant.

2.7 | Design of the restraint devices

Based on previous studies, we found that the 50 ml‐centrifuge 
Corning tube commonly used in laboratory was suitable for the re‐
straint of adult mice (Koh, Ji, Kim, Lee, & Kim, 2015; Zhang et al., 
2008). The conical part at the bottom was suitable for accommodat‐
ing the head of the mouse, while the circular tube was suitable for 
accommodating the body part of the mouse. The key was to expose 
the mouth of the mouse for breathing and to place the teeth into a 
hole according to the design principle of the mouse brain stereotaxic 

apparatus. In addition, the site for rTMS on the head needed to be 
exposed when the whole body was restrained. Actually, the change 
in the head size of adult male weighing 22 g to 28 g was relatively 
small. The difference in body size in the tube could be adjusted using 
a flexible sponge at the restraint. First, we used a 50‐ml centrifuge 
tube, and made a round outlet with inner diameter of 1 cm (where 
the rostral part of the mouse was exposed from the tube for breath‐
ing) at the conical end of the tube (Figure 1a,b). Then a rectangular 
window with a size of 1.2 cm length × 1.0 cm width was dug out at 
the junction of conical tube and circular tube (Figure 1a,b). One side 
of the window on the circular tube was just located on the lowest 
scale line on the outer surface of the circular tube. On the outer 
surface of the tube, the file was used to file the small window into 
a plane on which the rTMS coil was placed. The window was used 
for exposure of the top of the mice head and matched the center 
of the coil of rTMS apparatus by the guidance of a medical adhesive 
tape （1.2 cm × 1.0 cm）attached to the center of the 8‐shaped coil 
(Figure 1c). On the opposite side of the window, four holes with a 
diameter of 3.5 mm were drilled out. One of them was used to hold 
mandibular teeth of mice (Figure 1a,b), which was 1–1.5 mm from the 
round exit. The other three holes were used for ventilation and fore‐
limb support, which were just below the first hole. The mouse device 
was for mice with 22–28 g weight. Beyond the weight range, it may 

F I G U R E  1   Mouse restraint device 
for rTMS. (a) A schematic diagram (back 
and front) of the mouse device; (b) A 
practicality picture (back and front 
view) of the mouse device; (c) A medical 
adhesive tape was attached in the center 
of the eight‐shaped coil; (d) The mouse 
device was placed on the sponge platform 
for rTMS
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be necessary to modify these sizes. But the basic principle of design 
remains unchanged. For the rat device, based on the same principle 
of design and the size of head and body of adult rats, we made a new 
device with different sizes using 2 mm wall thickness plexiglass ma‐
terial after several trials (Figure 2a,b). Similarly, the rat device was for 
rats with a range of 220–280g weight. Also, it will be also necessary 
to modify these sizes beyond the range.

2.8 | The use, verification and discussion for 
restraint devices

When using the two devices, the experimenter guided the animals 
into the devices with their hands according to the mouse favorite 
habit of entering holes, and then covered the window on the tube 
with their left hand and pushed the mouse forward with their right 
hand until the rostral part of the animals protruded from the round 
outlet. Quickly, a piece of elastic sponge with a suitable size was in‐
serted into the devices against the caudal part of the mouse, and 
then the head position was adjusted until the mandibular teeth en‐
tered the first hole and the top of the head was exposed to the win‐
dow (Figures 1b and 2b). Next, the devices were placed on a sponge 
platform. The center of the 8‐shaped coil was placed over the small 
window, tangentially contacting the scalp of animals. At the other 

end of the tube, a plastic plate was used for balance (Figures 1d and 
2c). Due to the smaller brain size and the larger coil, it would be dif‐
ficult to locate precisely the stimulation site in animals. If research‐
ers use other coils (such as loop coils) or custom animal coils, a small 
window can be made at the top of the head according to the shape 
of the coils. If researchers roughly locate the stimulation site at one 
side of the animal brain, a small window might be opened in the cor‐
responding part of the devices.

To validate the effectiveness of the devices, high frequency 
(10 Hz) or lowfrequency (0.5 Hz) rTMS was delivered over the cor‐
tex of mice for 10 sessions, since previous studies showed that low 
frequency rTMS decreases cortical excitability, whereas high fre‐
quency rTMS increases cortical excitability in humans or animals 
(Maeda, Keenan, Tormos, Topka, & Pascualleone, 2000; Nielsen & 
Jacobsen, 1997; Muller et al., 2014). We examined the change in the 
NR2B subunit‐containing N‐methyl‐D‐aspartic acid (NMDA) recep‐
tor (a key subunit of excitatory glutamate receptors in determining 
synaptic changes) (Rudolph & Möhler, 2006; Zhou, Ding, Chen, Yun, 
& Wang, 2013) and the α1 subunit of inhibitory γ‐aminobutyric acid 
(GABA) A type receptor (GABAα1R, a most prominent subtype)
(Rudolph & Möhler, 2006; Zhou et al., 2013) in mice using western 
blot and real‐time PCR. As illustrated in Figure 3a, as compared to 
pre‐rTMS, low frequency rTMS of 10 sessions reduced significantly 

F I G U R E  2   Rat restraint device for 
rTMS. (a) A schematic diagram (back and 
front) of the rat device; (b) A practicality 
picture (back and front view) of the rat 
device; (c) The rat device was placed on 
the sponge platform for rTMS
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the expression of NR2B subunit in the frontal cortex of mice but 
increased the expression of GABAα1R. In contrast, high frequency 
rTMS of 10 sessions significantly enhanced the expression of NR2B 
subunit in the mouse frontal cortex, but decreased GABAα1R ex‐
pression. Similar results were obtained in the expression of NR2B 
mRNA and GABAα1R mRNA of the frontal cortex by low frequency 
or high frequency rTMS (Figure 3b). To further recapitulate previous 
results, we examined resultant cortical excitability induced by 0.5Hz 
rTMS or 10Hz rTMS for 10 sessions by measuring MEP amplitude 
reflecting cortical excitability in rTMS‐stimulated cortex of rats. As 
expected, after 10 sessions of 0.5Hz rTMS, the MEP amplitude was 
significantly reduced as compared to pre‐rTMS (Figure 3c). On the 
contrary, 10 Hz rTMS led to a marked increase in MEP amplitude 
(Figure 3c). There was no obvious difference in MEP amplitude be‐
tween pretreatment and posttreatment in sham rTMS group. Taken 
together, these results suggested that the two devices are feasible.

As mentioned above, previous studies stimulated the cortex of 
animals to investigate molecular and cellular mechanisms for the 
therapeutic effects of rTMS with different restraint methods. For a 
short stimulation period (3–5 min), restraining animals by hand during 
the delivery of rTMS appeared not to be a problem. However, when 

restraining animals for a longer period (over 10 min) by hand, it would 
be laborious. Additionally, slightly restraining animals using a restraint 
bag seemed not to be laborious (Tang et al., 2018), but it may be po‐
tentially inconvenient for the delivery of rTMS. Daily anesthesia for 
over 10 days may have potentially adverse effects in animals. To solve 
these problems, we designed the restraint devices to improve the de‐
livery of rTMS and replicated some previous conclusions in humans 
or animals (Maeda et al., 2000; Muller et al., 2014) to confirm the ef‐
fectiveness. As compared to previous restraint methods, the methods  
appeared to more practical, especially making the delivery of rTMS 
more convenient (Hesselberg et al., 2016; Lim et al., 2014; Ljubisavljevic 
et al., 2015; Sasso et al., 2016). However, their usefulness and effec‐
tiveness need to be verified by more researchers in the future.

The disadvantages of the devices were to squeeze lightly the 
chest of animals, leading to stressful responses. Therefore, the 
sponge was not to be tucked too tightly. To minimize the stressful re‐
sponses, the naive animals would be put into the device three times 
(lasting for 1–2 min each time) one day before the whole experiment 
in order to adapt to this condition. After adaptation, animals did not 
show any significant struggle. Additionally, the rat device may be 
conveniently used for blood collection or injection into the tail vein.

F I G U R E  3   Verification of effectiveness of restraint devices. (a) The proteins were analyzed from the mouse frontal cortex in the sham 
rTMS group, the high frequency rTMS group and the low frequency rTMS group before stimulation (pre‐rTMS) and after stimulation (post‐
rTMS). Data are presented as mean ± SD (n = 3 for each group). Upper panel, representative blots; Middle and Lower panel, quantitative 
analysis for NR2B subunit and GABAα1R expression, respectively.; *p < 0.05, compared to pre‐rTMS. (b) The expression of NR2B mRNA, 
GABAα1R mRNA and β‐actin mRNA were analyzed from the sham rTMS group, the high frequency rTMS group and the low frequency rTMS 
group. Data are presented as mean ± SD (n = 3 for each group). *p < 0.05, ***p < 0.001, compared to pre‐rTMS. (c) MEPs were detected 
before stimulation and after stimulation in anesthetized rats from the sham rTMS group, the high frequency rTMS group and the low 
frequency rTMS group. Data are presented as mean ± SD (n = 6 for each group). *p < 0.05, compared to pre‐rTMS. Values in real stimulation 
group were normalized to that in sham stimulation, and student's t test was used
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