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a b s t r a c t 

Objective: Accurate prognostic predictions and personalized decision-making on induction chemotherapy (IC) 

for individuals with locally advanced nasopharyngeal carcinoma (LA-NPC) remain challenging. This research 

examined the predictive function of tumor burden-incorporated machine-learning algorithms for overall survival 

(OS) and their value in guiding treatment in patients with LA-NPC. 

Methods: Individuals with LA-NPC were reviewed retrospectively. Tumor burden signature-based OS prediction 

models were established using a nomogram and two machine-learning methods, the interpretable eXtreme Gradi- 

ent Boosting (XGBoost) risk prediction model, and DeepHit time-to-event neural network. The models’ prediction 

performances were compared using the concordance index (C-index) and the area under the curve (AUC). The 

patients were divided into two cohorts based on the risk predictions of the most successful model. The efficacy 

of IC combined with concurrent chemoradiotherapy was compared to that of chemoradiotherapy alone. 

Results: The 1 221 eligible individuals, assigned to the training ( n = 813) or validation ( n = 408) set, showed 

significant respective differences in the C-indices of the XGBoost, DeepHit, and nomogram models (0.849 and 

0.768, 0.811 and 0.767, 0.730 and 0.705). The training and validation sets had larger AUCs in the XGBoost and 

DeepHit models than the nomogram model in predicting OS (0.881 and 0.760, 0.845 and 0.776, and 0.764 and 

0.729, P < 0.001). IC presented survival benefits in the XGBoost-derived high-risk but not low-risk group. 

Conclusion: This research used machine-learning algorithms to create and verify a comprehensive model inte- 

grating tumor burden with clinical variables to predict OS and determine which patients will most likely gain 

from IC. This model could be valuable for delivering patient counseling and conducting clinical evaluations. 
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. Introduction 

Nasopharyngeal carcinoma (NPC) is a prevalent endemic disease pre-

ominantly found in Southeast Asia. 1 Over 70% of the patients are di-

gnosed with locally advanced NPC (LA-NPC) on their first visit. 2 In-

uction chemotherapy (IC) is critically important to improving tumor

ontrol because the leading failure cause in LA-NPC is distant metasta-

is. 3 , 4 The National Comprehensive Cancer Network (NCCN) guidelines

ecommended with 2A evidence level that patients diagnosed with LA-

PC undergo IC along with concurrent chemoradiotherapy (IC + CCRT). 5 

owever, LA-NPC affects patients with a wide range of T and N cate-
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ories, and it is unclear who would benefit from IC. Therefore, it is cru-

ial to have an appropriate method to identify high-risk patients who

ould gain survival benefits from IC while preventing overtreatment of

hose at low risk. 

Nomograms have been widely studied for including various prog-

ostic determinants and potentially providing improved accuracy in

ndividualized survival estimation and treatment selection. 6–8 Many

omogram models have been developed based on the traditional Cox

egression method that hypothesizes linear relationships between

ovariates. However, this approach might hinder capturing intricate

onlinear associations between features and outcomes. In contrast,
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achine learning (ML) algorithms have demonstrated remarkable

apabilities in analyzing complex and diverse datasets, and their

edical application has shown superior performance to conventional

isk prediction scoring systems. 9–11 

Precise tumor mapping and T and N staging can be made using infor-

ation obtained from multiplanar magnetic resonance imaging (MRI).

revious studies have shown that in addition to the tumor’s primary

nvasion location, size, position, and lymph node (LN) laterality, in-

luded in the American Joint Committee on Cancer (AJCC) staging sys-

em as tumor load prognostic factors, other variables, such as tumor

nd nodal volumes, size, and number, were also closely associated with

PC prognosis. 12–15 It was reported that metastatic LN spread distance

SD) directly reveals the possible microscopic spread pathways to the

Ns and accurately quantifies the potential diffused metastatic capac-

ty, both closely associated with NPC prognosis. 16 However, few studies

ave investigated the role of SD in a comprehensive survival model. 

This research aimed to create and compare a nomogram and two

L models (the interpretable eXtreme Gradient Boosting [XGBoost] risk

rediction model and DeepHit time-to-event neural network) for their

redicted overall survival (OS) in patients with LA-NPC using their MRI-

erived tumor load profiles. We used the best model’s predictions to

ivide the patients into low- and high-risk groups and compared their

urvival outcomes following IC + CCRT or CCRT, aiming to determine

hich patients were more likely to benefit from IC + CCRT. 

. Materials and methods 

.1. Study design and participants 

This study included 1 221 patients consecutively treated in our hos-

ital between January 2010 and December 2017. The inclusion criteria

ere: (i) histologically confirmed nonmetastatic NPC of WHO types II

nd III; (ii) stage III-IVA disease; (iii) completed baseline nasopharynx-

eck MRI scans. Supplementary Fig. 1 presents a depiction of the patient

election process. The patients were reevaluated and staged following

he 8th AJCC staging system. The patients were assigned to the train-

ng (those treated during 2010–2015, n = 813) or the validation (those

reated in 2016–2017, n = 408) cohort. 

.2. Imaging protocols 

CT (Philips Brilliance) and MRI (GE Discovery) scans were performed

uring pre-radiation simulation. All of the patients were in supine posi-

ion with the thermoplastic mask immobilization at the head, neck, and

houlder. The scans were captured in 3-mm slices from the head to 2 cm

elow the sternoclavicular joint. 

.3. Baseline clinical and tumor burden characteristics 

Fifteen sociodemographic and baseline characteristics were evalu-

ted, including age, sex, Karnofsky score (KPS), alcohol consumption,

moking, AJCC 8th T and N stages, clinical stage, plasma Epstein-

arr virus (EBV) DNA copy number, lactate dehydrogenase (LDH),

emoglobin (Hb), albumin (ALB), C-reactive protein (CRP), neutrophilic

ranulocytes (NC), and lymphocytes (LC). The study also assessed seven

umor burden-related factors, including nasopharynx tumor volume

Vp), regional LN volume (Vln), extranodal extension (ENE), central

odal necrosis (CNN) status, spread distance (SD) from the atlantoaxial

pine lateral process, maximum diameter (MD), and positive LN count.

he diagnostic criteria for positive LN followed a previously reported

onsensus. 17 Detailed information on tumor burden variable collection

s presented in Supplementary Methods. 

.4. Treatment, follow-up, and study endpoint 

Intensity-modulated radiation therapy (IMRT)-based simultaneous

ntegrated boost was administered to all patients. The radiotherapy and
296 
hemotherapy regimens were previously described. 18 The patients re-

eived IMRT, CCRT, or CCRT + IC. Concomitant with radiation therapy,

he patients underwent 2–3 chemotherapy cycles of 100 mg/m2 cisplatin

every three weeks, on D1, 22, 43) and 40 mg/m2 cisplatin weekly, with

r without 2–3 IC cycles of gemcitabine 1.0 g/m2 and D1 and D8 + cis-

latin 80 mg/m2 on D1. 

The regular follow-up visits included at least four at 3-month in-

ervals during the first couple of years, twice a year during the subse-

uent two years, and once a year after that. Evaluations included com-

lete physical examination, fiberoptic nasopharyngoscopy, MRI of the

asopharynx and neck, chest X-ray/CT, and abdomen sonography/CT

ith or without bone scans. Other additional investigations (e.g., FDG

ET/CT) would also be scheduled if clinically necessary. OS, measured

s the time from treatment initiation to all-cause death or last follow-up,

as the study’s primary endpoint. 

.5. Machine learning model building workflow 

The DeepHit model’s advantage is that it combines a recurrent neu-

al network and a multilayer perceptron to learn time-dependent and

onlinear relationships between covariates and events. 19 The recurrent

eural network processes the observed sequence of time-dependent co-

ariates, while the multilayer perceptron extracts the static covariate

eatures. The recurrent neural network and multilayer perceptron out-

uts are linked and fed into a softmax layer to obtain the probabilities of

ompeting events. Multilayer perceptron was developed using pyTorch

nd pyCox frameworks (Python) to construct the DeepHit neural net-

ork. The DeepHit architecture is shown in Supplementary Fig. 2. Sup-

lementary Table 1 shows the hyperparameters of the proposed Deep-

it model. Comprehensive details on establishing the DeepHit model

re provided in the Supplementary Methods. 

XGBoost has demonstrated exceptional performance in numerous

redictive works and recently found applications in medical research. 11 , 

0 , 21 It produces a sequence of tree models constructed iteratively, each

uilt upon the previous one. The desired outcome of the XGBoost sur-

ival version includes the OS rate and the survival time. We combined a

recise and intricate ML model with interpretable explanations to create

 survival model based on the tumor burden and clinical factors. Sup-

lementary Table 2 presents the XGBoost model’s hyperparameters af-

er performing 5-fold cross-validation calibration. Detailed information

n establishing the XGBoost model is presented in the Supplementary

ethods. Shapley additive interpretation (SHAP) was used to interpret

he prediction results of the ML models and the intricate nonlinear re-

ationship between features and overall mortality. Two examples were

sed to explain the XGBoost predictions. 

Evaluations were made to compare the ML models with the nomo-

ram. We used the Harrell concordance index (C-index) and the area

he under the receiver operating characteristic curve (AUC) to compare

he performance of the three models. 

The X-tile method calculated the optimal cutoff values based on the

est-performing model’s predictions, splitting the study population into

ow- and high-risk cohorts. The IC therapeutic efficacy was evaluated in

oth cohorts. 

.6. Statistical analysis 

Survival estimates for nomogram model development were calcu-

ated using the Kaplan-Meier method and compared using the log-rank

est. We identified factors significantly associated with the OS probabil-

ty and calculated the hazard ratios (HRs) using univariate and multi-

ariable analyses (MVAs) and the Cox proportional hazards regression.

 nomogram was created with the rms package in R to calculate indi-

idual OS probability based on the MVA results. 

We used Python (version 3.4.3) for the ML methods. Other statistical

nalyses were performed using IBM SPSS Statistics for Macintosh, Ver-

ion 26.0, and R (version 3.5.2). Two-sided statistical significance was

et at P < 0.05. 
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Fig. 1. The study flow diagram. AUC, area under the curve; CNN, central nodal necrosis; ENE, extranodal extension; LA-NPC, locally advanced nasopharyngeal 

carcinoma; MD, maximum diameter; MRI, magnetic resonance imaging; NPV, negative predictive value; NRI, net reclassification index; OS, overall survival; PPV, 

positive predictive value; Vp, volume of the primary tumor; XGBoost, eXtreme Gradient Boosting. 
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. Results 

.1. General characteristics 

The patients in the training and validation sets had similar gen-

ral characteristics (Supplementary Table 3). Fig. 1 presents the study

utline. The participants’ median age was 48 (18–86) years, and the

ale-to-female ratio was 3:1. Of the patients, 679 (55.6%) harbored

JCC III tumors, and 542 (44.4%) had AJCC IVA tumors. Over half

f the patients received CCRT (742, 60.8%), 311 patients (25.5%)
297 
eceived IMRT alone, 150 patients (12.3%) received IC + CCRT, and

8 (2.3%) received IC + IMRT. The 5-year OS was 78.4% in the en-

ire cohort, 79.2% in the training set, and 76.3% in the validation

et. 

.2. Construction and validation of the nomogram 

Using the OS of the training set as the endpoint, the X-tile identified

he following optimal cutoffs in the training cohort: 1 250 for EBV-DNA

opies, 103.7 mL for Vp, 13.7 mL for Vln, 7 for nodal number, 7.0 cm
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Fig. 2. A nomogram based on the training set. (A) and calibration plots based on the training (B) and validation (C) sets. AJCC, American Joint Committee on 

Cancer; CNN, central nodal necrosis; EBV, Epstein-Barr virus; OS, overall survival; SD, spread distance; Vp, primary tumor volume. 
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or SD, 3.0 cm for MD, 158 U/L for LDH, 47.1 g/L for ALB, 162 g/L for

b, 0.01 mg/dL for CRP, 1.5 × 109 /L for LC, and 3.9 × 109 /L for NC. 

Univariable analysis indicated that age, KPS, alcohol drinking, smok-

ng, AJCC 8th T and N stages, clinical stage, EBV-DNA copies, Vp, nodal

umber, ENE, CNN status, SD, LDH, ALB, Hb, LC, and NC exhibited

ignificant associations with OS. MVA demonstrated that age, clinical

tage, EBV-DNA copy number, primary tumor volume, CNN, and SD

ere independent factors associated with OS ( Table 1 ). A nomogram

as developed using all the independent prognostic factors for OS iden-

ified by MVA based on the training set. The 1-, 3-, and 5- year OS rates

redicted by the nomogram are presented in Fig. 2 A. The OS nomo-

ram’s C-index was 0.730 (95% CI, 0.713–0.747) for the training set

nd 0.705 (95% CI, 0.683–0.727) for the validation set. The calibration

urves for the nomogram exhibited good agreement between the ob-

erved and predicted probabilities for 1-, 3-, and 5- year OS in the train-

ng and validation sets, closely following the 45° diagonal line ( Figs. 2 B

nd C). 

.3. Construction and validation of the DeepHit model 

The C-index of the DeepHit-based survival models was 0.811 (95%

I, 0.808–0.814) for the training set and 0.767 (95% CI, 0.763–0.771)

or the validation set, respectively, resulting in respective 5-year AUCs

f 0.845 (95% CI, 0.842–0.848) and 0.776 (95% CI, 0.772–0.780), re-

pectively. The AUCs for the two cohorts at the three time intervals are

resented in Supplementary Table 4. 

.4. Construction and validation of an interpretable XGBoost model 

The XGBoost survival model’s C-index was 0.849 (95% CI, 0.843–

.855) for the training set and 0.768 (95% CI, 0.761–0.775) for the val-

dation set. The model performance resulted in respective 5-year AUCs

f 0.881 (95% CI, 0.877–0.885) and 0.760 (95% CI, 0.749–0.771). The
298 
UCs for the two cohorts at the three time intervals are presented in Sup-

lementary Table 5. The 20 most influential features, those showing the

ighest “gain ” and used in the XGBoost prediction model, are depicted

n Fig. 3 A and included Vp, CNN status, and SD (tumor burden-related)

mong the top five parameters. Age and EBV-DNA copy number also

layed important predictive roles. 

Two explicit examples are shown in Fig. 3 B and C to further illustrate

his model. The figures explain how the patients were assigned a pre-

icted 5-year overall mortality risk given the status of the 22 variables.

or example, the XGBoost survival model predicted a relative 5-year

ortality risk of 0.266 (base value: –0.711) for the high-risk patient in

ig. 3 C, while it predicted a mortality risk of –1.752 for the low-risk

atient ( Fig. 3 B). The main factors responsible for the high risk in the

rst patient were Vp of 168.6 mL, age of 27, 6887 EBV-DNA copies, SD

f 11.0 cm, LDH of 204.6 U/L, stage of IVA, and regional LN volume of

9.8 mL. The predicted overall mortality risk in the other patient was

ow because the patient had N1 stage, no LNs with CNN, and the LDH

evel was 168.10 U/L. 

The SHAP method provided an intuitive explanation for the nonlin-

ar impact of features on OS, as shown in Fig. 4 A-F. The overall mortality

isk increased with increasing Vp ( Fig. 4 A). The curve showed that the

ortality risk increased with the increased number of EBV-DNA copies

 Fig. 4 C). An SD below 7 cm was relatively safe for patients with NPC.

he risk started to grow rapidly above that distance ( Fig. 4 D). The risk

ncreased linearly with the nodal number until it reached 30 ( Fig. 4 E).

atients with higher LDH concentrations had a significantly higher risk

f mortality ( Fig. 4 F). 

.5. Prediction performance comparison between the models 

As depicted in Table 2 , the XGBoost, DeepHit, and nomogram mod-

ls differed significantly in their training and validation set C-indices

0.849 and 0.768, 0.811 and 0.767, and 0.730 and 0.705, respectively;
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Table 1 

Univariable and multivariable analysis on OS in Training Cohort (n = 813) 

Characteristics 

Univariable Multivariable 

HR 95% CI P value HR 95% CI P value 

Age, years 

< 48 Ref Ref 

≥ 48 1.57 1.26–1.96 < 0.001 1.89 1.42–2.52 < 0.001 

Sex 

Male Ref 

Female 0.83 0.64–1.08 0.159 

KPS 

90 Ref Ref 

80 0.66 0.33–1.29 0.224 0.82 0.41–1.68 0.594 

70 0.49 0.25–0.98 0.044 0.78 0.37–1.64 0.519 

Smoke 

No Ref Ref 

Yes 0.79 0.63–0.98 0.032 1.00 0.72–1.37 0.985 

Drink 

No Ref Ref 

Yes 1.75 1.32–2.32 < 0.001 1.12 0.75–1.68 0.589 

AJCC 8th T stage 1.88 1.60–2.21 < 0.001 

T1 Ref 

T2 1.19 0.51–2.74 0.691 0.80 0.34–1.88 0.605 

T3 1.06 0.53–2.13 0.868 1.03 0.51–2.10 0.931 

T4 1.49 1.49–5.79 0.002 0.94 0.32–2.78 0.905 

AJCC 8th N stage 

N0 Ref 

N1 0.95 0.58–1.56 0.949 0.90 0.54–1.50 0.677 

N2 1.14 0.72–1.79 0.684 1.02 0.61–1.69 0.950 

N3 1.73 1.07–1.39 0.043 0.66 0.32–1.34 0.246 

AJCC 8th clinical stage 

III Ref Ref 

IV 1.82 1.62–2.05 < 0.001 2.98 2.16–4.11 < 0.001 

EBV-DNA copies 

< 1 250 Ref Ref 

≥ 1 250 1.52 1.21–1.91 < 0.001 1.41 1.05–1.88 0.021 

Vp, mL 

< 103.7 Ref Ref 

≥ 103.7 2.75 2.14–3.52 < 0.001 1.52 1.08–2.14 0.016 

Vln, mL / / / 

< 13.7 Ref 

≥ 13.7 1.25 1.00–1.56 0.051 

Nodal number 

< 7 Ref Ref 

≥ 7 1.24 1.08–1.42 0.002 0.86 0.61–1.22 0.402 

ENE status 

No Ref Ref 

Yes 1.37 1.10–1.71 0.006 1.02 0.68–1.52 0.924 

CNN status 

No Ref Ref 

Yes 1.68 1.35–2.10 < 0.001 1.79 1.35–2.37 < 0.001 

SD (cm) 

< 7.0 Ref Ref 

≥ 7.0 1.54 1.10–2.16 0.011 1.55 1.00–2.39 0.048 

MD, cm 

< 3.0 Ref Ref 

≥ 3.0 1.26 1.01–1.57 0.042 1.06 0.75–1.50 0.747 

LDH, U/L 

< 158 Ref Ref 

≥ 158 1.63 1.25–2.11 < 0.001 1.36 0.98–1.89 0.065 

ALB, g/L 

< 47.1 Ref Ref 

≥ 47.1 0.64 0.44–0.93 0.018 0.93 0.57–1.52 0.766 

Hb, g/L 

< 162 Ref Ref 

≥ 162 0.62 0.40–0.98 0.040 0.79 0.45–1.37 0.401 

CRP, mg/dl 

< 0.01 Ref Ref 

≥ 0.01 0.85 0.67–1.08 0.183 0.80 0.58 –1.09 0.158 

LC, ×10ˆ9/L 

< 1.5 Ref Ref 

≥ 1.5 1.41 1.11–1.79 0.005 1.22 0.85–1.75 0.292 

NC, ×10ˆ9/L 

< 3.9 Ref Ref 

≥ 3.9 1.45 1.1–1.91 0.008 1.14 0.78–1.68 0.498 

Abbreviations: AJCC, American Joint Committee on Cancer; ALB, albumin; CRP, C-reactive protein; CNN, central nodal necrosis; ENE, extranodal extension; Hb, 

hemoglobin; HR, hazard ratio; KPS, Karnofsky score; LC, lymphocyte; LDH, lactate dehydrogenase, MD, maximum diameter; NC, neutrophilic granulocytes; OS, 

overall survival; Ref, reference; SD, spread distances; Vp, volume of the primary tumor; Vln, volume of the regional lymph nodes. 

299 
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Fig. 3. Interpretation of XGBoost model. (A) The 20 features with the highest “gain ” used for prediction by the XGBoost model. (B, C) Explained risk for two explicit 

examples. Blue bars: low-risk variables; red bars: high-risk variables. The contributing variables are arranged along the horizontal line and sorted by the absolute 

value of their impact. The output value is the predicted relative risk of overall mortality. The base value is the expected value in the XGBoost model based on the 

training dataset. ALB, albumin; CNN, central nodal necrosis; CRP, C-reactive protein; EBV, Epstein-Barr virus; ENE, extranodal extension; Hb, hemoglobin; KPS, 

Karnofsky score; LC, lymphocyte; LDH, lactate dehydrogenase; MD, maximum diameter; NC, neutrophilic granulocytes; SD, spread distance; Vln, regional lymph 

nodes volume; Vp, primary tumor volume; XGBoost, eXtreme Gradient Boosting. 

Table 2 

Overall survival prediction performance in the training and validation cohort of traditional nomogram versus machine learning models. 

Nomogram DeepHit XGBoost 

Training 

( n = 813) 

Validation 

( n = 408) 

Training 

( n = 813) 

Validation 

( n = 408) 

Training 

( n = 813) 

Validation 

( n = 408) 

C-index (95% CI) 0.730 (0.713–0.747) 0.705 (0.683–0.727) 0.811 (0.808–0.814) 0.767 (0.763–0.771) 0.849 (0.843–0.855) 0.768 (0.761–0.775) 

AUC at 5y (95% CI) 0.764 (0.760–0.768) 0.729 (0.725–0.733) 0.845 (0.842–0.848) 0.776 (0.772–0.780) 0.881 (0.877–0.885) 0.760 (0.749–0.771) 

Sensitivity at 5y 0.745 0.755 0.892 0.787 0.774 0.692 

Specificity at 5y 0.672 0.634 0.684 0.624 0.817 0.715 

PPV at 5y 0.352 0.382 0.403 0.385 0.588 0.503 

NPV at 5y 0.917 0.896 0.964 0.907 0.915 0.848 

Absolute net 

reclassification index 

at 5y 

base base 0.038 0.000 0.075 0.020 

Abbreviations: AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; XGBoost, Xtreme Gradient 

Boosting; y, years. 
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omogram vs. XGBoost or DeepHit, both P < 0.001). Similarly, the AUCs

f the XGBoost and DeepHit models for predicting the 5-year OS in both

ohorts were significantly larger than the respective AUCs of the nomo-

ram model (0.881 and 0.760, 0.845 and 0.776, and 0.764 and 0.729;

able 2). Furthermore, when using the nomogram model as the baseline,

oth ML models showed positive net reclassification indices, indicating

hat they correctly classified more patients to the corresponding risk

ategory than the nomogram. 
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We divided the training set’s patients into low- and high-risk groups

ased on the XGBoost model-generated predictions, using a prediction

utoff value of 0.39 identified by X-tile. Kaplan-Meier analysis revealed

hat the respective 5-year OS of the two subgroups in the training (86.8%

nd 54.2%, HR = 3.874 [95% CI, 2.940-5.103]), P < 0.001; Fig. 5 A) and

alidation (83.8% and 53.5%, HR = 3.730 [95% CI, 2.624-5.300], P <

.001; Fig. 5B) sets differed significantly. 
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Fig. 4. (A-F) Effect of various variables on the predicted overall survival in the eXtreme Gradient Boosting model. Each point represents a SHAP value of an individual 

patient (Y-axis) in association with the variables on the X-axis. SHAP values above zero indicate a positive association with all-cause mortality, while values below 

zero indicate a negative association (i.e., the higher the SHAP value, the higher the risk of mortality). The gray histograms in each plot show the distribution of 

values for the variables in the training set. EBV, Epstein-Barr virus; LDH, lactate dehydrogenase; SD, spread distances; SHAP, Shapley additive interpretation; Vp, 

primary tumor volume. 
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.6. XGBoost model-based risk stratification and adaptive usage of 

nduction chemotherapy 

We analyzed the IC clinical efficacy in the low- and high-risk groups

erived from the XGBoost model. Compared with CCRT, IC + CCRT pre-

ented no OS benefit to the low-risk group ( Fig. 6 A,B) but was beneficial

o the high-risk group (training set: HR = 0.526 [95% CI, 0.324–0.855],

 = 0.008; validation set: HR = 0.526 [95% CI, 0.292–0.949], P = 0.029;

igs. 6 C,D). 
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. Discussion 

It is crucial to accurately predict the prognosis of patients with NPC

s it can help make treatment decisions. This large population-based

tudy used multidimensional tumor burden feature quantifications to

emonstrate remarkably accurate predictive ML algorithms, greatly out-

erforming the Cox regression-based nomogram model. These results

ave the way for personal risk prediction using multidimensional data.

f greater significance, the ML-based prognostic stratification helped

dentify patients for whom IC was most likely unnecessary. Manage-

ent of these individuals can be appropriately tailored considering the

reatment-related risks and benefits. 
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Fig. 5. Survival curves of the low- and high-risk subgroups defined based on the eXtreme Gradient Boosting prediction results in the training (A) and validation (B) 

cohorts. CI, confidence interval; HR, hazard ratio; OS, overall survival. 
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M  
MRI-based tumor burden is a crucial determinant influencing prog-

osis and treatment decisions. The AJCC N classification primarily re-

ies on the location, size, and cervical LN laterality. However, a grow-

ng recent trend advocates reporting additional variables, including the

ositive LN count, ENE, and CNN status, to provide a more comprehen-

ive assessment of the nodal burden profile. 22–26 Recent studies have

hown that the metastatic LN quantity was a significant independent

urvival predictor in patients with NPC. This parameter is assumed to

etter represent the aggregate effect of the involved LNs than N stag-

ng following the AJCC system. 15 Furthermore, quantitative assessment

f metastatic LN regions in NPC was shown to facilitate a prognostic

ssessment superior to that based on the N classification. 27 Moreover,

igh-grade ENE in patients with NPC has been identified as a valuable

redictor of those likely to develop distant metastasis. 23 , 28 , 29 Another

ritical LN feature in patients with NPC was CNN, which proved to be an

ndependent poor prognostic factor. 22 , 26 The present research focused

n general nodal features while incorporating a novel and encourag-

ng predictor, the SD. 16 We used MVA to show that the independent

ariables Vp, CNN status, and SD outperformed the conventional AJCC

 staging. Furthermore, three of the top five features identified in the

GBoost method were tumor burden-related features. This finding sug-

ested that tumor burden parameters could offer valuable and detailed

nformation for outcome prediction. Our results demonstrated that se-

ected quantitative primary tumor and regional LNs features more accu-

ately reflect the disease burden and led to improved risk stratification

han the traditional approach. 

Using the MRI-detected tumor burden in traditional risk prediction

odels, with its multidimensional and complex interactions, is lim-

ted as it assumes either linearity or proportionality. Although tradi-

ional survival models such as proportional Cox regression are often

mployed, 30–34 these oversimplified models might lead to insufficient

rediction accuracy and mislead subsequent decisions because of their

eavy reliance on the assumption of linear forms. In contrast, the ML ap-

roach allows a flexible mathematical fitting of the data to accurately

escribe the biological reality, leading to more accurate outcome pre-

ictions. Furthermore, ML algorithms can handle many continuous or

ategorical variables without the need for scaling or modifications. 35 , 36 

herefore, we employed the advanced DeepHit and XGBoost techniques

o construct predicting models. 
302 
The net reclassification index is a statistical indicator that calculates

he difference in the proportion of correctly classified as high- or low-

isk individuals by a new model relative to an old model. 37 , 38 Therefore,

t is typically used to assess the degree of improvement in the classifi-

ation accuracy of a new predictive model relative to an old one. The

ositive net reclassification indices of the two ML models in this study

ndicated that they correctly classified more individuals into their corre-

ponding risk categories than the nomogram model did. Moreover, the

wo ML models achieved better C-indices and AUCs than the conven-

ional nomogram method. 

The increasing feasibility of multidimensional quantification of prog-

ostic markers at the individual level highlights the potential clinical

tility of ML techniques. Nevertheless, these techniques are frequently

riticized for being "black boxes" that produce opaque and uninter-

retable predictions, limiting their widespread use. Therefore, we used

he SHAP method in this study to interpret the prediction results. Con-

idering the inherent limitations in interpretability associated with ML

odels, we demonstrated how the XGBoost prediction improved the

nderstandability of the intricate nonlinear relations between features

nd overall mortality. Our tumor burden-related results align with pre-

ious research, demonstrating that larger primary tumors were associ-

ted with relapse and metastasis. This association could be attributed

o factors such as poor tumor blood and oxygen supply that arise from

he aggressive nature of cancer and could lead to radioresistance. 39 Fur-

hermore, we assessed the correlation between the numbers of EBV-DNA

opies and LNs, among others, and overall mortality. The overall mor-

ality risk was linearly correlated to tumor burden factors but remained

onstant once a certain value was reached. Visualization of the ML sys-

em’s prediction showed that the association between the factors and

utcomes was nonlinear. The ML models outperformed the Cox method

ecause they can capture such non-linear relationships. 

The ML-driven risk classification for overall mortality could addi-

ionally function as a resource for making treatment decisions. The

ignificance of chemotherapy in improving disease control was under-

cored by the failure pattern observed in patients with NPC. 3 , 4 However,

t is still unclear if all patients should receive IC. Several studies exam-

ned the significance of nodal variables in determining the potential ad-

antages of IC. 26 , 40 The nomogram Chen et al. reported incorporated

RI-derived tumor burden characteristics and CNN, demonstrating a
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Fig. 6. Impact of IC + CCRT in the Xtreme Gradient Boosting model-based low-risk (A, B) and high-risk subgroups (C, D) in the training (A, C) and validation (B, D) 

cohorts. CCRT, concurrent chemoradiotherapy; CI, confidence interval; HR, hazard ratio; IC, induction chemotherapy; OS, overall survival. 
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onsistent ability to identify individuals likely to benefit from IC. 26 A

ecent report suggested that patients at AJCC stage II-IV with multiple

NNs could benefit from IC. 40 

We used deep ML algorithms to establish ML-based risk stratifica-

ion for OS and used a cutoff value based on its predictions to divide

he research participants into two risk groups. This risk classification

uccessfully demonstrated the distinct clinical effectiveness of IC + CCRT

n these risk groups. It was revealed that IC positively impacted par-

icipants in the training and validation sets in the high-risk category,

educing the overall mortality risk by around 60%. Conversely, we ob-

erved no beneficial effect in the low-risk group. The findings indicated

hat ML-based overall mortality risk stratification was valid and could

e used by clinicians to decide if to use IC + CCRT or CCRT in patients

ith NPC. 
t  

303 
Certain limitations of this research should be discussed. As a retro-

pective study, possible selection biases may have influenced its results.

herefore, a multicenter prospective study should be performed to val-

date our findings. Furthermore, we used single-center data, suggesting

hat our ML model-derived prognostic and predictive results should be

alidated independently using a large external cohort. 

. Conclusions 

This study used a large population to create and validate ML-based

odels for risk stratification. These models exhibited excellent perfor-

ances and yielded significantly better OS predictions than a nomogram

n patients with LA-NPC. Moreover, the ML model-derived stratifica-

ion successfully identified patients likely to gain survival benefits from
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CRT + IC. Hence, the ML-based risk stratification models could benefit

atients’ consultations and clinical evaluations. Nevertheless, our find-

ngs should be externally validated to expand their clinical usefulness. 
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