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Ongoing electroencephalography (EEG) signals are recorded as a mixture of

stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge

to current data analyzing techniques, especially when different groups of participants

are expected to have common or highly correlated brain activities and some individual

dynamics. In this study, we proposed a data-driven shared and unshared feature

extraction framework based on nonnegative and coupled tensor factorization, which

aims to conduct group-level analysis for the EEG signals from major depression

disorder (MDD) patients and healthy controls (HC) when freely listening to music.

Constrained tensor factorization not only preserves the multilinear structure of the data,

but also considers the common and individual components between the data. The

proposed framework, combinedwithmusic information retrieval, correlation analysis, and

hierarchical clustering, facilitated the simultaneous extraction of shared and unshared

spatio-temporal-spectral feature patterns between/in MDD and HC groups. Finally, we

obtained two shared feature patterns between MDD and HC groups, and obtained totally

three individual feature patterns from HC and MDD groups. The results showed that the

MDD and HC groups triggered similar brain dynamics when listening to music, but at

the same time, MDD patients also brought some changes in brain oscillatory network

characteristics along with music perception. These changes may provide some basis for

the clinical diagnosis and the treatment of MDD patients.

Keywords: CANDECOMP/PARAFAC, constrained tensor factorization, EEG,major depressive disorder, naturalistic

music stimuli
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1. INTRODUCTION

Major depressive disorder (MDD) is a globally prevalent

mental disorder with multifactorial causes (Belmaker and
Agam, 2008; Gotlib and Joormann, 2010; Jia et al., 2010).
Over the past decades, the neural mechanisms of MDD
have been widely explored using non-invasive neuroimaging

techniques, like functional magnetic resonance imaging (fMRI),
electroencephalogram (EEG), and magnetoencephalography
(Gotlib and Hamilton, 2008; Kaiser et al., 2015). Most previous
studies of MDD are under the conditions of resting states or
well-controlled stimuli. In recent years, naturalistic paradigms

have been challenging conventional paradigms because they
can approximate real-life experiences using naturalistic and
continuous stimuli, like music listening and movie watching
(Hasson et al., 2004; Sonkusare et al., 2019). Naturalistic
paradigms have shown a clinical potential in mental disorders,
such as MDD, autism-spectrum disorder, paranoia, and so on
(Sonkusare et al., 2019). Music perception can induce emotional
arousal for affective processing, and music therapy has shown the
feasibility in MDD treatment (Michael et al., 2005; Maratos et al.,
2008). However, few studies have correlated the music perceptive
arousal with neural mechanisms in MDD, and the studies mainly
explored the networks of brain connectivity at the source space
(Liu et al., 2020, 2021; Zhu et al., 2021). Furthermore, the current
findings are often inconsistent or even contradictory due to the
different methodological approaches and involved participants,
unified neural mechanisms of MDD (in music perception) can
not be concluded (Zhi et al., 2018). Therefore, it is still urgent and
important to develop novel experimental designs and advanced
computational methodologies to better investigate the neural
biomarkers of MDD. In our study, we aim to investigate the
biomarkers in MDD during music listening using EEG data at
the sensor level.

Due to the high temporal resolution, electroencephalography
(EEG) signals contain rich spectral contents. During continuous
cognition, the spatial reconfiguration will be dynamically
sustained along time, and the spatial signatures are modulated
by oscillations (Buzsaki, 2006; Yan et al., 2020; Sadaghiani
et al., 2021). Apparently, the EEG signals can be represented
by the high-order multi-way array, i.e., tensor, which can fully
describe the inherent interaction relationships among multiple
dimensions in the data (Kolda and Bader, 2009; Cichocki
et al., 2015; Cong et al., 2015). Recently, some studies have
investigated the electrophysiological signatures characterized
by spatio-temporal-spectral modes of covariation from the
tensor representation of EEG data via Canonical Polyadic (CP)
decomposition (Mørup et al., 2007; Cong et al., 2012, 2015; Zhu
et al., 2020). These studies are based on the assumption of spatial-
, spectral-, temporal consistency, which means that each subject
or group shares the same frequency-specific brain topography or
networks with the same temporal dynamics (Cong et al., 2012,
2015). However, except for common features, individual features
should also be considered for subject or group differences (Wang
et al., 2020; Liu et al., 2021). Therefore, the incomplete spatial,
temporal and spectral consistency should be assumed to better
fit the data characteristics and practical applications. Meanwhile,

numerous versions of independent component analysis (ICA)-
based methods and their group analysis variants have also been
popularly adopted to analyse EEG signals (Cong et al., 2013;
Labounek et al., 2018; Zhu et al., 2021). For example, Zhu
et al. performed group-level spatial Fourier ICA to explore the
frequency-specific brain networks of musical feature processing,
and found the alpha lateral component engaged in music
perception in MDD (Zhu et al., 2021). These two-way methods
simply stack or concatenate the extra modes of EEG signals into
two-way matrix for processing, but lose the potential internal
relationships amongmodes and destroy the inherent multi-linear
structure of the data (Cong et al., 2015). Considering the high-
dimensional structure of the data and the incomplete consistency
of different modes, we applied a constrained tensor factorization
model by imposing nonnegative and coupled constraints in the
present study, by which we can access to the shared and unshared
features simultaneously. Liu et al. only considered the coupling
structure in spectral and connectivity modes and explored the
connectivity alteration in EEG signals during music perception
in MDD using tensor decomposition-based methods (Liu et al.,
2021). Therefore, different from the previous work (Liu et al.,
2020, 2021; Zhu et al., 2021), we further consider the coupling
characteristics in the temporal modes between the MDD and
healthy controls (HC) data at the sensor-level, i.e., we assume
that some of the spatio-temporal-spectral patterns are the same
between the two group data while the rest are different.

In this study, for the EEG signals of MDD and HC
groups during music listening, we investigated spatio-temporal-
spectral modes of covariation using a coupled nonnegative
tensor factorization framework, aiming to extract the shared
and unshared features between/in the two groups. Specifically,
we first recorded the EEG signals during freely listening
to a piece of 512-s tango music. Using the time-frequency
representation, we then constructed two fourth-order tensors
of time, frequency, space and participant for the two groups.
Considering the incomplete consistency in spatio-temporal-
spectral modes, we applied the triple-coupled nonnegative tensor
factorizationmodel optimized by alternating directionmethod of
multipliers (ADMM, Boyd et al., 2011) algorithm, which enables
the simultaneous decomposition of shared components and
unshared components among tensors. Meanwhile, we extracted
five long-term musical features from the musical stimulus using
musical information retrieval in order to build the connections
with the extracted components from EEG signals. Next,
correlation analysis was performed between temporal courses
of musical features and the extracted temporal components
from EEG signals, and we obtained the spatio-temporal-spectral
brain dynamics of interest that were believed to be activated by
music modulation. Following this, hierarchical clustering was
conducted on the shared and unshared spatial components of
the results from multiple runs. Finally, we obtained two clusters
of feature patterns shared by MDD and HC groups, as well
as one cluster from the HC group and two clusters from the
MDD group, which may contribute to the biomarkers for the
clinical diagnosis and treatment for MDD patients. The proposed
framework based on the constrained tensor factorization is
completely data-driven and provides a solution to extract the

Frontiers in Human Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 799288

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Feature Extraction Using Tensor Factorization

TABLE 1 | Basic information of the participants in HC and MDD groups.

HC group MDD group HC vs. MDD

Mean ± SD Mean±SD p-value

Age (years) 38.4 ± 11.8 42.9 ± 11.0 > 0.05∗

Gender (F:M) 14:5 14:6 > 0.05∗∗

Education (years) 13.6 ± 3.8 12.8 ± 3.4 > 0.05∗

Duration (months) - 12.8 ± 8.5 -

HRSD 2.4 ± 1.3 23.3 ± 3.6 < 0.01∗

HAMA 2.4 ± 1.3 19.2 ± 3.0 < 0.01∗

MMSE 28.2 ± 0.9 28.1 ± 1.1 > 0.05∗

∗The p-value is calculated via t-test. ∗∗The p-value is calculated via chi-squared test.

Duration is the duration of illness.

HC, healthy controls; MDD, major depression disorder patients; F, Female; M, Male;

NRSD, Hamilton Rating Scale for Depression; HAMA, Hamilton Anxiety Rating Scale;

MMSE, Mini-Mental State Examination.

shared and unshared spatio-temporal-spectral features of EEG
signals from different groups.

2. MATERIALS AND METHODS

2.1. Data Description
2.1.1. Participants
In this study, we analyzed the data from 39 participants in
total, including nineteen healthy controls (HC) and 20 major
depression disorder (MDD) patients. No one was reported to
have hearing loss and formal training inmusic. Themental health
of each participant was evaluated and diagnosed by a clinical
expert using Hamilton Rating Scale for Depression (HRSD),
Hamilton Anxiety Rating Scale (HAMA) and Mini-Mental State
Examination (MMSE). The relative values of these indices as
well as age, gender, education, duration of illness for HC and
MDD groups are listed in Table 1. All participants signed the
informed consent forms approved by the ethics committee of
First Affiliated Hospital of Dalian Medical University and Dalian
University of Technology.

2.1.2. EEG data
A 512-second modern tango music “Adios Nonino” played by
Astor Piazzolla was adopted as the naturalistic stimulus in this
experiment. The participants were told to seat as still as possible
with eyes open and listen to the tango music. The ongoing EEG
data were recorded using the international 10–20 system-based
Neuroscan Quik-cap device of 64 electrodes with the sampling
frequency of 1,000 Hz. The recorded EEG data were preprocessed
off-line usingMATLAB software and EEGLAB toolbox (Delorme
and Makeig, 2004), down-sampled to 256 Hz, and filtered by
the high-pass and low-pass filters with 4 Hz and 30 Hz cut-off
frequencies. The components indicating eye movements artifacts
were rejected by independent component analysis (ICA). The
data were also visually checked to remove the obvious artifacts
brought by head movement, and then used for further analysis.

2.1.3. Musical Features
In this study, five long-termmusical features (including two tonal
and three rhythmic features) were extracted by a frame-by-frame

analysis method using MIR toolbox (Lartillot and Toiviainen,
2007). The duration of each frame was 3 s and the overlap ratio
between two frames was 66.7%, which was consistent with the
window settings in the time-frequency representation of EEG
data. Finally, in order to match the length of recorded EEG
data, we selected the first 500 samples for each time course
of these musical features with a 1 Hz sampling rate. For the
tonal features, Mode denotes the strength of major or minor
mode, and Key Clarity is the measure of the tonal clarity. For
the rhythmic features, Fluctuation Centroid is defined as the
geometric mean of the fluctuation spectrum, and it represents
the global repartition of rhythm periodicities within the range of
0∼10 Hz, indicating the average frequency of these periodicities.
Fluctuation entropy is the Shannon entropy of the fluctuation
spectrum, and it represents the global repartition of rhythm
periodicities. Pulse Clarity is regarded as an estimate of clarity of
the pulse. The details of musical features and extraction method
can be found in the previous studies (Alluri et al., 2012; Cong
et al., 2013).

2.2. Constrained Tensor Factorization
2.2.1. Tensor Construction
In order to comprehensively analyze the data from more aspects,
we first converted the data from the time domain to the time-
frequency domain. Specifically, we obtained the time-frequency
representation of the preprocessed EEG data via performing the
short-time Fourier transform (STFT) on the time series of each
channel for each participant. The Hamming windowwas adopted
as the window function, with the window length of 3 s and
66.7% overlap ratio between windows. The number of Fourier
points in each window was 1,280, which was five times of the
sampling rate. Finally, for the data of each channel, we obtained
the spectrograms with the size of 130 (frequency bins) × 500
(time samples). Therefore, for the HC group and MDD group,
the EEG data were reconstructed to two fourth-order tensors
with the dimensions of channel (64), frequency (130), time (500)
and participants (19 or 20), i.e., XHC ∈ R

64×130×500×19
+ and

XMDD ∈ R
64×130×500×20
+ .

2.2.2. Tensor Factorization
Tensors, also known as multi-way arrays, are the higher-order
generalizations of scalars, vectors and matrices. So far, the
two most commonly used models for tensor factorization are
the canonical polyadic [CP (Hitchcock, 1927), also known
as CANDECOMP/PARAFAC (Carroll and Chang, 1970;
Harshman, 1970)] model and the Tucker model (Tucker, 1966).
The CP model, as a special case of the Tucker model, has better
unique identifiability under mild conditions, and was adopted in
this study. Thus, the factorizations of the data XHC and XMDD

can be, respectively expressed, using a sum of fourth-order
rank-one tensors or a set of factor matrices, as

XHC ≈

RHC
∑

r = 1

a
(1)
r ◦ a(2)r ◦ a(3)r ◦ a(4)r = JA1,A2,A3,A4K (1)

and
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XMDD≈

RMDD
∑

r = 1

b
(1)
r ◦ b(2)r ◦ b(3)r ◦ b(4)r =JB1,B2,B3,B4K (2)

where RHC and RMDD are the tensor rank or the number of
components that will be extracted from XHC and XMDD. “◦”

denotes the vector outer product. Ai = [a
(i)
1 · · · a

(i)
RHC

] ∈ R
Ii×RHC
+

and Bi = [b
(i)
1 · · · b

(i)
RMDD

] ∈ R
Ji×RMDD
+ , i = 1, 2, 3, 4, correspond

to the factor matrices in the spatial, spectral, temporal and
participant modes, respectively.

2.2.3. Non-negative Coupled Tensor Factorization
Constrained tensor factorization can accurately extract and
explain the hidden components from the input data, by imposing
particular penalties/regularizations (e.g., nonnegativity, sparsity,
smoothness, coupling) on the corresponding factor matrices in
the factorization process. Consider the connections and inherent
characteristics of the data XHC and XMDD, we imposed the
nonnegative constraint in all of modes and the coupling structure
in spatial, spectral, temporal modes across the data during the
optimization. For the factor matrices Ai and Bi, i = 1 · · · 4,
we assume each one consists of two parts as Ai = [AC

i A
I
i ]

and Bi = [BC
i B

I
i ], where A

C
i = B

C
i ∈ R

Ii×Li
+ denotes Li

components are shared by the data, while AI
i ∈ R

Ii×(RHC−Li)
+ and

B
I
i ∈ R

Ii×(RMDD−Li)
+ correspond to the individual components in

each data. Li is the number of shared components among data
(L4 = 0). Thus, the shared and unshared components can be
simultaneously extracted via the formulated nonnegative coupled
tensor factorization (NCTF) model, in which the objective
function should be minimized as follows:

minmize L(Ai,Bi) = ‖XHC − JA1,A2,A3,A4K‖
2
F + ‖XMDD

− JB1,B2,B3,B4K‖
2
F (3)

subject to Ai ≥ 0,Bi ≥ 0 for i = 1 · · · 4

where ‖·‖F denotes the Frobenius norm.

2.2.4. Algorithm Optimization
Obviously, the minimization in Equation (3) is not convex but
in fact an NP-hard problem. Aiming for an easy-to-handle and
robust approximation, we propose to use the ADMM method
within the framework of block coordinate descent (BCD) to solve
the above optimization problem, which has been proven to be
very efficient in the regularized matrix and tensor factorizations
(Huang et al., 2016; Schenker et al., 2020). Specifically, BCD
framework can obtain a local solution of Equation (3) by
converting it into a set of subproblems, in which the factor
matrices A1&B1,A2&B2,A3&B3 and A4&B4 will be updated
alternatively one by one in each iteration, then each subproblem
can be solved using ADMM strategy. Taking the update of the
primal variable pair Ai and Bi, i = 1, · · · 4 as an example, the

problem in Equation (3) can be reformulated by introducing the
auxiliary variables Ãi and B̃i as follows:

minmize L(Ai, Ãi,Bi, B̃i) = ‖XHC − JA1,A2,A3,A4K‖
2
F (4)

+‖XMDD − JB1,B2,B3,B4K‖
2
F

subject to Ai = Ãi,Bi = B̃i, Ãi ≥ 0 B̃i ≥ 0.

The augmented Lagrangian function of Equation (4) is given as:

minmize L(Ai, Ãi,3Ai ,Bi, B̃i,3Bi )=‖XHC−JA1,A2,A3,A4K‖
2
F

+ ρi
∥

∥Ai − Ãi + 3i

∥

∥

2

F
+ ‖XMDD − JB1,B2,B3,B4K‖

2
F

+ σi
∥

∥Bi − B̃i + Ŵi

∥

∥

2

F

(5)

where 3i ∈ R
Ii×RHC
+ and Ŵi ∈ R

Ji×RMDD
+ are the Lagrangian

multipliers or dual variables, ρi and σi are the penalty parameters.
The solutions for Equation (5) can be calculated by successively
minimizing L with respect to Ai, Bi, Ãi, B̃i, 3i and Ŵi one at a
time while fixing the others until convergence. The update rules
of these variables can be seen in Equation (6), where FA = A4 ⊙

· · ·Ai+1⊙· · ·Ai−1⊙A1, and FB = B4⊙· · ·Bi+1⊙· · ·Bi−1⊙B1,

“⊙” is the Khatri-Rao product. XHC,i ∈ R
Ii×

∏4
k 6= i

+ and XMDD,i ∈

R
Ji×

∏4
k 6= i

+ mean the mode-i matricization of tensors XHC and
XMDD. (·)

C represents the first Li columns of thematrix and (·)I is
the remaining columns. Analogously, we can obtain the updating
solutions of other variables. It should be noted that the derivation
of the coupling parts AC

i = B
C
i , i = 1, 2, 3 should be refer to

the information from XHC and XMDD. The entire optimization
process is termed as NCTF-ADMM algorithm and summarized
in Algorithm 1. Moreover, in this study, two stopping criteria
were adopted in the algorithm optimization. (i) ‖RelErrnew −

RelErrold‖ < tol, it means that the relative error (RelErr) change
of data fittings between the adjacent iterations should be smaller
than tol (here we set tol = 10e − 8). RelErr is defined as

RelErr =

∥

∥

∥
XHC−X̃HC

∥

∥

∥

F

‖XHC‖F
+

∥

∥

∥
XMDD−X̃MDD

∥

∥

∥

F

‖XMDD‖F
, X̃HC and X̃MDD are

the recovered tensors. Meanwhile, the Fit value is defined as
Fit = 1 − RelErr

2 . (ii) The maximum number of iterations is no
more than 1,000.

2.3. Correlation Analysis
To discover the relationships between musical stimuli and the
EEG data, five musical features were first extracted from the
music stimuli. After performing NCTF-ADMM algorithm on
the HC and MDD tensor data, a correlation analysis method
was conducted between time courses of extracted temporal
components and time courses of musical features. We adopted
Pearson correlation to calculated the correlation efficient, and
applied the Monte Carlo method and permutation test to
determine the significant thresholds of the correlation and
correct for multiple comparisons (Alluri et al., 2012; Cong et al.,
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A
C
i = B

C
i =

[

XHC,iF
C
A+XMDD,iF

C
B−A

I
1

(

F
I
A

)T
F
C
A−B

I
1

(

F
I
B

)T
F
C
B − 3

C
i − Ŵ

C
i + ρiÃ

C
i + σiB̃

C
i

]

[

(

F
C
A

)T
F
C
A +

(

F
C
B

)T
F
C
B + (ρi + σi) I

]−1

A
I
i =

[

XHC,iF
I
A − A

C
i

(

F
I
A

)T
F
C
A − 3I

i + ρiÃ
I
1

] [

(

F
I
A

)T
F
I
A + ρiI

]−1

B
I
i =

[

XMDD,iF
I
B − B

C
i

(

B
I
A

)T
F
C
B − ŴI

i + σiB̃
I
i

] [

(

F
I
B

)T
F
I
B + σiI

]−1

Ãi = [Ai + 3i]+ , B̃i = [Bi + Ŵi]+ , 3i = 3i + Ai − Ãi, Ŵi = Ŵi + Bi − B̃i

(6)

Algorithm 1: NCTF-ADMM algorithm

Input: XHC, XMDD, RHC and RMDD

1 Initialization:

2 Ai, Bi, Ãi, B̃i, 3i, Ŵi and Li, i = 1 · · · 4
3 while stopping criterion is not satisfied do
4 for i = 1, · · · , 4 do
5 According to Equation (6)
6 Update primal variables: Ai and Bi;

7 Update auxiliary variables: Ãi and B̃i;
8 Update dual variables: 3i and Ŵi;

9 end

10 end

Output: Ai, Bi, i = 1, · · · , 4

2013; Wang et al., 2020). For the time course of each musical
feature, a threshold of correlation coefficient at a significant level
of p < 0.05 was calculated with the time courses of extracted
temporal components. Then those components whose temporal
components satisfied significant correlation were considered
to be related to musical stimuli, and will be of interest and
further analyzed.

2.4. Shared and Unshared Feature
Clustering
In order to guarantee the reliability of the results, we
independently performed the constrained tensor factorization
multiple times (in this study we set 50 times). After performing
correlation analysis for the multiple results, we adopted
clustering method to cluster the shared and unshared
spatial components, respectively. Meanwhile, we merged
the corresponding spectral component and counted the musical
feature distributions that were involved in the same cluster.
For stable clustering, we adopted hierarchical agglomerative
clustering algorithm, in which complete linkage was used to
calculate the furthest distance (here we used correlation) between
pairs of clusters and the pairs of clusters with the nearest distance
were merged.

3. RESULTS

The EEG data used in this study can be obtained from the
corresponding authors according to reasonable requirements,

and the code to reproduce the simulation in Section 3.1 is
available at https://github.com/xiulinwang/FrontierHN-NCTF-
ADMM.

The following experiments are done with the following
computer configurations; CPU: Intelr Xeon(R) E5-2680 v2 @
2.80 Hz × 40; Memory: 125.80 GiB; System: 64-bit ubuntu
16.04; Matlab R2014b.

3.1. Simulation Results
In this study, we first designed the simulation data to verify the
performance of the proposed constrained tensor factorization
method. We generated four kinds of predefined component
factors indicating spatial, spectral, temporal and participant
information, respectively, and then constructed two fourth-order
tensors representing the simulated HC and MDD data via the
outer product of corresponding vectors as follows:

X =

R
∑

r = 1

u
(1)
r u

(2)
r u

(3)
r u

(4)
r (7)

where u
(1)
r ∈ R

64×1
+ , u

(2)
r ∈ R

130×1
+ , u

(3)
r ∈ R

500×1
+ and u

(4)
r ∈

R
19(20)×1
+ present topography, power spectrum, waveform and

magnitude of participant, respectively, as shown in Figure 1A.

X ∈ R
64×130×500×19(20)
+ denotes the ground true EEG data, and

the noised synthetic EEG data was generated as

Z = σx
X

‖X‖
+ σn

N

‖N‖
(8)

where σx and σn denote the levels of signal and noise. N is the
noise tensor data uniformly distributed on the open interval (0,
1) and of the same size with X. SNR refers to the signal-to-noise
ratio defined as SNR = 10log10(σx/σn), and we set SNR to 20dB
in this experiment. For the two synthetic tensors, the number
of component is set to RHC = 3 and RMDD = 4. We assume
there are two common components in the spatial, spectral and
temporal modes between two tensors, i.e., L1 = L2 = L3 =

2 and L4 = 0, which are parallel to the assumptions in the
following ongoing EEG data processing. The spatial patterns were
generated based on the brain activations located in the occipito-
parietal, center, right occipital, frontal and left occipital regions
(the 1st row of Figure 1A), respectively, corresponding to the
frequency fluctuations centered at 10, 13, 20, 7, and 24 Hz (the
2nd row of Figure 1A). The temporal patterns were constructed
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FIGURE 1 | Illustration of simulation generation and recovered results. (A) Simulated spatial, spectral, temporal and participant patterns (from top to bottom) for the

two groups with partially coupled constraints in the first two components of spatial, spectral and temporal modes (see them in the 1st, 2nd, 4th, and 5th columns).

(B) Reconstructed spatial, spectral, temporal and participant patterns (from top to bottom) using constrained tensor factorization methods.
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using the time courses from the benchmark simulated complex
fMRI dataset1 (the 3rd row of Figure 1A). The magnitude
of participants is uniformly distributed, but for the common
components, we limited the corresponding magnitude to (0, 0.2)
and (0.5, 0.7) in order to better discriminate the two groups (the
4th row of Figure 1A).

We applied NCTF-ADMM algorithm to the simulated HC
and MDD data, and the extracted spatial, spectral, temporal
and participant components can be seen in Figure 1B. We
conducted the algorithm 50 times, and got the averaged tensor
fit of 0.9343 with the averaged running time of 111.85 s. The
averaged correlation between the two sets of true factor matrices
and recovered factor matrices is close to 1.

3.2. EEG Results
In terms of the number of components for the tensor data, a
simple explained variance-based principal component analysis
(PCA) method was adopted (Liu et al., 2021), and the number of
principal components with 99% accumulated explained variance
were assigned to RHC and RMDD, then we set RHC = 26, RMDD =

36. Regarding the number of coupled components, we first ran
the NCTF-ADMM without coupling constraints 10 times, and
then we directly calculated the correlations in the spectral/spatial
modes and performed correlation analysis in the temporal mode
between the two groups of data, respectively. Finally, we selected
the averaged number of highly correlated (0.87 and 0.90) and
significantly correlated (p < 0.05) components as the number
of shared components, i.e., L1 = L2 = L3 = 17 and L4 = 0.

We first carried out the proposed NCTF-ADMM algorithm
50 times on the two groups of ongoing EEG data, and then
through correlation analysis and hierarchical clustering, we
totally obtained 5 clusters of shared and unshared component
patterns between/in HC and MDD groups. The averaged
topographies, power spectrum, musical feature distribution and
spatial correlation maps in the same cluster are plotted in
Figure 2. Specifically, from the shared components extracted
from HC and MDD data, we found two clusters of interested
component patterns which were considered to be activated by
the music modulation, and the probabilities of components in
clusters #1 and #2 occurring in 50 runs reach 96% and 90%.
Regarding cluster #1, the topography reveals that the right
parietal region of the brain was activated with the low alpha
oscillations modulated by the music feature “Mode”, while the
cluster #2 represents the activation of parietal region of the brain
with high alpha oscillations. The averaged correlations of spatial
components in clusters #1 and #2 reached 0.9618 and 0.9757.
For unshared components in HC group, we obtained one cluster
in which the left occipital region was activated with the alpha
oscillations and mostly modulated by the music features “Key
Clarity” and “Fluctuation Centroid”. This cluster was unstable
probably due to the low signal-to-noise ratio nature of EEG
signals, and it was only clustered 32 times out of 50 times
with the averaged spatial correlation of 0.8765. Moreover, the
shared components in the MDD group were included into two
clusters, cluster #4 reveals that the frontal region of the brain

1http://mlsp.umbc.edu/simulated_complex_fmri_data.html

was activated with theta oscillations and modulated by the music
feature “Mode”, and cluster #5 reveals that the modulation of
musical feature “Key Clarity” brought about the activation of
alpha oscillations in the parietal-occipital region of the brain. The
occurrence probabilities of spatial components from clusters #4
and #5 in 50 runs are 100% and 96% with the averaged spatial
correlations of 0.9831 and 0.8408.

4. DISCUSSION

In this study, we investigated the shared and unshared brain
activities of spatio-temporal-spectral modes from the HC and
MDD data using EEG collections during freely listening to
music. To this end, we proposed a complete solution combining
constrained tensor factorization, musical information retrieval
and spatial clustering, in which the brain activities of interest
that were believed to be activated by music modulation were
discovered. Through the time-frequency representation, we
constructed two fourth-order tensors of time × frequency ×

space × participant for HC and MDD groups, and the two
tensors were decomposed at the same time with the extraction of
common and individual components using nonnegative coupled
tensor factorization, and its performance has been verified
using simulation data in section 3.1. Meanwhile, five long-
term musical features, including two tonal and three rhythmic
features, were extracted using the MIR toolbox. Then we adopted
the correlation analysis to identify the components of interest
whose temporal components were significantly correlated with
any of the five music features, and performed clustering analysis
on the outcomes of correlation analysis of the repeated runs in
order to obtain reliable and convincing results.

For the simulated data, as shown in Figure 1, we can
see that the simulated factor matrices representing space,
frequency, time and participant loadings were successfully
recovered using nonnegative and coupled tensor factorization
with high tensor fittings. The participant loadings of the
two coupled components are significantly different in the
magnitude distribution. Compared with the conventional
tensor factorization (Cichocki et al., 2015; Cong et al., 2015;
Sidiropoulos et al., 2017), the constrained tensor factorization
applied in this study simultaneously considered the shared
and unshared information between/in the two groups of
data via imposing the coupling structure (Zhou et al., 2016;
Wang et al., 2019, 2020). Moreover, it can achieve unique
solutions and interpretable components, while circumventing the
independence constraint compared to its matrix counterparts
(Calhoun et al., 2009; Hunyadi et al., 2017; Labounek et al., 2018;
Zhu et al., 2021). As we all know, EEG signals are recorded as the
multi-way tensors of time, space, subject, or group modes, thus
multi-way analysis methods are attractive and promising tools for
processing such tensor data, while the two-way analysis will lose
the multilinear structure and hidden internal relationships in the
original data (Cong et al., 2015).

The researchers have reported that a considerable amount of
neural dynamic changes distributed in multiple subcortical and
cortical regions (such as auditory, tactile, visual) were found in
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FIGURE 2 | Illustration of the extracted component patterns (from left to right column: mean topography, overall power spectrum, music feature distribution and

intra-cluster correlation maps) from HC and MDD EEG data via 50 runs of constrained tensor factorization method, and the parallel temporal component was

significantly correlated with at least one of the musical features. (A) Common component patterns clustered from the shared components of 50 runs between HC and

MDD data. (B) Individual component patterns clustered from the individual components of 50 runs in HC data. (C) Individual component patterns clustered from the

individual components of 50 runs in MDD data. Md, Mode; KE, Key Clarity; FC, Fluctuation Centroid; FE, Fluctuation entropy; PC, Pulse Clarity.
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EEG/fMRI recordings during music perception (Andrade and
Bhattacharya, 2003; Khalfa et al., 2005; King et al., 2019). These
regions including hippocampus, hypothalamus, orbitofrontal
and ventral medial prefrontal cortex are typically involved during
emotion evocation, processing and hedonic regulation in voices
(Menon and Levitin, 2005). Therefore, the potential of music
to modulate activities in brain networks is worth investigating
in MDD. Using the constrained tensor factorization-based
framework, we were able to provide the feasibility to identify
the brain dynamics involved in the processing of acoustical
music from the ongoing EEG signals, and finally obtained two
shared and three unshared feature patterns between or in HC
and MDD data as shown in Figure 2. Studies have found that
music can evoke a variety of emotions from simple arousal
responses, basis emotions to more complex emotions such as
subjective feeling, emotional expression or physiological changes
in listeners (Witvliet and Vrana, 2007; Juslin et al., 2015).
First, from the shared components extracted from both HC
and MDD data, we obtained two clusters of interest patterns
including a series of ∼10 Hz right parietal components and
∼13 Hz centro-parietal components, which were believed to
be elicited by the tonal music feature of “Mode”. As we all
know, MDD is a kind of mental disorders characterized by
affective and cognitive dysfunctions, and existing studies have
shown that brain networks of MDD patients have abnormal
network topology structure (Gotlib and Joormann, 2010; Jia et al.,
2010; Mulders et al., 2015). Moreover, the study also reported
individuals withMDDwere associated with impaired recognition
of emotion in music as well as in facial and vocal stimuli (Naranjo
et al., 2011). Therefore, in addition to some basic emotional
processing and regulation that are indistinguishable from the
MDD patients and the HCs, some uncontrolled responses with
music of MDD patients may be more negative due to their
cognitive dysfunctions. We also observed the right occipital
components of ∼10 Hz oscillations mostly elicited by the tonal
feature of “Key clarity” and the rhythmic feature “Fluctuation
Centroid” which were clustered from the individual components
of HC group, but such brain dynamics in MDD patients
were not sensitive to music perception and were suppressed.
The dopaminergic system is activated during music processing,
however, some dopamine responses to music in MDD patients
may be weakened, which makes some brain neural dynamics
that should be appeared not captured (Menon and Levitin,
2005; Blum et al., 2010). Our findings replicate some of the
results of our previous studies in which similar alpha brain
oscillations located in the centro-parietal or occipital regions
were found from the EEG signals of 14 healthy participants
when freely listening to music (Cong et al., 2013; Wang et al.,
2020). Lin et al. also found the electrodes of parietal lobes across
alpha band contributed a lot in the emotion recognition during
music listening (Lin et al., 2010). Second, for the individual
components extracted from MDD patients, we obtained two
clusters of interest: theta oscillations in the frontal region and
alpha oscillations in the bilateral parieto-occipital region, which
were considered more overactive than the HC groups. From
the perspective of functional connectivity in the source level,
Liu et al. revealed three oscillatory hyperconnectivity networks
including right hemisphere of alpha and beta bands, left auditory

region of delta band and prefrontal region of delta band in
MDD (Liu et al., 2021). The frontal region was involved in
planning complex cognitive behaviour, decision making and
working memory (Liu et al., 2021). In other words, the frontal
regions played an important role in depression development
and have received widespread attention (Rajkowska et al.,
1999). Previous studies reported that the fronto-limbic neural
networks were implicated in MDD, particularly in relation
to the subgenual anterior cingulate cortex (ACC) which was
considered to regulate amygdala activity in order to prevent
excessive emotional reactivity and stress responses (Drevets et al.,
1997; Phillips et al., 2003). The fMRI studies also uncovered the
modification of functions in frontal and temporal regions (Wang
et al., 2012). The alpha temporo-occipital component located in
the left angular gyrus was engaged in music perception from
most MDD patients (Zhu et al., 2021). Significant alternations
of brain dynamics in the left frontal lobe, (left) parieto-occipital
lob in theta and alpha bands were observed from the functional
networks of MDD patients when using resting-state EEG signals
(Sun et al., 2019; Zhang et al., 2020). The abnormal regions
near parieto-occipital sulcus in MDD may be associated with the
inability to detach from the visual dorsal stream, robust biases
in attention or inhibitory control of irrelevant sensory (Gotlib
and Joormann, 2010; Sacchet et al., 2016).Meanwhile, the sources
in parieto-occipital regions were considered to contribute to the
working memory load in the alpha band (Tuladhar et al., 2007).
Our results are indeed consistent with some of the research
findings in MDD, but in the end, it is difficult to compare
directly due to the different methodological approaches and
selected participants.

In conclusion, we provide a comprehensive framework for
the shared and unshared feature extraction from the EEG
recordings of MDD and HC groups during music listening, our
findings are well supported and in line with the results of some
previous studies to some extent, and contribute to providing
some novel biomarkers for the clinical diagnosis and treatment
of MDD patients. Meanwhile, the proposed methods based on
nonnegative coupled tensor factorization may provide a new
perspective for the analysis of other EEG recordings or the data
with other psychiatric disorders. However, there are still some
limitations in this study. First, we directly assume the temporal,
spatial and spectral consistency among participants in MDD or
HC group; that is, we only pay attention to group similarities and
differences between the MDD and HC groups, and ignore the
participant differences in each individual group, which will be a
key issue that needs to be considered in our future work. Second,
the analysis in this study was performed at the sensor level,
which will be extended to the source level in the following work.
Third, we have proposed a way to select the number of common
components by correlation analysis. However, its selection is still
subjective to some extent, which remains an open issue and
invites more discussion.
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