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Bone Marrow Transplantation Stimulates
Neural Repair in Friedreich’s Ataxia Mice
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Objective: Friedreich’s ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here, we
report the neuroreparative effects of myeloablative allogeneic bone marrow transplantation in a humanized murine
model of the disease.
Methods: Mice received a transplant of fluorescently tagged sex-mismatched bone marrow cells expressing wild-
type frataxin and were assessed at monthly intervals using a range of behavioral motor performance tests. At 6
months post-transplant, mice were euthanized for protein and histological analysis. In an attempt to augment num-
bers of bone marrow–derived cells integrating within the nervous system and improve therapeutic efficacy, a sub-
group of transplanted mice also received monthly subcutaneous infusions of the cytokines granulocyte-colony
stimulating factor and stem cell factor.
Results: Transplantation caused improvements in several indicators of motor coordination and locomotor activity.
Elevations in frataxin levels and antioxidant defenses were detected. Abrogation of disease pathology throughout
the nervous system was apparent, together with extensive integration of bone marrow–derived cells in areas of ner-
vous tissue injury that contributed genetic material to mature neurons, satellite-like cells, and myelinating Schwann
cells by processes including cell fusion. Elevations in circulating bone marrow–derived cell numbers were detected
after cytokine administration and were associated with increased frequencies of Purkinje cell fusion and bone mar-
row–derived dorsal root ganglion satellite-like cells. Further improvements in motor coordination and activity were
evident.
Interpretation: Our data provide proof of concept of gene replacement therapy, via allogeneic bone marrow trans-
plantation, that reverses neurological features of Friedreich’s ataxia with the potential for rapid clinical translation.
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Friedreich’s ataxia (FA) is an autosomal recessive inher-

ited ataxia caused, in >95% of cases, by a homozy-

gous GAA.TTC trinucleotide repeat expansion within

intron 1 of the FXN gene.1 This triplet expansion results

in transcriptional repression of frataxin,2 a small mito-

chondrial protein involved in iron–sulfur cluster biosyn-

thesis. Typically, patients with the condition experience

insidious accumulation of neurological disability charac-

terized pathologically by lesions in the dorsal root ganglia

(DRG), sensory peripheral nerves, spinal cord, and cere-

bellar dentate nucleus.3,4

Neuronal atrophy and dysfunctional glia are both

thought to contribute to neuropathology in FA.3,5–7

Despite advances in understanding of the disease, current

therapeutics show little ability to protect nervous tissue

and no capacity to promote repair. Adult stem cell popu-

lations, notably those that reside within the bone marrow

(BM), have been shown both to provide neurotrophic
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support and to contribute to neuronal/glial cell types in

the brain through processes likely involving cellular

fusion.8–13 The observation that BM cells can migrate

and integrate within the nervous system, and persist

apparently for decades,8,9 may offer a biological mecha-

nism that can be exploited therapeutically.12,13 Utilizing

allogenic BM transplantation (BMT) as a mode of gene

therapy, to provide a source of "genetically normal"

donor cells to access affected tissue and support endoge-

nous cells of the central and peripheral nervous system,

may afford significant therapeutic potential,14,15 particu-

larly in a multi-system disease such as FA.

We have recently described the neuroprotective

properties of both granulocyte-colony stimulating factor

(G-CSF) and stem cell factor (SCF) in a murine model

of FA,16 two agents used in clinical practice to mobilize

BM stem cells prior to a peripheral blood (PB) stem cell

harvest.17,18 In both healthy animals and animals with

central nervous system (CNS) injury, the numbers of

BM-derived cells detectable in the brain are increased fol-

lowing treatment with G-CSF and SCF.19,20 This implies

that migration of BM-derived cells into the nervous sys-

tem has potential for therapeutic manipulation, and in

addition to their neuroprotective effects in FA,16 G-CSF

and SCF may also aid the delivery of BM cells to sites of

injury in the disease, stimulating neural repair.

Here, we explore whether myeloablative allogeneic

BMT of cells expressing the wild-type Fxn gene can be

harnessed as a potential neuroreparative gene therapy for

FA; and secondly, to extend our previous studies, whether

subsequent administration of G-CSF and SCF can

enhance BM-derived cell integration within the diseased

nervous system and improve therapeutic efficacy.

Materials and Methods

Experimental Design
Both wild-type control mice and YG8R mice received a mye-

loablative allogeneic BMT to produce transplanted wild-type

controls (BMT control) and transplanted YG8R mice (BMT

YG8R). A subgroup of BMT YG8R mice also received monthly

infusions of G-CSF/SCF (BMT YG8R G-CSF/SCF). Experi-

mental protocols are described in Figure 1A and B. Sample

sizes were based on our previous reports using the YG8R

model.16

Animals
All animal experiments were performed in accordance with the

UK Animals (Scientific Procedures) Act 1986 and approved by

the University of Bristol Animal Welfare and Ethical Review

Body. Female Fxntm1Mkn Tg(FXN)YG8Pook/J (YG8R) trans-

genic mice, which carry a human genomic FXN transgene (on a

murine frataxin null background) containing expanded GAA

repeats of 82 to 190 units within intron 1 of FXN, were used.

(Sex differences in disease trajectory are reported in YG8R

mice; female YG8R mice show a stronger behavioural pheno-

type and reduced frataxin protein in the brain, when compared

to male YG8R mice, that more closely resembles human dis-

ease.21) Both ataxic (strain # Fxntm1Mkn Tg[FXN]YG8Pook/J,

stock # 008398) and transgenic mice ubiquitously expressing

enhanced green fluorescent protein (EGFP; strain # C57BL/6-

Tg[CAG-EGFP]131Osb/LeySopJ, stock # 006567) were pur-

chased from The Jackson Laboratory (Bar Harbor, ME). Con-

trol C57BL/6 VAF/Elite mice were provided by Charles River

UK (Margate, UK). Genotyping was performed by The Jackson

Laboratory to confirm the genetic background of all YG8R

mice, and upon arrival, mice were randomly assigned to a treat-

ment group. Mice were housed in a pathogen-free facility, with

free access to sterile food and water.

BMT: Generation of EGFP-Expressing BM
Chimeric Mice
Donor BM cells were harvested, under sterile conditions, from

10- to 12-week-old male C57BL/6 EGFP-expressing transgenic

mice.22 Twelve-week-old female recipient mice (control and

YG8R mice) were lethally irradiated, with a single dose of

1,000rad from a Cesium-137 source, 6 hours prior to receiving

1 3 107 unfractionated EGFP-expressing donor BM cells by tail

vein injection. Founder mice of both parent lines used to gener-

ate the YG8R mouse had been back-crossed to C57BL/6 for 5

generations23,24; thus, no immunosuppression was provided

post-transplant.

Wild-type BM donor mice were male, and recipients

(control and YG8R mice) were female. This allowed nuclear

material from the male donor cells to be traced within the

recipient using the male Y chromosome.

Myeloablative BMT can be associated with significant

morbidity.25 All transplanted mice were therefore left to recover

for 6 weeks prior to any further experimentation. For the total

duration of the experiment, 2 mice within the BMT control

group were removed from the study due to transplant-related

complications. No complications were observed in the YG8R

mice. A single YG8R mouse assigned to the BMT YG8R group

was removed from the study due to illness (unrelated to its

genetic phenotype), before any experimental intervention, on

veterinary advice. BMT was shown to have statistically signifi-

cant (p< 0.05) negative effects on the weight of both YG8R

and control mice (data not shown).

PB Mononuclear Cell Counts
and Detection of Chimerism
At 6 and 20 weeks post-BMT, hematopoietic reconstitution was

evaluated in PB by flow cytometry (FACSCalibur; Becton

Dickinson, Franklin Lakes, NJ). Briefly, 100ml PB was har-

vested from the tail vein and suspended in phosphate-buffered

saline (PBS) pH 7.4/ethylenediaminetetraacetic acid (2mg/ml).

Red cells were removed using red cell lysis buffer, and the

remaining nucleated cell population was resuspended in PBS/

3% fetal bovine serum, counted using a hemocytometer, and

examined for EGFP expression when excited at 488nm using
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flow cytometric analysis. PB harvested from a non-transplanted

C57BL/6 mouse was used as a reference control. Data were

evaluated using Becton Dickinson CellQuest software.

Cytokine Administration
Cytokines doses were based on standard regimens for G-CSF

mobilization of PB hematopoietic stem cells in mice.16,26 Mice

received subcutaneous injection of murine G-CSF and SCF

(PeproTech, Rocky Hill, NJ; both 200 mg/kg) in PBS once daily

for 5 consecutive days. Treatments were repeated monthly. PBS

alone was administered as a vehicle control.

Neurobehavioral Testing
Body weight, rotarod, grip strength, string test, beam-walk test,

open field, and gait analysis were recorded monthly between 3

and 9 months of age as previously described.16

Tissue Preparation (Histology)
Mice were anaesthetized by intraperitoneal injection of Euthatal

and perfused with PBS followed by 4% paraformaldehyde in

PBS. The brains, spinal cords, and DRG were dissected, placed

in 4% paraformaldehyde in PBS for 24 hours at 48C, proc-

essed, and subsequently embedded in paraffin for sectioning on

a rotary microtome (LM2135; Leica Microsystems, Wetzlar,

Germany) and mounting on glass slides.

Immunohistochemistry and Imaging
Immunofluorescent labeling and microscopic imaging has been

described previously.16 Primary antibodies used were ßIII-

tubulin (ab78078, 1:250; Abcam, Cambridge, MA), calbindin-

D28K (C2724, 1:500; Sigma-Aldrich, St Louis, MO), CD11b/

c (ab1211, 1:100, Abcam), EGFP (ab6556, 1:500, Abcam),

glial fibrillary acidic protein (GFAP; ab33922, 1:200, Abcam),

IBA-1 (ab5076, 1:200, Abcam), NeuN (ab177487, 1:500 and

ab104224, 1:500, Abcam), S100 (MAB079, 1:200; Millipore,

Billerica, MA), S100 (Z0311, 1:200; Dako, Carpinteria, CA).

Secondary antibodies were Alexa Fluor 488/555, goat/donkey anti-

mouse (1:500), Alexa Fluor 488/555, goat/donkey anti-rabbit

FIGURE 1: Myeloablative allogeneic bone marrow (BM)
transplantation (BMT) and BM chimerism in YG8R mice. (A)
Experimental protocol using wild-type (WT) and YG8R mice
to investigate the effects of allogeneic BMT. At 3 months of
age, mice were assessed using an extensive range of behav-
ioral performance tests and subsequently given a BMT from
a ubiquitously expressing enhanced green fluorescent pro-
tein (EGFP) donor. After 8 weeks, mice were again assessed
at monthly time points using behavioral performance tests.
A subset of transplanted YG8R mice were also given
monthly infusions of granulocyte-colony stimulating factor
(G-CSF) and stem cell factor (SCF; red arrows). At 9 months
of age, mice were euthanized for histological analysis. (B)
Three-month-old recipient mice were given an allogeneic
BMT to create EGFP-expressing BM chimeras. Mice were
lethally irradiated, with a single dose of 1,000rad, 6 hours
prior to receiving 1 3 107 unfractionated BM EGFP-
expressing cells by tail vein injection. (C) Flow cytometric
analysis (histogram) to determine the level of BM chimerism
within EGFP BM cell–transplanted mice 6 weeks post-trans-
plant. The percentage of peripheral blood (PB) mononuclear
cells (MNCs), harvested from transplanted mice, that were
positive for EGFP was calculated (MNCs with a relative fluo-
rescence higher than that of cells derived from non-trans-
planted WT control mice [white peak]). (D) The PB MNC
counts of both non-transplanted and transplanted WT con-
trol and YG8R mice. Statistical comparisons of control ver-
sus YG8R, YG8R versus BMT YG8R, and control versus BMT
control mice were analyzed using analysis of variance fol-
lowed by Holm–Sidak multiple comparisons test.
***p < 0.001. Values represent mean 6 standard error of the
mean. For all tests, n 5 4 (BMT YG8R), all other groups
n 5 5.
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(1:500), and Alexa Fluor 488/555, donkey anti-goat (1:500;

Invitrogen, Carlsbad, CA). Sections were mounted in VECTA-

SHIELD medium containing the nuclear dye 40,60-diamidino-2-

phenylindole (Vector Laboratories, Burlingame, CA).

Fluorescent In Situ Hybridization
Sections (8 mm) were processed and labeled as previously

described.27 Fluorescent in situ hybridization (FISH) probes

(mouse: chromosomes X [locus: Xqc3, green 5-fluorescein 20-

deoxyuridine 50-triphosphate (dUTP)] and Y control probe

[locus: Y, red 5-ROX dUTP]; Empire Genomics, Buffalo, NY)

were applied directly to the tissue sections. DNA was denatured

at 838C for 5 minutes and then renatured with FISH probes by

incubating overnight at 378C.

Using epifluorescence microscopy, each section was

scanned for Purkinje cell or DRG neurons containing the Y

chromosome. Each cell was subsequently scanned using

confocal microscopy acquiring 0.1- to 0.2 mm serial sections

throughout the entire cell soma. All Z-stack and 3-dimensional

imaging was created using both Leica Application Suite

Advanced Fluorescence software and Volocity 3D image soft-

ware (PerkinElmer, Waltham, MA).

Histological Staining
For histological assessment, tissues were sectioned, deparaffi-

nated, rehydrated, and stained with hematoxylin and eosin

(visualization of DRG vacuoles).

Cell Quantification/Measurements
Cell numbers, DRG vacuole quantification, and neuronal cell

size measurements were recorded as previously described.16

Binucleate Cells
Fusion of BM-derived cells with other cell types reveals the for-

mation of binucleate heterokaryons; thus, identification of

binucleate cells in the nervous system can be used as an indirect

measure of these cell fusion events.28 Each section was scanned

along either the entire length of the Purkinje cell layer or the

cross-sectional area of the DRG/cerebellar dentate nucleus, for

neuronal cell bodies containing 2 separate nuclei. A minimum

of 1,000 DRG neurons, 1,000 Purkinje neurons, or 500 cere-

bellar dentate nucleus neurons from each mouse were

examined.

Protein Analysis
Proteins were isolated from microdissected formalin-fixed, par-

affin-embedded (FFPE) cerebellum sections using the Qpro-

teome FFPE Tissue kit (Qiagen, Valencia, CA) according to the

manufacturers’ instructions. Subsequent Western blotting of

protein lysates and densitometric analysis were carried out as

previously described.29 Primary antibodies used were anti-b
actin (ab8227, 1:5,000, Abcam), anti-catalase (C0979, 1:2,000,

Sigma-Aldrich), anti-human frataxin (ab110328, 1:2,000,

Abcam), anti-frataxin (ab113691, 1:2,000, Abcam), anti–gluta-

thione peroxidase-1 (ab22604, 1:1,000, Abcam), anti-NeuN

(ab177487, 1:5,000, Abcam), anti–nuclear factor (erythroid-

derived 2)-like 2 (Nrf2; sc-722, 1:3,000; Santa Cruz

Biotechnology, Santa Cruz, CA), anti-peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1alpha)

(sc-13067, 1:3,000, Santa Cruz Biotechnology), anti-SOD1

(ab16831, 1:5,000, Abcam), and anti-SOD2 (ab16956,

1:5,000, Abcam). (Of note, increases in total frataxin are likely

to be underestimated when compared to human frataxin due to

differences in antibody (ab113691, Abcam) species reactivity;

the human protein reactivity of the antibody is approximately

50% of mouse protein reactivity at the same concentration.

Commercial mouse-specific frataxin antibodies are not

available.)

Statistical Analysis
Those analyses that did not employ longitudinal replicates from

the same animal were performed using Prism (GraphPad, La

Jolla, CA). Where data were known or predicted to violate

assumptions for parametric statistical testing (not sampled from

populations that follow a Gaussian distribution and/or unequal

variances between groups), an equivalent non-parametric test

was performed. Data between 2 groups were analyzed using

either the unpaired t test or Mann–Whitney U test with appro-

priate correction for multiple comparisons using the Holm–

Sidak and Bonferroni methods, respectively. Statistical compari-

sons for> 2 groups were analyzed using either analysis of vari-

ance followed by Holm–Sidak multiple comparison test or

Kruskal–Wallis followed by Dunn’s multiple comparison test

between groups. Histological analyses of spinal cord regions of

interest were analyzed separately in light of known pathophysi-

ology of disease. For longitudinal analyses, multiple regression

with cluster analysis and robust standard errors (Stata v12; Sta-

taCorp, College Station, TX) was used to assess the effect of

the test variable while taking into account the effect of other

variables including disease model (YG8R), BMT, and age as

well as correlation between longitudinal replicates from the

same individual. For all tests, values of p< 0.05 were consid-

ered statistically significant. Statistical tests were all 2-sided.

Data are represented as mean 6 standard error of the mean

(SEM).

Results

To investigate the therapeutic effects of BMT, we used 3-

month YG8R transgenic mice. These mice are frataxin-

deficient and develop progressive neurodegeneration and

cardiac pathology.16,21,30

Detection of EGFP-BM Chimerism and
Mobilization of PB Mononuclear Cells
in Mice with FA
We successfully established chimeric (wild-type control or

YG8R) mice stably reconstituted with EGFP-expressing

BM cells containing wild-type copies of the Fxn gene

(see Fig 1). At 6 weeks post-transplantation, approxi-

mately 95% of nucleated cells within the PB of trans-

planted mice were EGFP-positive and thus donor-

derived. No significant change in the levels of EGFP-
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positive cells in the PB were observed at 20-weeks post-

transplant (data not shown). More than double the num-

ber of circulating mononuclear cells (MNCs) were

present in PB of transplanted compared to non-trans-

planted YG8R mice. By contrast, BMT in wild-type con-

trols did not result in an increased circulating MNC

number when compared to age-matched non-trans-

planted controls.

BMT of Cells That Stably Express Wild-Type
Fxn Improves Neurobehavioral Deficits
Motor coordination and locomotor activity in both trans-

planted and non-transplanted mice was assessed monthly

for 6 months. At 3 months of age (before therapeutic

intervention) and throughout the duration of the study,

neurological deficits were apparent in the non-trans-

planted YG8R mice compared to age-matched non-trans-

planted wild-type controls (Fig 2).

BM-transplanted YG8R mice showed significant

improvements in grip strength tests, beam walk tests,

open field tests (middle square), and gait analyses, com-

pared to untreated YG8R mice (see Fig 2). No overall

improvements were seen in either the rotarod or string

test. Transplant had a negative effect on open field (total

squares) performance. BMT in wild-type control mice

resulted in no improvements in performance when

FIGURE 2: Improvements in neurobehavioral deficits in YG8R mice after allogeneic bone marrow transplantation (BMT). (A–E)
Longitudinal results for (A–D) motor performance and locomotor performance (E; open field test) in mice from 3 to 9 months
of age. (F) Footprint (gait) analysis and (G) representative footprint traces in mice 9 months of age. For A–E, statistical analysis
employed a regression model to determine whether there was an independent significant effect of disease model (YG8R) or
BMT on behavioral score. Three-month comparisons (pre-transplant; control vs YG8R; A–E) were analyzed using the unpaired t
test, with the exception of open field (middle square), where the Mann–Whitney U test was employed. Statistical comparisons
of control versus YG8R, YG8R versus BMT YG8R, and control versus BMT control for footprint analysis (F) were compared
using analysis of variance followed by Holm–Sidak multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ns 5 not signifi-
cant; values represent mean 6 standard error of the mean. For all tests, n 5 4 (BMT YG8R), all other groups n 5 5.
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compared to age-matched non-transplanted wild-type

controls, with the exception of a small but significant

improvement in the beam walk test. Conversely, some

decline in performance was also evident in the open field

(total squares) and gait analysis. As a deterioration in

locomotor performance using the open field test (total

squares) was observed in both transplanted YG8R and

control mice, it is likely this effect was caused by high-

dose total body irradiation–induced tissue injury during

myeloablative conditioning.31

BMT Increases Frataxin
and Antioxidant Defenses
Using immunoblotting techniques, we measured protein

levels of both endogenous human frataxin (expressed by

the humanized YG8R mouse) and total frataxin (mouse

frataxin [wild-type transplant-derived frataxin] 1 human

frataxin) in the cerebellum of YG8R mice (aged 9

months). Frataxin protein levels were calculated by nor-

malizing to levels of internal reference proteins b-actin

and NeuN detected on the same blot. BMT in YG8R

mice resulted in a marked increase in total frataxin

expression; human frataxin expression was elevated, but

not significantly. Notably, in all cases, increases in fra-

taxin expression were more prominent when normalized

to the neuronal-specific marker NeuN than when nor-

malized to ubiquitously expressed b-actin, suggesting that

BMT, at least in part, potentiates increases in neuronal

frataxin (Table).

Frataxin deficiency results in dysregulation in cellular

antioxidant defenses,32 with deficiencies in key antioxidant

regulators including PGC-1alpha and Nrf2.33,34 BMT in

YG8R mice was associated with significant increases in

PGC-1alpha expression. No significant increases in the

expression of the antioxidants SOD1, SOD2, catalase, and

glutathione peroxidase-1 were apparent (see Table).

BMT Reverses FA-Associated Pathology
YG8R mice showed vacuolar degeneration of large sen-

sory DRG neurons, loss of neurons within the dorsal

nucleus of Clarke (DNoC), and degeneration of neurons

of the cerebellar dentate nucleus, associated with astro-

gliosis and microglial infiltration (Figs 3 and 4), all

changes that closely mimic those of human FA.3,5

BMT in YG8R mice completely attenuated intracellular

TABLE. BMT Elevates Both Frataxin Levels and Antioxidant Defenses in YG8R Mice

Protein Normalized to YG8R BMT YG8R

FA-associated proteins

Human frataxin ß-actin 1.00 6 0.120 1.224 6 0.136

NeuN 1.00 6 0.147 1.618 6 0.279

Total frataxin ß-actin 1.00 6 0.066 1.486 6 0.182

NeuN 1.00 6 0.074 1.882 6 0.263a

Antioxidant regulators

PGC1alpha NeuN 1.00 6 0.157 2.098 6 0.409a

Nrf2 NeuN 1.00 6 0.151 1.695 6 0.333

Antioxidant enzymes

SOD1 NeuN 1.00 6 0.092 1.956 6 0.430

SOD2 NeuN 1.00 6 0.144 1.385 6 0.227

Catalase NeuN 1.00 6 0.082 1.763 6 0.366

GPX1 NeuN 1.00 6 0.047 2.144 6 0.581

The relative protein expression levels of human frataxin, total frataxin, PGC1alpha, Nrf2, and antioxidant enzymes (SOD1, SOD2, catalase, and

glutathione peroxidase 1 [GPX1]) within the cerebellum of YG8R mice. Statistical comparisons between YG8R and BMT YG8R were analyzed

using (human frataxin, antioxidant regulators) unpaired t tests with correction for multiple comparisons using the Holm–Sidak method; or (total

frataxin, antioxidant enzymes) Mann–Whitney U tests with correction for multiple comparisons using the Bonferroni method. For all tests, n 5 4

(BMT YG8R), n 5 5 (YG8R).
ap< 0.05, values represent means 6 standard error of the mean (expressed relative to YG8R).

BMT 5 bone marrow transplantation; FA 5 Friedreich’s ataxia.
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(nuclear and cytoplasmic) vacuolar degeneration of the

large sensory neuronal cell bodies, and this change was

associated with a reduced satellite cell-to-DRG neuron

ratio, a likely consequence of improved large sensory

neuronal cell survival (see Fig 3).3 Within the cerebellar

dentate nucleus, mean neuronal size was increased, indi-

cating preservation of large neuronal cells. Alternatively,

we found no significant preservation of neurons in spinal

cord DNoC of transplanted mice.

BMT in YG8R mice resulted in reduced numbers

of GFAP-positive astrocytes in the spinal cord (see Fig

4). CD11b/c-positive macrophages/microglial cells in

both the spinal cord and cerebellar dentate nucleus were

increased in transplanted YG8R mice. BMT in wild-type

controls resulted in elevated GFAP and CD11b/c cell

numbers in the cerebellar dentate nucleus and the spinal

cord lateral corticospinal tract, respectively, when com-

pared to age-matched non-transplanted controls.

FIGURE 3: Bone marrow transplantation (BMT) reverses Friedreich’s ataxia–associated pathology. (A) High-powered image of
hematoxylin and eosin (H&E)-stained dorsal root ganglion (DRG) neurons containing vacuoles (arrows). (B) DRG depicting
reductions in vacuolization of the large sensory neurons within transplanted YG8R mice. (C) The frequency of DRG neurons
containing nuclear or cytoplasmic vacuoles. (D) Typical DRG histology with satellite glial cells (green) covering the surface of
DRG sensory neurons (red). (E) The DRG satellite-to-neuron cell ratio. (F, G) The size range (F) and mean cell size (diameter; G)
of DRG neurons. (H) High-powered images of ßIII-tubulin–labeled neurons within the cerebellar dentate nucleus (DN). (I, J) The
size range (I) and mean cell size (diameter; J) of cerebellar DN neurons. (K, L) Representative low-powered (K) and high-
powered (L) images of NeuN-positive neurons within the dorsal nucleus of Clarke (DNoC). (M) The number of DNoC neurons/
mm2. All statistical comparisons of control versus YG8R, YG8R versus BMT YG8R, and control versus BMT control mice were
analyzed using analysis of variance followed by Holm–Sidak multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001; values
represent mean 6 standard error of the mean. For all tests, n 5 4 (BMT YG8R), all other groups n 5 5. DAPI 5 40,60-diamidino-2-
phenylindole; DC 5 dorsal column; EGFP 5 enhanced green fluorescent protein.
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FIGURE 4: Bone marrow transplantation (BMT) alters glial/immune cell infiltration to areas of tissue injury. (A, C) The number
of glial fibrillary acidic protein (GFAP)-positive (A) and CD11b/c-positive (C) cells/mm2 within the spinal cord or cerebellar den-
tate nucleus. (B, D) Images of GFAP-positive (B) and CD11b/c-positive (D) cells within the cerebellar dentate nucleus or spinal
cord. Statistical comparisons of control versus YG8R, YG8R versus BMT YG8R, and control versus BMT control mice were ana-
lyzed using analysis of variance followed by Holm–Sidak multiple comparisons test (A [spinal cord], C) or Kruskal–Wallis fol-
lowed by Dunn’s multiple comparison test (A [dentate nucleus]). *p < 0.05, **p < 0.01, ***p < 0.001; values represent
means 6 standard error of the mean. For all tests, n 5 4 (BMT YG8R), all other groups n 5 5. ACST 5 anterior corticospinal tract;
DAPI 5 40,60-diamidino-2-phenylindole; DC 5 dorsal column; DNoC 5 dorsal nucleus of Clarke; EGFP 5 enhanced green fluores-
cent protein; LCST 5 lateral corticospinal tract; SCT 5 spinocerebellar tract.
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Large Numbers of BM-Derived Cells Infiltrate
the Nervous System of YG8R Mice after BMT
We detected significant numbers of EGFP-positive cells

within DRG, peripheral nerves, spinal cord, and cerebel-

lum of YG8R mice transplanted with EGFP-expressing

BM cells (Fig 5). The frequency of EGFP-expressing cells

was significantly higher within the spinal cord and cere-

bellar dentate nucleus of transplanted YG8R mice com-

pared to transplanted wild-type controls. CD11b/c–

positive or IBA-1–positive macrophages/microglia were,

as expected (being of myeloid origin), found to co-

express EGFP in both wild-type and YG8R transplanted

mice (see Figs 4D and 5C). EGFP-positive cells did not

co-express the astrocytic marker GFAP in spinal cord or

cerebellum (see Fig 4B). However, significant numbers of

cells expressed the satellite/Schwann cell marker S100

within the DRG and peripheral nerves, respectively (see

Fig 5). The morphological characteristics of these cells

matched those of typical S100 cells in situ within their

given anatomical locations. The frequency of EGFP-

positive cells surrounding the DRG neurons was the

same in transplanted YG8R and age-matched trans-

planted control mice.

Fusion of BM-Derived Cells within the Nervous
System of YG8R Mice
We found EGFP-expressing BM-derived cells integrated

with DRG neurons to form binucleate NeuN-positive

cells (Fig 6). The frequency of these binucleate DRG

neurons was significantly higher in transplanted YG8R

mice than in non-transplanted YG8R mice. We also

found EGFP-positive cells within the cerebellum of the

YG8R mouse associated with typical binucleate Purkinje

cell heterokaryons. EGFP-positive cells, with typical neu-

ronal morphology, expressing both the neuronal markers

NeuN and ßIII-tubulin, were identified (albeit very

rarely) within the cerebellar dentate nucleus. A propor-

tion of these cells were also binucleate.

Evidence for Fusion and Genetic Integration
between Wild-Type BM-Derived Cells and
Endogenous Neurons in YG8R Mice
Utilizing sex-mismatched BMT (transplanting male

donor wild-type BM cells into female YG8R mice; see

Fig 1B), the presence of male BM-derived cells and/or

nuclei in the female YG8R brain was detected using in

situ hybridization with fluorescently labeled X and Y

chromosomal DNA probes (see Fig 6). Cerebellar and

DRG sections were selected for examination, and Pur-

kinje cells or DRG neurons, respectively, were analyzed

for their sex chromosome content. Using laser scanning

confocal microscopy, the Y chromosome was readily

detected scattered throughout the tissue. In a number of

Purkinje cells and DRG neurons, identified by their

unique morphology and location, a Y chromosome was

detected within the nucleus (nuclei did not always con-

tain 2 sex chromosomes due to the thickness of the sec-

tions [8mm] encompassing less than half of the entire

cell soma). Furthermore, several Purkinje cells and DRG

neurons were shown to contain 3 or 4 distinct chromo-

somes (XXY or XXXY), providing evidence for fusion

and donation of nuclear genetic material between male

wild-type BM-derived cells and female YG8R host

neurons.

G-CSF and SCF Administration in Conjunction
with BMT Further Increases BM Cell Integration
into the Cerebellum and DRG of YG8R Mice
A subgroup of transplanted YG8R mice were subcutane-

ously injected with the cytokines G-CSF and SCF daily

for 5 consecutive days, each month for 5 consecutive

months (see Fig 1A). Cytokine administration stimulated

mobilization of MNCs approximately 3-fold in

transplanted YG8R mice (3.35 6 0.29 3 107 cells/ml

[BMT YG8R] vs 8.71 6 0.11 3 107 cells/ml [BMT YG8R

G-CSF/SCF], mean 6 SEM, n 5 4 and n 5 5, respec-

tively, p< 0.001, unpaired t test). G-CSF/SCF administra-

tion in transplanted mice also led to significant

improvements in all motor coordination and locomotor

activity tests when compared to non-transplanted YG8R

mice (including the rotarod, string test and open field test

[Fig 7A–C], where no initial improvements in perfor-

mance were evident when YG8R mice received a trans-

plant alone [see Fig 2]). Only in the open field test (total

squares) and gait analysis did G-CSF/SCF administration

in transplanted mice lead to a significant improvement in

performance over YG8R mice that had received a trans-

plant alone (see Figs 7B and 7C).

G-CSF/SCF administration increased frequencies of

EGFP-positive cells within DRG and dorsal spinal roots,

but decreased frequencies within the spinal cord DNoC

and dentate nucleus (see Fig 7). Furthermore, it led to

an increased frequency in both EGFP-expressing cells

surrounding DRG neurons and binucleate Purkinje cells

(3-fold) within the cerebellum. No changes in the fre-

quency of GFAP-expressing cells were observed with the

addition of G-CSF/SCF (data not shown); however,

CD11b/c macrophages/microglia numbers were signifi-

cantly reduced in number within both the spinal cord

and dentate nucleus. We also found a significant preser-

vation of neurons in spinal cord DNoC of transplanted

mice that had received G-CSF/SCF. Of note, G-CSF/

SCF administration had no adverse effect on any out-

come analyzed within this study.

Kemp et al: BMT in FA Mice

April 2018 787



FIGURE 5: Bone marrow transplantation (BMT) results in large numbers of enhanced green fluorescent protein (EGFP)-express-
ing bone marrow–derived cells migrating and integrating into the nervous system. (A, B) The frequency (A) and representative
images (B) of EGFP-positive cells within the nervous system of transplanted mice. (C) EGFP-expressing cells labeled with either
S100 or IBA-1 within dorsal root ganglia (DRG). The hatched areas depict the locations of the higher-powered images. (D) An
EGFP-expressing S100-positive Schwann cell wrapping around an axon. (E) The frequency of EGFP cells wrapping each DRG
neuron. All statistical comparisons of BMT control versus BMT YG8R were analyzed using the unpaired t test. Correction for
multiple comparisons within each anatomical location were made using the Holm–Sidak method. **p < 0.01, ***p < 0.001; values
represent mean 6 standard error of the mean. For all tests, n 5 4 (BMT YG8R), all other groups n 5 5. ACST 5 anterior cortico-
spinal tract; DAPI 5 40,60-diamidino-2-phenylindole; DC 5 dorsal column; DNoC 5 dorsal nucleus of Clarke; LCST 5 lateral corti-
cospinal tract; SCT 5 spinocerebellar tract.



FIGURE 6: Bone marrow transplantation (BMT) results in enhanced green fluorescent protein (EGFP) bone marrow (BM)-derived
cells fusing with neurons throughout the nervous system of YG8R mice. (A) An EGFP-expressing binucleate dorsal root gan-
glion (DRG) neuron labeled with NeuN. The hatched areas in the smaller images depict the locations of the 2 distinct nuclei.
(B) A binucleate DRG neuron visualized using hematoxylin and eosin (H&E) staining. (D) An EGFP-expressing binucleate Pur-
kinje cell. (E) A binucleate Purkinje cell visualized using calbindin-D28K/40,60-diamidino-2-phenylindole (DAPI) labeling. (G) An
EGFP-expressing cell in the cerebellar dentate nucleus (DN). The smaller images depict the same cell coexpressing NeuN. (H)
ßIII-tubulin–expressing binucleate cells (arrows) within the cerebellar DN. (C, F, I) The percentage of binucleate DRG neurons
(C), Purkinje cells (F), and cerebellar DN neurons (I) in non-transplanted and transplanted mice. (J, K) Fluorescent in situ hybridi-
zation (FISH) analysis in BMT YG8R mice, using fluorescently labeled X (green) and Y (red) chromosomal probes, shows the
presence of the male donor Y chromosome in the nucleus of both Purkinje cells (J) and DRG neurons (K). (L, M) Purkinje cell (L)
and DRG neuron (M) heterokaryons in BMT YG8R mice containing 3 distinct chromosomes (XXY), providing evidence for fusion
between male wild-type BM-derived cells and female YG8R host neurons. Hatched areas indicate the locations of the higher-
powered images without DAPI labeling. Statistical comparisons of control versus YG8R, YG8R versus BMT YG8R, and control
versus BMT control mice were analyzed using analysis of variance followed by Holm–Sidak multiple comparisons test (C, F) or
Kruskal–Wallis followed by Dunn’s multiple comparison test (I). *p < 0.05; values represent mean 6 standard error of the mean.
For all tests, n 5 4 (BMT YG8R), all other groups n 5 5.



FIGURE 7: Granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF) administration improves behavioral and
anatomic parameters in YG8R mice that have received a bone marrow transplant (BMT). (A, B) Longitudinal results for (A)
motor performance (rotarod and string test; A) and locomotor performance (open field test: total squares; B) in mice from 3 to
9 months of age. (C) Footprint (gait) analysis in mice 9 months of age. (D–G) The number of enhanced green fluorescent pro-
tein (EGFP) cells/mm2 within the nervous system (D), the frequency of EGFP cells wrapping each dorsal root ganglion (DRG)
neuron (E), the percentage of binucleate Purkinje cells (F), and the number of CD11b/c-positive cells/mm2 within the spinal
cord and dentate nucleus (G). (H) The number of dorsal nucleus of Clarke (DNoC) neurons/mm2. Statistical comparisons of
YG8R versus BMT YG8R G-CSF/SCF and BMT YG8R versus BMT YG8R G-CSF/SCF were analyzed using multiple linear regres-
sion (A, B), unpaired t test (correction for multiple comparisons within each anatomical location were made using the Holm–
Sidak method; D, E, F), or an analysis of variance followed by Holm–Sidak multiple comparisons test (C, G, H). Multiple regres-
sion was employed to determine whether there was an independent significant effect of cytokine administration (in trans-
planted YG8R mice) or BMT 1 cytokine administration (in YG8R mice) on behavioral score. *p < 0.05, **p < 0.01, ***p < 0.001;
values represent mean 6 standard error of the mean. For all tests, n 5 4 (BMT YG8R), all other groups n 5 5. ACST 5 anterior
corticospinal tract; DC 5 dorsal column; LCST 5 lateral corticospinal tract; ns 5 not significant; SCT 5 spinocerebellar tract.
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Discussion

Here we provide evidence that transplantation of BM

cells expressing normal copies of the frataxin gene (Fxn)

in a humanized mouse model of FA leads to significant

functional, biochemical, and pathological improvements.

Tissue repair is thought to involve the selective recruit-

ment of stem and progenitor cells, both local and including

those derived from the BM.35,36 Post-BMT, YG8R mice

displayed a disease-related mobilization of endogenous

MNCs from the BM niche into the PB. Transplanted con-

trol mice showed no signs of elevated circulating MNCs,

providing possible insights into how "healthy" BM-derived

cells respond in non-pathological/pathological conditions.

Impaired mobilization of progenitor cells may be inherent

to the disease37; in support of this, we have previously

reported a deficiency in neural precursors found throughout

the nervous system of YG8R mice.16

EGFP-expressing BM cells expressed wild-type fra-

taxin, and neurological improvements may relate to the

elevated levels of frataxin within the nervous system. Our

protein expression and histological studies support an

increase in neuronal frataxin levels post-transplant. BMT

also increased expression of PGC-1alpha, a key regulator

of cellular redox homeostasis associated with frataxin

deficiency.38 Re-establishing normal cellular function

through increasing frataxin levels holds therapeutic prom-

ise. This has been demonstrated experimentally using

gene therapy approaches, where increasing cellular fra-

taxin levels through viral delivery of a FXN transgene led

to robust correction of cellular parameters in models of

FA,39,40 in both cell culture and myocardial tissue.

BMT in YG8R mice resulted in stable long-term

engraftment of EGFP-positive BM cells with extensive

integration of EGFP-expressing BM-derived cells into

areas of FA-associated nervous tissue injury, namely

DRG, the spinal cord, and cerebellum.41 Studies have

previously reported that intrathecally injected in vitro

culture-expanded mesenchymal stem cells (MSCs) can

migrate into the DRG of FA mice and exert a neurotro-

phic effect.42 During BMT, small numbers of donor

MSCs are co-infused with injection of BM MNCs; how-

ever, they do not replace recipient MSCs despite com-

plete engraftment of the donor wild-type hematopoietic

system.43 This lack of MSC engraftment post-BMT

implies that it is unlikely donor-derived wild-type MSCs

afford the therapeutic effects of BMT in YG8R mice.

In our study, EGFP-positive cells expressed NeuN

and S100 within the dorsal spinal root and/or DRG,

indicating that BM-derived cells contribute genetic mate-

rial to neuronal, satellite cell, and myelinating Schwann

cell populations. Both dysfunctional frataxin-deficient

neurons and glia are likely to contribute to neuropathol-

ogy in FA.6,7 Pathology in FA occurs primarily in the

DRG, with significant but independent changes to both

the large sensory neurons and surrounding satellite cells,

ultimately resulting in neuronal atrophy.5 Replacement of

these dysfunctional cell types within the DRG of trans-

planted mice, which under normal conditions provide

bidirectional trophic support to one another,5 may

improve the survival of DRG neurons. EGFP-positive

cells surrounding the DRG neurons also expressed the

macrophage marker IBA-1. Following nerve damage,

neuron–macrophage interactions can result in the acqui-

sition of a pro-regenerative phenotype in macrophages,

potentially enhancing the axonal regenerative capacity.44

There are also reports that BM-derived macrophages can

become satellite-like cells following nerve injury, envelop-

ing DRG neurons and modifying the neuronal environ-

ment through regulation of neurotrophin synthesis.45

BM-derived cells fusing with neurons following

BMT, to form binucleate heterokaryons, has been

observed in humans.9 Moreover, pathophysiological pro-

cesses associated with neurological injury in FA appear to

augment these fusion events.46 Experimentally, in mice

that have received BMT, BM-derived cells fuse with cere-

bellar Purkinje cells to form stable heterokaryons.47

Observations from these studies have suggested that BM

cells fusing with neurons and donating their genetic

material represent a biological cell-mediated mechanism

for neuronal protection in the adult brain. EGFP-

expressing binucleate heterokaryons within both the cere-

bellum (cerebellar dentate nucleus neurons and Purkinje

cells) and DRG of YG8R mice revealed significant

nuclear integration of transplanted cells into nervous sys-

tem tissue. Moreover, sex-mismatched BMT (transplant-

ing male donor BM cells into female YG8R mice) and

detection of the Y chromosome provided definitive evi-

dence for cell fusion and donation of nuclear material

between donor BM-derived cells and host YG8R neu-

rons. Cellular fusion has previously been noted in cere-

bellar Purkinje cells47 and spinal cord motor neurons.48

The novel identification of EGFP-expressing binucleate

DRG and cerebellar dentate nucleus neurons, in addition

to sex chromosome analysis, widens the range of cell

types in which fusion has been reported. We also show

that BMT alone increased the frequency of cell fusion

within the DRG. Each fused binucleate cell within trans-

planted mice, in theory, contains a corrected form of the

Fxn gene. Genes derived from the wild-type–donated

nucleus are clearly present and expressed within the

YG8R host cell, demonstrated through translation of the

EGFP transgene, providing novel proof of concept of

BMT gene therapy within the nervous system. In organs
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other than the brain, such as the liver, BM cell migra-

tion and integration represent an important process by

which degenerating genetically damaged cells can be

rescued.14,15

We recently demonstrated that the BM stem cell–

mobilizing cytokines G-CSF and SCF display strong neu-

roprotective effects in the YG8R mouse model (without

prior BMT).16 Here, we show that the combination of

G-CSF and SCF not only displays direct neuroprotective

effects in FA,16 but also aids the delivery of BM cells to

sites of FA-associated injury, stimulating neural repair.

Significantly, we show also that the administration of

G-CSF/SCF to transplanted YG8R mice further mediates

improvements in motor coordination, locomotor activity,

and FA-related pathology. In response to G-CSF/SCF

administration, the incidence of both Purkinje cell fusion

and EGFP-expressing DRG satellite-like cells/macrophages

was elevated. Induced migration of BM-derived cells into

the CNS through G-CSF/SCF exposure is likely due to

the biological action of these drugs on the brain microen-

vironment, or the cells, and not completely dependent on

CNS injury or inflammation.19,20 Cytokine administration

displayed significant anti-inflammatory properties in both

the spinal cord and dentate nucleus of transplanted YG8R

mice, which likely also explains reductions in EGFP-

positive cells detected within those anatomical areas after

cytokine treatment. Whether BM integration is enhanced

through cytokines simply boosting the levels/availability of

circulating stem cells, or they have direct effects on migra-

tory cell signaling processes or passage of cells through the

blood–brain barrier, is unknown; these hypotheses warrant

further investigation.

Currently, there are no effective treatments to slow

the progression of FA. Our findings demonstrate the feasi-

bility of allogeneic BMT as a potential "gene replacement"

therapy that may reduce or help reverse neurological dis-

ability in patients with FA. This procedure has been exten-

sively studied in humans for other diseases, and it must be

taken into consideration that, when used clinically, alloge-

neic transplantation carries significant risks of morbidity

and mortality. The use of reduced-intensity and/or

reduced-toxicity conditioning could be considered to miti-

gate tissue injury and potential long-term side effects asso-

ciated with high-dose myeloablative conditioning. In

conclusion, we have shown that allogeneic BMT offers the

prospect of a novel, rapidly translatable, disease-modifying,

and neuroregenerative treatment for FA.
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