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Abstract

The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the
sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the
ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are
characterized by an extended acidic insertion in loop 7 (L7), which if mutated is known to impair the proper E2-related
functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the
presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well
as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7
role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the
main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic
cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging,
inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are
stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-
recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both
Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the
E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic
and acidic residues in a finely orchestrate mechanism.
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Introduction

The ubiquitin (Ub) system controls almost every aspect of

eukaryotic cell biology, finely coordinating and tuning the

amplitude and duration of cellular signal by the modulation of

protein-protein interactions and the targeting of selected proteins

for proteasomal degradation [1–3]. Protein ubiquitination of

target substrates relies on the sequential action of three classes of

enzymes, the E1 Ub-activating enzyme, E2 Ub-conjugating

enzyme and the E3 ligase [4]. Moreover, ubiquitin-like (Ubl)

proteins have been identified, as SUMO or Nedd8 [4–6]. Even if

signals mediated by mono-ubiquitination of selected substrates

have been recurrently identified, polyubiquitin (polyUb) chains are

the modifications that more frequently mediate a broad array of

diverse cellular signals and functions [7]. The topology of polyUb

chains ultimately dictates the achieved effects and depends on the

different Ub lysines residues (K11, K48 or K63) involved in the

cross-linking of the Ub molecules [3,8–12]. Defects in the Ub or

Ubl pathways are associated with several diseases, from cancer to

neurodegenerative disorders [13–15]. Moreover, the enzymes of

the Ubl cascade very recently turned out to be promising

therapeutic targets [16,17], thanks to their modular nature and

the notion that they can be modulated or inhibited [18–20].

However, the mechanisms involved in each step of the ubiquitina-

tion process and the interactions between the different enzymes of

the cascade are still not well understood in their molecular details,

with the exception of some recent studies focusing on the last steps

in the cascade, which require the action of E3 enzymes [21–24].

Instead, E2 Ub-conjugating enzymes reside at the heart of the

ubiquitination pathway, interacting both with E1 and E3 enzymes,

and are key mediators of protein ubiquitination, Ub chain

assembly and topology [25–29]. Nevertheless, a full understanding

of the molecular mechanisms related to E2 activity and

interactions with cognate E1, Ub or Ubl, and E3s, is still far from

being achieved. The yeast and human genome encodes more than

10/40 E2s, allowing for a multitude of distinct ubiquitination

events [4,30]. Several classification by phylogenetic analyses

[31,32] and sequence/structure similarity have been proposed

[32,33]. In particular, E2s have been recently classified in 17

families, by phylogenetic analysis of seven genomes [31]. All E2s

share a conserved catalytic core domain (Ub-conjugating domain,

UBC), which is the minimum sufficient unit for E2 activity and

adopts a a/b fold (Figure 1A). The UBC domain contains the
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catalytic cysteine and the interaction interfaces for E1 and E3

enzymes, along with conserved sequence motifs (Figure 1A). The

active-site cysteine (Figure 1A) is located in a shallow cleft

interacting with the Ub C-terminal tail [34]. Despite the

conservation of the UBC domain fold, many E2 proteins contain

sequence insertion or extension of the 150 residue core region.

Among these, enzymes belonging to family 3 of E2s, also known as

Cdc34-like E2s, are characterized by a flexible and disordered 12/

13-residues insertion in the b4a2 loop (loop 7, L7), the so-called

‘‘acidic loop’’ (103–112, Ube2g numbering), downstream from the

active site cysteine [31]. The acidic loop has been demonstrated

relevant for proper catalytic function and polyubiquitination [35–

37], and its conformation is known to be regulated by

phosphorylation of distal conserved serines in the UBC domain

[38,39]. Beyond the essential role of the acidic residues in the L7

insertion, few details are known about its structural properties and

how it promotes catalytic function, as well as its role in the

different steps of ubiquitination.

In light of the above scenario, we carried out a computational

study on a subset of representative members of family 3 E2s.

Particular attention was devoted to the L7-mediated intra- and

inter-molecular interactions and different computational ap-

proaches were employed, from sequence and phylogenetic

analyses of 100 sequences of E2 family 3 enzymes, coarse grained

calculations and all-atom multi-replica molecular dynamics (MD)

simulations (overall collecting more than 3 ms of MD trajectories).

Results

The L7 Acidic Loop of E2 Family 3 is an Invariant
Ancestral Motif Characterized by Alternate Hydrophobic
and Acidic Residues

Multiple sequence and structural alignments were carried out,

comparing more than 100 representative members of E2 family 3

(E2-f3) enzymes, isolated from 40 different organisms (Table S1,

Figure S1). The 12/13-amino acid acidic loop insertions

downstream the catalytic cysteine is present only in family 3,

whereas other families (families 5, 7 and 14) are characterized by

less extended insertions of few residues [31]. Phylogenetic analysis

of E2-f3 members allow to identify four different sub-families

(namely R, G1, G2 and #, according to [31]), in agreement with

previous analyses carried out on a smaller subset of 20 sequences

Figure 1. E2 UBC domain and phylogenetic tree of E2 family 3. A) The 3D structure of the E2 UBC domain is shown, along with the conserved
residues in the E2 superfamily. The loops L7, L4 and L8, the catalytic cysteine, the invariant Trp, the HPN (His-Pro-Asn) motif, as well as the proline-rich
motif (PPxxP) are indicated as reported in (26). The structure has been adapted by the 3D X-ray structure of Ube2g2 (PDB code 2CYX). B) The
unrooted phylogenetic tree was obtained by PHYLIP package from multiple sequence alignments of E2 family 3 sequences, reported in Table S1. For
each protein a label referred to the different sub-families (R, R1, R2, G1, G2 and #) is reported. In the lower-left box the conservation degree of each
residues of L7 loop is indicated according to different scoring function. The consensus pattern for L4, L7 and L8 are also reported. C) The 3D structure
of Ube2g2 is used as a reference and each residue coloured with different shade of green according to Ca rmsf values calculated from the MD
simulations (from light green to dark green for increasing rmsf values). The rmsf intensity of each residue of L7 is indicated on the primary sequence
of L7 in the upper box. The data from MD simulations of each E2 enzymes of family 3 considered in this study are reported in Text S1.
doi:10.1371/journal.pone.0040786.g001

Functional Role of Loop 7 of E2 Enzymes
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derived from 7 organisms [31] (Figure 1B). Our analysis of a

higher number of family 3 sequences, which widely span the tree

of life, allows to better clarify specific characteristics of E2-f3

members and also to catch differences among the sub-families.

Indeed, it turns out that all the E2-f3 enzymes are characterized

by the 12/13 amino acid insertion in L7, in which we identified a

pattern of strongly conserved alternate hydrophobic and acidic

residues (Figure S1; Figure 1B). In particular, the pattern of

hydrophobic/acidic residues in L7 insertion is an invariant feature

of all the family 3 members, independently of the sub-family

(Figure 1B, Figure S1). The conservation degree of L7 residues

(Figure 1B, lower panel) was estimated, as well as a common

consensus pattern of the whole L7 loop (residues 92–110 or 97–

114 in Ube2g2 and yeast Ubc3 (Cdc34), respectively) was defined,

ILHxPG-DPxuhEhxxERW, where x indicates non conserved amino

acids, h hydrophobic residues and u tiny residues (A, G or S). I92,

L93, P96, G97, P99 are strictly conserved, as well as hydrophobic

residues at positions 101/102 and 104 (Ube2g2 numbering).

Three acidic residues (D98, E103 and E107, Ube2g2 numbering)

in L7 also emerge as invariant across all the family 3 members and

spatially separated by hydrophobic residues.

The strong conservation of both amino acid composition and

length of the acidic loop strongly suggests that the division in sub-

families was an evolutionary event that took place after the

appearance of the acidic insertion in L7. In fact, it was previously

pointed out that the subdivision of family 3 in different sub-families

was also anterior to the separation between the Animalia and Fungi

phyla, which has been estimated around 1.3 billion years ago [31].

Therefore, our analyses identify an ancestral and conserved

structural and sequence motif in E2 enzymes. To enforce this

notion, we also found E2 sequences ascribable to family 3 and

conserving the acidic/hydrophobic insertion in the loop in some

bacterial species, indicating the ancient origin of these E2

enzymes.

The invariant Trp residue (W110 in Ube2g2) is located few

residues downstream the 12/13-residues insertion. X-ray struc-

tures of the complexes between E2 enzymes and RING or HECT

E3 proteins reveal that W110 is located close to a proline (P112 in

Ube2g2) at the tip of L7, as well as to the two prolines at the base

of L4 [40]. The latter belong to a proline-rich motif (Y/FPxxPP)

7/11 amino acids upstream to the HPN motif [31]. According to

our multiple sequence alignment, the pro-rich motif in L4 of

family 3 can be summarized by the consensus pattern

FPxn(Y,F)Ph(S,R)PP, where x indicates non conserved amino acids,

h hydrophobic residues and n acidic residues. Interactions between

W110 and the prolines were speculated to stabilize the L7 loop

and contribute to the correct reciprocal orientation of L4 and L7

loop for E3 recognition mediated by L4 specific residues [31]. In

the proximity of the catalytic cleft also loop 8 (L8) is located, which

is also rich of hydrophobic residues and is characterized by a

consensus sequence PNxxS(P,G)AN in family 3 (Figure S1,

Figure 1B).

The role of the L7 acidic residues, with particular attention to

the effects induced by their mutations on protein function, was

thoroughly characterized by biochemical assays [35–37]. Never-

theless, a rationale of the effects at the molecular level is still

missing or at least incomplete, as well as no information is

available about the L7 hydrophobic residues. The high conserva-

tion of a group of hydrophobic residues in L7, derived from our

alignments and phylogenetic investigation, prompted us to further

investigate their role and interactions using a multiscale simulation

approach.

A Network of Chained Correlated Motions Involving
Hydrophobic Residues of the Acidic Loop 7 and Loop 8
during Native Protein Dynamics

At first, the methods available in FlexServ [41], Normal Mode

Analysis (NMA), Brownian Dynamics (BD) and Discrete Molec-

ular Dynamics (DMD), have been carried out on 10 three-

dimensional (3D) structures of E2-f3, both using the experimen-

tally known 3D structures and a subset of homology models. In

particular, we include in the study the X-ray structures of

Saccharomyces cerevisiae Ubc7 (pdb entry 2UCZ), human Ube2g2

(pdb entry 2CYX), Caenorhabditis elegans Ubc7 (pdb entry 1PZV),

Mus musculus Ube2g2 (pdb entry 3FSH), the NMR resolution of

human Ube2g2 (pdb entry 2KLY), the average structures from the

MD simulations of yeast Cdc34 (Ubc3) [39]. Furthermore,

homology models were carried out from Saccharomyces pombe

Ubc3 (SpUbc3), Arabidopsis thaliana Ubc7 (AtUbc7) and Drosophila

melanogaster (Dm_CG40045 E2).

In particular, from the dynamic ensemble collected by each of

the methods mentioned above, chained correlations were calcu-

lated by post-processing of the dynamical cross-correlation matrix

(DCCM) of atomic fluctuations (see Materials and Methods). The

analysis of networks of correlated residues is useful to determine

the connections between movements of different protein residues

and their communication across the 3D structure [21,24,42–44].

In several cases, these coupled residues, besides defining sequence

connections, allow the identification of biologically relevant

intramolecular ‘‘communication’’ pathway [41]. In particular,

chained correlations may highlight residues which are character-

ized by long-range communication through the calculation of

intermediate correlations.

In this context, we selected as root residues for chain

correlations the hydrophobic residues located in the acidic loop

and its neighborhoods for each of the available structures.

Interestingly, most of L7 hydrophobic residues feature high

correlations not only with the residues in their immediate

proximity, but also with some distal residues, which are mainly

located in L8 on the opposite side of the catalytic cleft with respect

to L7. In particular, chained correlations and consequent

intramolecular communications during dynamics between a

cluster of L7 residue (P96, P100 and M101) and a group of L8

residues (V138, P130, G/P135, Ube2g2 numbering) have been

identified (Figure 2A, Table S2).

Closed Inactive L7 Conformations in the Native Ensemble
are Triggered by Coupled Motions between L7 and L8

To explore L7 conformational changes and intra-molecular

interactions in atomic details, classical molecular dynamics (MD)

simulations of Ubc7, Ubc3 (Cdc34) and Ube2g2 (Table 1) were

carried out. In fact, previous investigation pointed out an intrinsic

high flexibility of the acidic loop. This was supported by different

methods as the crystallographic B-factor of human and yeast Ubc7

[45,46], recent NMR studies of free Ube2g2 in solution [47] or

Ube2g2 in complex with a fragment of its E3 partner [19], as well

as root mean square fluctuations from MD simulations of non-

phosphorylated and phosphorylated Cdc34 [39], suggesting the

possibility of conformational changes in L7. It is not surprisingly

therefore that the B-factor on the first 10 principal modes derived

by NMA, BD and DMD sampling (Text S1), as well as the

Carbon-alpha (Ca) root mean square fluctuations (rmsf) profiles

from MD simulations (Figure 1C, Text S1) reveal a high flexibility

of the acidic loop, with particular regard to the 12/13 residues

insertion in all the E2-f3 here investigated.

Functional Role of Loop 7 of E2 Enzymes

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40786



Indeed, the MD simulations here presented allow to better

sample the conformational space accessible to L7 in family 3,

highlighting larger structural rearrangements and a propensity for

exploring mainly closed conformations (with respect to the

catalytic cleft) around the native state and in absence of post-

translational modifications. In fact, the analyses of residues

characterized by coupled motions during MD dynamics, as

derived by DCCM analysis (Materials and Methods), point outs

in all the simulated E2s several anti-correlated motions between

L7 and L8 and a3 helix, respectively (Figure 2B). The anti-

correlations indicate the intrinsic tendency of the two regions to

approach each other in the native ensemble. This notion is also

confirmed by the projection, on the 3D structure, of the first

principal component from essential dynamics, which describes the

loop motion (Figure 2C).

The coupled motions have also been evaluated considering their

time-evolution during each independent replica, to better disclose

the relationship between L7 and L8, monitoring DCCM with 1ns

and 0.5 ns time-windows. Highly anti-correlated motions in the

first part of the trajectories, whose starting structures were open

conformations, are evident. They are an index of the propensity of

L7 and L8 to approach each other, in agreement with the results

from chained correlations described in Figure 2A. Moreover,

when L7 and L8 are at a distance lower than 0.6 nm, the

anticorrelated motions tend to decrease and further to disappear,

in agreement with the established interaction between the two

Figure 2. Intramolecular communication between hydrophobic residues of L7 and L8 and conformational variability of L7 in the
native state. A) Chained correlations between L7 hydrophobic residues (coloured in cyan) and L8 residues are indicated by sticks of different shades
of green related to the depth level at which the long-range correlation has been identified (from depth level 3 (dark green) to 5 (light green)). The
secondary structures are indicated as cartoon and the catalytic cysteine highlighted in yellow. A consensus of chained correlations identified for
Ube2g2 (pdb entry 2KLZ) are reported as example, whereas the data for each proteins are reported in Table S2. B) Anti-correlated motions of L7 and
L4 in the native conformational ensemble of E2 family 3 enzymes. The cross-correlated motions in E2 family 3 MD (correlation threshold of 0.35 and
time-window for the calculation of 4 ns) are shown as red (positive correlations) and blue (negative correlations, anti-correlated motions) sticks. The
catalytic cysteine and L7 residues are shown in yellow and pale-cyan, respectively. C) The projections of the first principal component derived by PCA
analysis of the MD ensemble on the 3D structure are indicated with different shade of colours for blue to pink.
doi:10.1371/journal.pone.0040786.g002

Table 1. Summary of the multi-replica all-atom MD simulations.

Protein system
Number of
replicas

Duration per
replica Total duration Starting structure

Cdc34 (Ubc3) 20 20/80 ns 0.92 ms Cdc34 models using CeUbc7 (replicas 1–4), hUbe2g2
(replicas 5–8 and 13–20) ScUbc7 (replicas 9–12) as
templates

Cdc34-pS130-pS167 11 50 ns 0.55 ms Average structure from ensembles A (replicas 1–3), B
(replicas 4–5) and C (replicas 6–7), D (replicas 8–9), and E
(replicas 10–11) of native Cdc34 MD [39]

Cdc34-pS130 10 50 ns 0.50 ms Average structure from ensembles A (replicas 1–2), B
(replicas 3–4) and C (replicas 5–6), D (replicas 7–8), and E
(replicas 9–10) of native Cdc34 MD [39]

Ubc7 4 40 ns 0.16 ms X-ray structure of ScUbc7 (pdb entry 2UCZ)

Ube2g2xray 4 40 ns 0.16 ms X-ray structure of hUbe2g2 (pdb entry 2CYX)

Ube2g2NMR 8 40 ns 0.32 ms NMR structure of hUbe2g2 (pdb entry 2KLY)

Cdc34-Ub 4 40 ns 0.16 ms Cdc34-Ub models using as template Ubc1-Ub (pdb entry
1FXT)

Ubc1-Ub 1 40 ns 0.04 ms Ubc1-Ub NMR structure (pdb entry 1FXT)

Ub-Cdc34-E3 2 40 ns 0.08 ms Ub-Cdc34-Rbx1 models using as template the UbcH7-cClb
RING (pdb entry 1FBV) and Rbx1 (pdb entry 3DQV)

doi:10.1371/journal.pone.0040786.t001

Functional Role of Loop 7 of E2 Enzymes
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loops and the consequent appearance of correlated motions

between them.

The distances between the catalytic site and L7 as a function of

catalytic cysteine solvent accessibility, in agreement with this

scenario, identify the presence of two main conformational states.

Most of the structures collected during native dynamics are

characterized by closed or semi-closed L7 conformations, which

are indicated by an average distance of less than 0.6 nm between

L7 and the catalytic cysteine, along with a solvent-buried Cys,

featuring solvent accessibility lower than 10%, as previously

observed for Cdc34 [39]. The other population is characterized by

semi-open or open L7 conformations with distances higher than

1.0 nm from the catalytic site and a higher accessibility of the

catalytic cysteine with solvent accessibility higher than 35%. To

better quantify the different subpopulations, the conformational

ensemble achieved by the simulations was divided, according to

the distance between the acidic residue and the catalytic site in

closed (distance lower than 0.6 nm), semi-open (distance between

0.6 and 1.0 nm) and open (distance higher than 1.0 nm)

conformations. The classification was also checked according to

accessibility of the catalytic cysteine side-chain (,20%, 20%,Cys

accessibility,35%, Cys accessibility .35% for closed, semi-open

and open E2 conformations, respectively). It turns out that the

ensemble is averagely composed by 65%, 9% and 26% of closed,

semi-open and open states respectively, according to the distances

between acidic loop and the catalytic site. The values are similar if

the division is carried out according to solvent accessibility of the

catalytic cysteine, collecting 75%, 7% and 18% for closed, semi-

open and open states, respectively.

Moreover, calculations of putative pockets and cavities by Cast-

P [48] on snapshots from the MD ensemble identify a binding

cavity including the catalytic site only in the E2s structures in

which L7 is characterized by open conformations (Figure 3). The

cavity has an average area of 324,49 Å2 in the structures with L7

open conformations, whereas it decreases below 60 Å2 or even less

in the so-called closed conformations, enforcing the relevance of

L7 conformational changes to make the catalytic site accessible for

Ub binding.

Our results suggest a general role for L7 as a lid modulating Ub-

charging activity in all the E2-f3 members. Moreover, here we

showed that, in the inactive non-phosphorylated state, all the

Cdc34-like enzymes are more likely to populate conformational

states in which L7 is in closed conformations and a buried catalytic

site. The driving force for this closure it is to be searched in the

conserved hydrophobic residues, previously not characterized and

coupled motions during dynamics between L7 and L8 residues.

Conserved Network of Hydrophobic Interaction between
L7 and L8 Stabilized Closed Conformations of E2
Enzymes of Family 3

The existence of a tight network of chained cross-correlations

between hydrophobic residues in L7 and hydrophobic residues in

L8 (Figure 2A, Table S2), which forms one of the side of the

catalytic pocket, suggest that hydrophobic interactions are likely to

take place between L7 residues and the hydrophobic residues

surrounding the catalytic site. Therefore, we selected structures in

which L7 is in closed conformations, i.e. all the structures in which

the distance between the center of mass of the catalytic cysteine

and the center of mass of the acidic loop is lower than 0.6 nm for

each E2 macro-trajectory. Furthermore, these ‘‘closed E2’’

ensembles were used to monitor the interactions between

hydrophobic residues of L7 and L8 and to calculate their

persistence. It turns out a cluster of hydrophobic interactions

between L7 and L8 that are stably interconnected during

dynamics and promote the E2 ‘‘closed’’ conformations

(Figure 4A). A pivotal role emerges for M106, P105 and P110 of

L7, which provide a tight network of hydrophobic interactions

with P140 and I137 of L8 and A146 and V147 on the adjacent a3

helix (Cdc34 numbering). Hydrophobic interactions among the

homologous corresponding residues of L7 and L8 have been also

identified in all the other simulated E2-f3 enzymes, pointing out,

one more time, a common mechanism mediated by the same

conserved residues.

Loop 7 of E2 Family 3 Classifies as an Omega Loop, which
is Generally a Structure Associate to Crucial Regulatory
Function in Protein System

Loop 7 of E2-f3 is a long and mostly disordered segment.

Random coil structures are known to often play a crucial role in

the regulation of biological processes [49]. In several cases, these

structures are not merely disordered regions, but adopt a loop-

shaped conformation, with a small distance between their

extremities (hinges points). The main chain of these segments,

connected to the rest of the protein structure by the hinges, traces

a conformation resembling a Greek omega, which have been

therefore referred as omega loop and they are generally associated

with regulatory functions [50]. In this context, considering the

strict conservation of the acidic loop in family 3 and its capability

to modulate the ubiquitin-charging activity [39], we also assessed if

L7 can be classified not merely as an unstructured random coil

motif, but as an omega loop, according to parameters proposed in

the literature for omega loop classification.

An omega loop is generally defined by its length, the maximum

distance between Ca-Ca atoms in the loop which is restrained to

well-specific values, the absence of secondary structures apart from

few turns, and the distance between the hinges [51]. In fact, the

hinges distance should be in the range of 3.7–10 Å, as well as

shorter than two-thirds of the longest Ca-Ca distance across the

omega segment [51]. All these aspects have been analyzed on the

members of E2-f3, using the structures from the MD ensembles.

L7, in agreement with omega loop features, includes around 13

residues and it does not contain regular elements of secondary

structures, both in the experimental depositions and in the MD

conformations. Only in some E2 structures a short 3.10 helix is

observed, but it is not considered as a stable secondary structural

element and it has been also reported in other omega loops [51].

In order to further verify if L7 can be described as an omega

loop, an hinge point prediction has been carried out both

analyzing rmsf profiles from single MD replicas and macro-

trajectories of Ube2g2, Ubc3 and Ubc7 (Text S1), as well as using

data from NMA, BD and DMD sampling for all the experimental

and model E2 structures previously described (Figure 4B–4C). In

fact, a suitable hinge structure should display a fixed domain

characterized by low RMSF/B-factor values and a floppy domain

characterized by high RMSF/B-factor values. Hinge residues are

generally located at the region of sharp slope change between the

fixed and floppy domains [52]. At the L7 N-terminal extremity,

three putative hinges have been detected, which are also strictly

conserved in the family 3 (Figure 1B); I92, L93 and H94 (Ube2g2

numbering) (Figure 4B). All the predictions indeed agree in the

identification of the invariant Trp (W110, Ube2g2 numbering) as

the C-terminal hinge (Text S1; Figure 4C). The pairwise distances

between the Trp Ca atom and each of the 3 putative N-terminal

hinges have been monitored in the available MD macro-

trajectories to verify if they fall within the accessible range for

omega loop [3.7–10 Å]. It turns out a range of distances of 4.2–

12 Å, 3.8–10.1 Å and 4.4–12.5 Å for the W110-L92, W110-L93

and W110-H94 pairs, respectively. L93 therefore turns out to be

Functional Role of Loop 7 of E2 Enzymes
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the most suitable N-terminal hinge (Figure 4B–D). The identified

hinge points also satisfy the hydrophobic nature suggested by Ring

et al. [52]. Moreover, for each system, the maximum distances

between Ca-Ca atoms in the loop has been monitored, which

turns out to be always shorter than 2/3 of the maximum distance,

in line with the requirement to be classified as an omega loop. It is

also worth to mention that L7 is also rich in glycine, proline,

aspartate, tyrosine, serine and asparagines, which have been

suggested to be the most frequent residues in omega loops [51]

[49,53].

In the Active Phospho-E2s, L7 Open Conformations are
Stabilized by Hydrophobic Interactions with L4, as well as
by Electrostatic Interactions of L7 Acidic Residues and the
Bound Ub

Phosphorylation of Cdc34 catalytic domain was demonstrated

to activate Ub-charging activity [38,39]. In particular, phosphor-

ylation of a conserved serine at position 130 causes electrostatic

repulsion with the acidic residues in L7, promoting an outward

displacement of the loop and an open and competent conforma-

tion of the catalytic cleft for Ub-charging [39].

In light of the above scenario, we analyzed the simulations of

phospho-Cdc34 variants with particular attention to the L7

hydrophobic residues, which were not considered in the previous

study and in the available literature as far as we know. Since the

phospho-enzyme is stabilized in an open conformation, the L7

hydrophobic residues are no longer able to interact with residues

of the catalytic pocket. It turns out that when the acidic loop is

stabilized in the open conformation by phosphorylation, its

hydrophobic residues rearrange to interact with hydrophobic

conserved residues in L4 (Figure 1B, Figure 5A). In particular, the

interactions involve some residues of the proline-rich motif, which

are conserved in the whole E2 superfamily [31]. The phosphor-

ylation not only stabilized L7, as previously observed, reducing its

atomic fluctuation but also L4, indicating that the hydrophobic

interactions between L7 and L4 in phospho-variants of E2-f3

enzymes are implicated in the reciprocal stabilization of the

conformation of these two loops. In fact, a concomitant decrease of

atomic fluctuations of L7 and L4 can be identified in the

comparison between rmsf profiles of phospho- and wild-type

Cdc34 variants (Figure 5B), which also well fit with strongly

correlated motions (higher, in absolute value, than 0.4) between

the two loops induced by phosphorylation. These correlations are

absent ore very weak (lower, in absolute value, than 0.2) in the not

phosphorylated variant.

The L7 open conformation allows, in turn, a full solvent-

accessible orientation of its acidic residues (side-chain solvent

accessible surface, SAS .70%) in absence of the Ub molecule.

To provide insights on the steps of the ubiquitination cascade

upon E2 phosphorylation, MD simulations of Cdc34-Ub com-

plexes were carried out and particular attention was devoted to the

electrostatic intramolecular interaction networks. The L7 acidic

residues are in a competent conformation for interaction with Ub,

Figure 3. A cavity competent for ubiquitin-charging in E2 ‘‘open’’ conformations. The residues in the solvent-accessible pocket around the
catalytic cysteine as calculated by CASTp on representative snapshots from the MD simulations of Ube2g2 (left), Ubc7 (middle) and Cdc34 (right) are
indicated by spheres, along with the average area and volume of the cleft in open (upper panels) and closed (lower panels) conformations of L7.
doi:10.1371/journal.pone.0040786.g003
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being in a suitable orientation for salt bridge interactions with the

positively charged face of the Ub molecule (Figure 6A–B). In the

E2-Ub complexes the hydrophobic residues of the L7 loop

maintain the interactions with L4 and the L7 acidic residues

rearrange to interact with the Ub molecule. In fact, interactions

between L7 E109/D108 and D104 (Cdc34 numbering) with the

C-terminal R72 and R74 of Ub can be detected with a persistence

higher than 30% during the two Cdc34-Ub simulations

(Figure 6A–B). In addition, the Cdc34 E113 can form a salt

bridge interaction with Ub K11 with persistence around 20%. The

interactions between E2 and in particular its acidic residue on this

face of the Ub molecule, also concur also to long-range stabilize

the side-chain orientation of the known Ub target lysine for poly-

ubiquitination (Ub K48), which can form salt bridge interactions

with other negatively charged residues of the E2 enzyme (mainly

D54 (20.20%), E133 (51.28%) and D134 (61.60%)), as well as the

phospho-S130 [39] (Figure 6A) in around 20% of the snapshots

(Figure 6C). E133 and D134 belong to the acidic consensus for

CK2 phosphorylation [54]. This cluster with a high density of

close negatively charged residues in the E2-f3 (including also E53)

can therefore form a network of electrostatic interactions with K48

in the E2-f3-Ub complexes (Figure 6C), which is likely to be a

specific feature of E2-f3 enzymes or of E2 enzymes conserving the

S130 phospho-site. In fact, in E2 enzymes not characterized by the

acidic loop or conserved phospho-site at 130 position, as Ubc1-Ub

[55], no stable electrostatic interactions involves K48 and the E2

enzyme, as judged by a 40 ns MD simulations of the complex

(Figure 6D). Moreover, in Ubc1-Ub complex Ub has just two

intermolecular salt bridge with the E2 enzyme (Ubc1 E117 and

Ub R42 with 85.74% of persistence during the simulation) besides

the one in the proximity of the thiolester bonds (E117-R72 with a

persistence of 99.41%), in agreement with the fact that in solution

the orientation of the Ub molecule within the E2 cavity was

reported to be highly variable [34].

Figure 4. A cluster of hydrophobic interactions between L7 and L8 in inactive E2 conformations and hinges of L7 omega loop. A)
The networks of hydrophobic interactions between L7 and L8 residues have been monitored in the closed states from MD simulations of Ubc7,
Ube2g2 and Cdc34 and their persistence in the ensemble is indicated by sticks coloured from green (low persistence) to blue (high persistence). For
sake of clarity, the hydrophobic networks have been mapped on an MD average closed structure of Cdc34 with the catalytic cysteine, the L7 and L8
hydrophobic residues indicated as yellow, light cyan and dark red, respectively. B–C) The prediction of L7 hinge points, in all the 11 structures of E2
family 3 members are reported both for the N-terminal (B) and C-terminal hinges (C) calculated by NMA, BD and DMD methods. D) The surrounding
of the catalytic site of E2 family 3 enzymes is shown, using Ube2g2 as representative members. L7 is coloured according to the hinge prediction
values and the identified hinge W110 and L93, along with the average distance between them during the simulation is indicated.
doi:10.1371/journal.pone.0040786.g004
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The Acidic Loop also Provides an Interaction Interface for
the Cognate E3

Once the E2-Ub complex was formed, it has to be recruited by

the cognate E3. We therefore provide details on the interactions

involving L7 acidic loop in the ternary Ub-E2-E3 complex by

molecular dynamics (MD) simulations. In particular, to assess the

role of the L7 acidic loop in the recognition and interaction with

the E3, a ternary complex between Cdc34-Ub and the domain

Rbx1 (RING-box protein) of the cognate E3 RING was. obtained

for homology model, using as template the 3D X-Ray structure of

Clb (E3 domain)-Ubch7 (E2) complex (as described in the Method

section). The RING domains of Rbx1 and Clb are structurally

very similar, with a mainchain rmsd of 1.59 Å. Moreover, Ubch7-

like and Cdc34-like E2s, even if belonging to two different E2

families according to the classification of Michelle et al. [31], share

about 28% and 60% of sequence identity and similarity,

respectively and when superimposed a mainchain rmsd lower

than 1.70 Å, allowing to carry out a comparative modeling

procedure for the ternary complex, as also recently applied to

other complexes of E2-E3 and Ub [56]. L7 acidic residues can

provide an interaction interface for the RING subdomain, thanks

to electrostatic interactions with positively charged residues of

Rbx1 (Figure 7). In particular, the L7 acidic residues D104, D108

and E113 (Cdc34 numbering) are in a conformation suitable to

form salt bridge interactions with arginines and lysines of the Rbx1

domain (K89, R86, R91 and more rarely R99), creating an

extended network of electrostatic interactions including all the

partners of the ternary complex Ub-E2-E3 (Figure 7). These

interactions are generally characterized by a high persistence

(Table 2) in both the two independent MD simulations of the

ternary complex, enforcing their relevance in mediating the

interface between E2f3 catalytic domain and Rbx1. Interestingly,

if the interactions exploited by loop 7 of UbcH7 and Clb RING

domain are considered, they turned out to be mostly driven by

hydrophobic interactions, as also recently pointed out by Chazin’s

group for other UbcH7-E3 interactions [57]. In fact, they also

demonstrated, by site-directed mutagenesis, that a SPA motif in

loop 7 of UbcH7 and UbcH5 is required for a specific binding to

the E3 ligase CHIP. The different nature of the intermolecular

interactions exploited by L7 in Ubch7 and Cdc34 with their

cognate RING domains enforces the notion that the acidic loop of

Cdc34 can play an important role in the E2-E3 complexes. Several

experimental data available in the literature can support this

model of interaction between the acidic loop and Rbx. For

example, in two different works it has been demonstrated that

mutations in human Cdc34 of the Asp residues of the acidic loop

affect the capability of assembly polyubiquitin chains on the target

substrate [35,36], an action that has to be mediated by interaction

with the cognate E3. Moreover, in rabbit Ubc7, it was shown that

a deletion of the acidic loop did not allow the E3-dependent

conjugation to endogenous reticulocyte proteins [58].

Discussion

The computational study here presented, integrating phyloge-

netic analyses to coarse-grained and atomistic MD simulations,

shed a new light on the role of the acidic loop L7 in this group of

enzymes.

At first, the 12–13 residue insertion in L7 turns out to be an

ancestral and conserved motif, characterized by an invariant

alternance of hydrophobic and acidic residues in all the family 3

members, independently on the sub-family (Figure 1B). In fact,

here we demonstrated that the L7 acidic loop of Cdc34-like

enzymes is a conserved functionally relevant omega loop in family

3 E2s. At first, our results enforce the notion that L7 provides a

general regulatory mechanism, acting as a ‘‘lid’’ which modulates

the accessibility of the catalytic site and impairs Ub-charging

capability of E2-f3 enzymes, at least until a conformational change

is promoted by an external signal, as post-translational phosphor-

ylation [39] or the interaction with the cognate partners in the

cascade [19].

The analyses here discussed and their interpretation in the

context of the available literature [35–37], more importantly,

Figure 5. Intermolecular interactions involving the acidic loop in phospho-E2 and in the E2 complexes with ubiquitin or the
cognate E3. A) The networks of hydrophobic interactions between L7 and L4 residues have been monitored in the open states from MD simulations
of phospho-Cdc34 (both pS130-pS167 and pS130 variants) and their persistence in the ensemble is indicated by sticks coloured from green (low
persistence) to blue (high persistence). For sake of clarity, the hydrophobic networks have been mapped on an average open structure of Cdc34 with
the catalytic cysteine, the L7 and L4 hydrophobic residues indicated as yellow, light cyan and magenta, respectively. B) Ca rmsf profiles from
phospho- and non-phosphorylated Cdc34 variants. The rmsf peaks relative to L7 insertion and L4 are indicated by the arrow.
doi:10.1371/journal.pone.0040786.g005
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point out a functionally relevant role of L7 of E2-f3 not only in

Ub-charging steps, but in all the different steps of the ubiquitina-

tion cascade. In fact, the strict conservation and spatial alternation

of hydrophobic and acidic residues in L7 has a functional role,

providing the enzymes with the possibility to regulate several

different intra- or intermolecular interactions required in the

different steps of the ubiquitination cascade. The alternance of

hydrophobic/acidic residues may be an ancestral characteristic of

E2 enzymes that has been lost during evolution or gene

duplication in several E2 families specifically involved in different

functions with respect to the Cdc34-like enzymes. This is attested

by bacterial E2-like enzymes featuring a Cdc34-like acidic

insertion, as well as by the existence of reminiscences of the acidic

insertions in other E2 families, as E2s involved in sumoylation

(family 7) or UbcH7 itself (family 4), here employed as template.

A general model can be described for L7 involvement in the

different stages of the ubiquitination pathway of family 3 E2s

(Figure 8), integrating our data to the experimental ones available

from the literature [19,35–39,59]. In fact, in absence of a

phosphorylation event [39] or the interaction with the cognate

partners [19], Cdc34-like enzymes feature a structural ensemble in

which both partially open and closed conformations of L7 co-exist,

with the latter being the prevailing native state. L7 hydrophobic

residues can provide the necessary stabilization of the closed states

by hydrophobic interactions with residues surrounding the

ubiquitin binding cleft and they can shield the catalytic cysteine

from not specific interactions with ubiquitin (Figure 8). In fact, we

also previously showed that L7 activation is an event that has to

precede the interaction with E1 Ub-activating enzyme, since until

L7 is displaced toward an open conformation, the E2 ubiquitin

charging cannot take place [39] (Figure 8). Therefore, in our

model, the interaction of inactive Cdc34-like E2s with the cognate

E1, which has already recruited the Ub molecules, will not provide

E2-Ub complexes and the continuation of the Ub cascade.

Figure 6. Ub-E2 family 3 complexes and the ternary complex between Ub-E2 and cognate E3 recognition domain. A–B) The salt
bridge networks in the MD of E2-Ub complexes are reported as sticks coloured from yellow (low persistence) to red (high persistence). For sake of
clarity, the salt bridges have been mapped on average structures of Cdc34-Ub complexes from the two different replicas. The catalytic cysteine, the
positively charged Ub residues and the negatively charged L7 residues, as well as the phospho-S130 are indicated as yellow, blue and red spheres,
respectively. C–D) the residues involved in the electrostatic intermolecular network between Ub K48 and Cdc34 in the Cdc34-Ub simulations (C),
compared to the K48 surroundings in Ubc1-Ub simulations (D). The basic, acidic and the catalytic cysteine are shown as blue, red and yellow spheres,
respectively. The A111 that replace the Cdc34 S130 in Ubc1 and E2 family 1enzymes is also indicated in the panel D.
doi:10.1371/journal.pone.0040786.g006
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The mobility of the acidic loop and its modulation of the solvent

accessibility of Cdc34 catalytic cleft can also explain the low basal

ubiquitin-charging by Cdc34 in absence of the CK2 kinase which

has been observed in vitro [38]. CK2-mediated phosphorylation

events can ensure the correct timing for Cdc34-like E2s activation,

affecting not directly the acidic loop but distal sites, as S130 of the

UBC domain (which is always fully-solvent exposed for phosphor-

ylation, according to our previous studies [39]), and long-range

transmitting the effects to the acidic loop. Also multiple

phosphorylation events in the C-terminal accessory domain of

some Cdc34-like enzymes are known and they still require further

investigations at the structural level, but are more likely involved in

the regulation of the last steps of ubiquitination which require E3

recruitment [60]. In fact, post-translational phosphorylation is a

ubiquitous mechanism for cellular regulation and it is known to

modulate protein conformations by changing their energy

landscape. These effects are largely driven by the electrostatic

perturbation induced by the phosphate group [61], as demon-

strated by other examples of phosphorylations which long-range

transmit an effect to protein active sites [62–65]. Regulation by

phosphorylation of Cdc34-like enzymes well fit with this scenario.

We recently showed that not only phosphorylation at the catalytic

domain of E2-f3 can stabilize the whole protein structure, but

more importantly it can activate the Cdc34-like enzymes

transmitting its effects to the L7 acidic loop [39]. In this phase,

the L7 acidic residues are involved that can promote open

conformations of L7, by repulsive electrostatic effects induced by

the phospho-serine pS130 and therefore provide the access of Ub

to the active site and a competent E2 conformation for the

ubiquitin charging (Figure 8). Only open conformations of L7 are

suitable for Ub charging as highlighted by both cavities detection

during dynamics of the native proteins and the MD simulations of

Cdc34-Ub complexes. In this competent form for the Ub-

charging, L7 of Cdc34-like enzymes populates conformational

states in which its hydrophobic residues stabilize the open

conformations by hydrophobic interactions with L4, whereas the

L7 acidic residues are solvent-exposed. Upon Ub-charging the

acidic residues can rearrange in order to further stabilize the

conformation of Ub within the catalytic cleft by electrostatic

interactions with the C-terminal Ub arginines (Figure 8). This is a

remarkable difference with respect to other E2 enzymes lacking

the acidic insertion, for which heterogeneous and highly flexible

binding modes have been shown in solution [30] and for which the

activity or specificity can be related to the function of other E2

domains, as in the case of Ubc1 [66], or even to the interactions

with other regulatory proteins or even Ubl modification of the E2s

[30,67]. The presence of the intermolecular salt bridges in Cdc34-

Ub complexes, which act as an electrostatic ‘‘Velcro’’, is likely to

allow, on the opposite Ub side, a stabilization of Ub K48 within an

intermolecular electrostatic network with negatively charged

residues well-conserved in E2-f3 enzymes. Interestingly, it has to

mention that in other E2 enzymes, lacking the acidic L7 insertion,

a higher flexibility of the Ub molecules in the E2 pocket has been

pointed out [34]. A lack of stable intermolecular interactions

between Ub and the E2 cavity once the Ub molecules is bound, is

also strengthened by our MD simulations of the Ubc1-Ub

complex, which lacks the acidic insertion in L7. Phospho-S130,

Figure 7. The Ub-Cdc34-E3 interface and the role of the acidic loop. The salt bridge networks between Rbx1 arginine and lysine residues
(blue spheres) and the acidic L7 residues (red spheres) of Cdc34 is shown as turned out from a macro-trajectory of two independent 40 ns MD
simulations. The Ub, Cdc34 and the Rbx1 domain are shown in black, light grey and light cyan, respectively. The rest of the E3 enzyme is indicated in
orange. The salt bridge networks are reported as sticks coloured from yellow (low persistence) to red (high persistence).
doi:10.1371/journal.pone.0040786.g007

Table 2. Salt bridge interactions between Rbx1 and the acidic
loop in the MD Ub-Cdc34-E3 simulations.

Replica 1
(%)

Replica 2
(%) Macro-trajectory

ARG86Rbx-ASP104Cdc34 57.88 99.13 82.63

ARG86Rbx-ASP108Cdc34 58.05 / 23.22

ARG91Rbx -ASP104Cdc34 90.7 36.5 58.19

ARG91Rbx-GLU113Cdc34 97.83 100 99.13

LYS89Rbx- ASP108Cdc34 / 67.16 47.30

doi:10.1371/journal.pone.0040786.t002
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which is a coevolving site with the acidic loop [39] and less

conserved in other E2 families, is located at the interface with K48

and could guarantee a further stabilization to the K48 orientation.

L7 seems therefore not only a lid structure that has to be activated

to begin the ubiquitin-charging activity. It has a more complex

and important role in driving other intermolecular interactions in

the other steps of the ubiquitination cascade, and this rely on the

conservation of not only negatively charged residues but of a group

of hydrophobic residues, both of them exploiting different function

in the different steps.

This scenario also allows to clarify experimental evidences on

mutants of the L7 acidic residues in both yeast and human Cdc34

enzymes, as well as in Ube2g2 [35,36,68]. In fact, the central role

of acidic residues in reducing the conformational freedom of the

E2-bound Ub and in acting as an interface for salt bridge networks

with both E3 and Ub, suggested by our simulations, explain the

fact that mutations of these acidic residues abolished the correct

polyubiquitin chain assembly [68], as well as affect the processivity

and the chain synthesis with a correct K48-polyubiquitin topology

[35,36]. They are all steps related to E2-E3 interactions and in this

context our data can complement the present available scenario

and provide a rational, at the molecular level, of the deleterious

effects induced by mutations of the acidic residues of L7 in Cdc34

on processivity of the reaction, as well as capability to form K48-

linked polyubiquitin chains and the proper Ub transfer [35,36,59].

In particular the effects experimentally observed when several of

the conserved L7 acidic residues are mutated to alanine, well fit

with the simulation data here provided, where these residues has a

central role in the intermolecular electrostatic network present in

both the binary and ternary complexes. In fact, mutation of these

acidic residues is likely to affect the proper intermolecular interface

between E2-Ub and the E3 enzyme and to cause a less specific and

stable interaction interface for E3 recruitment, which in turn can

translate in the detrimental effects induced by L7 mutations or

deletions on the polyubiquitination and Ub transfer.

Figure 8. A model of the role of L7 in the different steps of the ubiquitination pathway in Cdc34-like enzymes. E1, E2 of family 3, and
the ubiquitin are shown in green, orange and cyan, respectively. The structure of the E3 component which includes the Rbx1 domain is shown in
light cyan and the rest of E3 in light orange. The acidic residues in loop L7 of family 3, as well as the phospho-S130 of E2 are indicated as red spheres.
The basic residues of Ub C-terminal tail and on the Rbx1 interaction interface for E2 are shown as blue spheres. E1 enzyme is shown in its
experimentally determined covalently bound to Ub in the upper right and left region of the panel (PDB code: 3CMM, Ub from the complex Ubc1-Ub
is shown), the other structures have been derived by our investigation. E2 enzyme of family 3 exists in both closed inactive and open active
conformations of L7, with closed conformation stabilized by hydrophobic interactions between L7–L8. Phosphorylation of E2 enzyme stabilized the
active conformation of L7 and makes it competent for ubiquitin transfer, so that the ubiquitin can bind to E2 and this determines the progression of
the ubiquitination cascade (right side). The effect is induced by electrostatic repulsion between phospho-S130 and the L7 acidic residues and in open
conformation hydrophobic L7 residue stabilize the interface for E3 binding on L4. The lack of an open L7 conformation does not permit the transfer
of Ub from E1 cavity to the E2 catalytic cysteine. Once the E2-Ub complex is formed (centre), acidic L7 residues can rearrange to interact by salt
bridges with C-terminal tail of Ub. The last of the ubiquitination cascade require the recruitment of E3 enzyme, where L7 can provide by its acidic
residues an additional and specific interaction interface for arginine residues of Rbx1.
doi:10.1371/journal.pone.0040786.g008

Functional Role of Loop 7 of E2 Enzymes

PLoS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e40786



In fact, to complete the model here formulated, our results also

points the involvement of the L7 acidic residues in providing an

interface for interactions with specific domains of the cognate E3

(Figure 7 and Figure 8). In this context, L4 residues are known to

generally mediate interactions with both RING or HECT E3s, in

the E2 superfamily [31]. In the case of Cdc34-like enzymes,

hydrophobic L7 residues stabilize the L4 conformation for E3

interactions, decreasing L4 conformational freedom by the

hydrophobic cluster, and on the other side the conserved acidic

L7 residues confer specificity for interactions with RING

subdomains bearing positively charged residues. In fact, Rbx1 is

rich of arginine residues at the interface with Cdc34 and the L7

acidic residues can act as linker between these charged residues

and Ub arginines creating an extend intermolecular electrostatic

network.

In summary, our investigation shows the molecular details

underlying the pivotal role of L7, not only in influencing ubiquitin

transfer from E1 to E2 and ubiquitin-charging on the E2 catalytic

cysteine, but also in the downstream events related to ubiquitin

chain assembly, which require the interaction with E3 enzymes.

Materials and Methods

Sequence Alignments and Phylogenetic Analysis
Starting from a preliminary set of sequences of E2 UBC

domains of family 3 [31], additional family 3 sequences were

searched by DivergentSet [69], screening the NCBI non-redun-

dant protein database. PSI-Blast [70] was employed with E-value

cut-off of 1e220 and a H-value cut-off of 1e220, in order to find E2

sequences isolated from different organisms, spanning as much as

it possible the tree of life. Redundant sequences and non-

informative pseudogenes were discarded. The sequences set was

further pursued discarding sequences from prokaryotic organisms,

according to ref. [31].

Multiple sequence alignment of UBC domain of family 3 E2s

were performed by ClustalW [71] and T-Coffee [72], comparing

about 100 E2 sequences. In particular, the sequences correspond-

ing to the UBC domain of each E2s have been determined by

intra-family sequence alignments with family 3 members for which

known 3D experimental structure are available. The residue

conservation in the acidic loop and its immediate surroundings

(residues 92–110 in human Ube2g2) was evaluated with different

scoring functions and average conservation values for each residue

was calculated [73]. In particular, entropic scores using Shannon’s

information theoretical entropy, as well as matrix-based and

sequence weighted scores have been employed. Calculation of

conservation degree were carried out with each of these methods

using both Blosum62, Blosum45 and modified PET91 scoring

matrices. Moreover, a consensus pattern for the acidic loop region

was calculated, both with a 70% and 80% threshold of conserved

residues in the aligned sequences.

For phylogenetic analysis, bootstrapping of 100 replicates was

performed on the multiple alignment according to the Felsenstein

method, whose parameters were set on default, using the PHYLIP

Package version 3.69. The set of replicates was used to generate

distance matrices based on Jones-Taylor-Thornton matrix model,

which have been successively used to generate unrooted phyloge-

netic trees according to the Fitch-Margoliash distance matrix

method. A consensus tree was finally generated and visualized by

TreeIllustrator version 0.52 Beta.

Homology Modelling
The known experimental 3D structures of members of E2-f3

were retrieved from the Protein Data Bank (PDB) using BLAST-p

similarity searches. 6 structures turns out (PDB entries: 1PZV,

3FSH, 2UCZ, 2OB4, 2CYX and 2KLY); 5 solved by X-ray

crystallography and a recently deposited NMR structure. They

refer to 5 different E2s: C.elegans Ubc7 (CeUbc7), Mus musculus

Ube2g2 (MmUbe2g2), Saccharomyces cerevisiae Ubc7 (Ubc7), human

Cdc34 (hCdc34), human Ube2g2 (Ube2g2).

In order to increase the subset of protein structures to analyzed,

4 homology models have been generated for yeast Cdc34 (Ubc3),

Saccharomyces pombe Ubc3 (SpUbc3), Arabidopsis thaliana Ubc7

(AtUbc7), and Drosophila melanogaster Dm_CG40045 E2, using as

templates the known X-ray structures of Ube2g2 [PDB entry

2CYX], Ubc7 [PDB entry 2UCZ] and CeUbc7 [PDB entry

1 PZV], which generally share with the targets 40–60% of

sequence identity. Multiple sequence alignments between target

sequences and the templates with known 3D structure were

performed with ClustalW and T-Coffee. The multiple alignments

were compared and modified by hand according to information

on functional residues and secondary structures to get the optimal

alignment for homology modeling, which has been carried out by

Modeller v. 9.9.

Homology models of the complexes of Cdc34-Ub and Ube2g2-

Ub have been created using as template structures Ubc1-Ub (pdb

entry, 1FXT) and further details are provided in the Text S1.

The ternary complex between Cdc34-Ub and Rbx1 has been

obtained by homology using as template the orientation of the

complex between UbcH7 and its cognate E3 RING (c-Clb) (pdb

entry 1FBV), as well as the X-ray structure of Rbx1 RING sub-

domain from pdb entry 3DQV. In particular, structural alignment

of Cdc34 and UbcH7, as well as of Rbx1 and c-Clb RING sub-

domains were perfomed with Dali and the alignments were used to

generate a ternary model by Modeller v.9.9. Two independent

40 ns MD simulations were then carried out on the ternary

complex to better describe the electrostatic interactions at the Ub-

Cdc34 and Rbx1 interface, as well as their persistence in the MD

ensemble.

Molecular Dynamics Simulations
Molecular dynamics (MD) simulations were performed using

GROMACS 3.3 and 4 (www.gromacs.org), implemented on a

parallel architecture with the GROMOS96 force field and also

validated for some sample proteins using the recently released

AMBER ff99SB-ILDN force field [74].

The three Cdc34 models [39], the X-ray structures of Ubc7 and

Ube2g2, as well as NMR structure of Ube2g2, were used as

starting point for all-atom MD simulations. Additional simulations

were carried out for the Cdc34-Ub, Ubc1-Ub and Cdc34-Ub-E3

complexes (Table 1). The starting structures were soaked in a

dodecahedral box of SPC (Gromos96 force field) or TIP3P

(Amber ff99SB-ILDN force field) water molecules and simulations

were carried out using periodic boundary conditions. Productive

MD simulations were performed, upon several solvent equilibra-

tion, termalization and pressurization steps, in the isothermal-

isobaric (NPT) ensemble at 300 K and 1 bar with a 2 fs time-step.

Electrostatic interactions were calculated using the Particle-mesh

Ewald (PME) summation scheme. Van der Waals and Coulomb

interactions were truncated at 1.0 nm. The non-bonded pair list

was updated every 10 steps and conformations were stored every

4 ps.

To improve the conformational sampling, several independent

simulations were carried out for each protein or complex,

initializing the MD runs with different initial atomic velocities.

In the following, MD trajectories collected for the same system at

the same temperature, but characterized by different initial atomic

velocities, are referred to as replicas (Table 1). The replicas
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collected for each system differ for duration and number, spanning

from 2 (in the case of Ub-E2-E3 complexes) to 18 (in the case of

native Cdc34 simulations), and are summarized in Table1,

allowing to collect more than 3 ms of simulations.

Analysis of MD Simulations
The main chain root mean square deviation (rmsd) was

computed using the starting structures as a reference and its time

evolution was monitored, along with the evolution of protein

radius of gyration. From 2 to 10 ns of each replica were required

to reach stable Rg and main chain rmsd values and, therefore

conformations collected in the first part of simulations according to

the convergence of rmsd profiles, were discarded to ensure that

calculated parameters reflect the intrinsic properties of each

system. For each system, the equilibrated portions of each replica

were joined together in macro-trajectories, which are representa-

tive of different directions of sampling around the starting

structures. The secondary structures were calculated by the DSSP

program, whereas the solvent accessibility by Naccess and the

GROMACS g_sas tool. The Ca root mean square fluctuation

(rmsf) per residue from the average structure was calculated on

trajectories filtered on the principal components which describe

more than 70% of the essential space (see below). In order to verify

the consistency of rmsf profiles, the Pearson correlation coefficient

was calculated comparing rmsf data sets relative to the replicas of

the same system. The correlation coefficients are generally higher

than 0.65, indicating that the collected simulations give a

consistent picture of protein flexibility.

CAST-p (Computed Atlas of Surface Topography of proteins)

[48] was used to identify pockets and cavities in snapshots from the

MD simulations using a solvent probe of 1.4 Å radius.

Principal Component Analysis (PCA)
PCA reveals high-amplitude concerted motion in MD trajec-

tories, through the eigenvectors of the mass-weighted covariance

matrix (C) of the atomic positional fluctuations [75], which was

calculated on protein Ca of the single replicas and the macro-

trajectories. In our macro-trajectories, the first three eigenvectors

describe more than 60% of the total motion. The cosine content

and the root mean square inner product [76] on the single replicas

and randomly concatenated macro-trajectories have been calcu-

lated to validate the achieved conformational sampling, according

to a procedure previously developed [77].

Dynamical Cross-correlation Matrices (DCCM) in MD
Simulations

Correlation plots were obtained by computing Ca dynamical

cross-correlation matrices (DCCM) C(i,j) [78], using non over-

lapping averaging windows of 1 ns, and also compared, for

validation, to correlations on averaging windows of 4 and 10 ns.

Only the most significant (|C(i,j)|.0.35) long range (|i2j|.10)

positive and negative correlations have been considered. The

sequence cutoff has been selected to exclude correlations relative

to the inner a-helix structures and contiguous in the primary

sequence. Moreover, since we discuss average C(i,j) matrices, a

cutoff of 0.35 (in absolute value) for significant correlations has

been selected to exclude pairs of residues which are poorly

communicating and likely to be characterized by uncoupled

motions. The cut-off has been selected evaluating the distribution

of the correlation values in the MD ensemble. Moreover, to

carefully verify that the analysis of an average C(i,j) matrix does

not cause a loss of relevant information, the consistency between

the average C(i,j) matrix with the individual matrices used in the

averaging has been evaluated. Correlations were then plotted on

the 3D structures by connecting atoms i and j with lines, with

thickness proportional to C(i,j).

Electrostatic and Hydrophobic Interaction Networks in
the MD Ensemble

The salt bridge interactions have been evaluated as oppositely

charged groups at less than 0.45 nm of distance in at least 20% of

the macro-trajectory frames. For hydrophobic interactions instead

a distance cutoff of 0.55 nm was used. The angles between the

groups involved in the electrostatic interactions have been also

checked. The persistence cut-off of 20% was selected as the

persistence value which best divided the interaction dataset in well-

separated groups, defines as signal and noise, according to a

protocol previously applied [79]. To well identify on the 3D

structure networks of salt bridges and hydrophobic interactions,

the residues involved in the interactions have been represented as

nodes of an unrooted unoriented graph, in which two nodes were

connected by arcs if a salt bridge was identified between them.

Normal Mode Analysis (NMA), Brownian Dynamics (BD)
and Discrete Molecular Dynamics (DMD) Sampling

The analyses of chained cross-correlations and B-factors have

been carried out for the 6 experimental structures and the 4

homology models of E2-f3 enzymes. In particular 3 different

coarse-grained algorithms have been used: normal mode analysis

(NMA), Brownian dynamics (BD) and discrete dynamics (DMD),

as they are implemented in FlexServ [41], which assumes a coarse-

grained representation of the protein (Ca-only). In particular,

NMA and BD consider that the inter-residue interactions are

controlled by a harmonic-like potential energy expressed as:

Eij~C ijKij r0
ij

� �
{ rij{r0

ij

� �2

Where rij is the distance between residues i and j, and r0ij the

equilibrium value, Gij the Kirchhoff connectivity matrix, and

Kij(r
0
ij) the stiffness force constant. In a pure harmonic model

Kij(r
0
ij) has a single value Kij and Gij = 21for atoms within a given

distance cutoff and 0 otherwise. Flexserv implements NMA within

the Anisotropic Network Model (ANM) formalism, which through

the diagonalization of the hessian matrix provides eigenvalues and

eigenvectors that not only describe the frequencies and the shapes

of the normal modes, but also their direction [80]. The Kovacs,

inverse exponential formalisms, in which the force costant is

defined by a continuous function have been employed, in which

Kij(r
0
ij) = C (r*/r0ij)

6 where C is the stiffness costant (C = 40 kcal/

molÅ2) and r* is a fitted constant, taken as the mean Ca-Ca
distance between consecutive residues (r* = 3.8 Å) [41]. In BD, the

potential energy used to compute forces assumes a quasi-harmonic

representation of the interactions similar to that suggested by

Kovacs et al. (ref)

Uij~
1

2
c

r�
D r!0

ij D

0
@

1
A

6

r!ij r!0

ij

� �2

The initial condition is the native structure that is supposed to

be in the minimal energy state, from which the relative vectors rij
0

are computed. Factor C and r* are equal to that discussed above

for NMA. The mass of all Ca atoms is set to 100 dalton (i.e. that of
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an average residue). The velocity-dependent friction of water

(0.4 ps21) is considered. 1 fs time step and 5000000 steps have

been used for BD calculations.

DMD assumes that residue-residue interactions are controlled by

infinite squarewells centeredatequilibrium distancewithwidth fitted

to reproduce flexibility in atomistic details. In the context of this

approach,aparticle is eithermovingataconstantvelocityorcolliding

with a wall, allowing the derivation of trajectories using ballistic

equations. The interaction potentials are defined as infinite square

wells so that theparticle-particle distancesvarybetween (12s)rij
0 and

(1+s)rij
0 with rij

0 being the distance in the native conformationand2s
the width of the square well. Residue-residue interaction potentials

are defined only for the particles at a distance smaller than a cut-off

radius rc in the native conformation, which is set to 8 Å.s is set to 0.1,

while for consecutive pairs of residues a smaller well width (s= 0.05)

was selected to keep the Ca-Cadistances closer to the expected value

3.8 Å.

Chained correlations among residues have been calculated post-

processing the raw dynamical correlation matrix. Hydrophobic

residues in the L7 loop (residues 92–110, Ube2g2 numbering) have

been selected as root residues with a correlation threshold of 0.5

and the iterative search for chained correlation has been carried

out till a depth of 5. B-factors which determined oscillations of

residues with respect to their equilibrium positions were calculated

according to FlexServ procedure [41]. Hinge point prediction has

been carried out to identify putative hinge points in the acidic

loop, using the B-factor slope change method as implemented in

FlexServ [41].

Supporting Information

Figure S1 Multiple sequence alignment of family 3 E2
representative members used for the phylogenetic
investigation. Identical residues (red-filled boxes) and similar

residues (red boxes) are indicated.

(PDF)

Table S1 Sequences of E2 enzymes belonging to family
3 and their division in sub-families R, R1, R2, G1, G2
and #, along with the corresponding entries in the
UNIPROT and NCBI databases.
(XLS)

Table S2 Consensus of chained correlations derived by
NMA, BD and DMD methods, as implemented in
FlexServ, using as root residues the hydrophobic
residues of L7.
(PDF)

Text S1 This file contains the following supporting
figures for this article: Figure 2. B-factor profiles obtained

for the E2 representative members of family 3 by NMA, BD and

DMD. Figure 3. Rmsf profiles from MD simulations. The 3D

structure of each E2 family 3 enzyme is used as a reference and

each residue colored with different shade of colors according to Ca
rmsf values calculated from the MD simulations (from light to dark

colors for increasing rmsf values). Text 1. Modelling of the E2-
Ub complexes. Figure 4. Ubiquitin position and orientation is

shown to be different in the three known complexes with E2

enzymes (PDB code 1FXT, 3A33, 2KJH). Figure 5. (A) E1

catalytic subunit SAE2 and Ubc9 have been crystallized in a

structure with PDB code 2PX9 and it is the E1 structurally more

similar to the Uba1 E1 enzymes for Ub. (B/C/D) Different

ubiquitin positions have been obtained from the three known E2-

Ub complexes through structural superimpositions. The only

orientation that satisfies the spatial restraints imposed by the E1

structure is the one that appears in 1FXT E2-Ub complex (B).

Figure 6. (A) UBA3 (E1) and Ubc12 have been crystallized in a

structure with PDB code 2NVU. (B/C/D) Different ubiquitin

positions have been obtained from the three known E2-Ub

complexes through structural superimpositions. The only orienta-

tion that satisfies the spatial restraints imposed by the E1 structure

is the one that appears in 1FXT E2-Ub complex (B). Figure 7. A

preliminary model of an E1–E2 (family 3)-Ub complex has been

obtained by superposing UBA1 structure (PDB code: 3CMM) to

SAE2 structure (PDB code: 2PX9), using ubiquitin position as it

appears in the complex Ubc1-Ub (1FXT). The catalytic cysteine of

the E2 enzyme is indicated as yellow sphere and the E1 catalytic

cysteine as yellow stick. Acidic L7 and phospho-S130 residues are

shown as red spheres and the positively charged residues of Ub C-

terminal chain as blue spheres.

(PDF)
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