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Cancer immunotherapies targeting immune checkpoints such as programmed cell-death
protein 1 (PD-1) and its ligand programmed cell-death 1 ligand 1 (PD-L1), are
revolutionizing cancer treatment and transforming the practice of medical oncology.
However, despite all the recent successes of this type of immunotherapies, most
patients are still refractory and present either intrinsic resistance or acquired resistance.
Either way, this is a major clinical problem and one of the most significant challenges in
oncology. Therefore, the identification of biomarkers to predict clinical responses or for
patient stratification by probability of response has become a clinical necessity. However,
the mechanisms leading to PD-L1/PD-1 blockade resistance are still poorly understood. A
deeper understanding of the basic mechanisms underlying resistance to cancer
immunotherapies will provide insight for further development of novel strategies
designed to overcome resistance and treatment failure. Here we discuss some of the
major molecular mechanisms of resistance to PD-L1/PD-1 immune checkpoint blockade
and argue whether tumor intrinsic or extrinsic factors constitute main determinants of
response and resistance.

Keywords: immune checkpoint blockade, programmed cell-death protein 1, programmed cell-death 1 ligand 1,
immunotherapy, tumor-intrinsic resistance, tumor-extrinsic resistance, biomarkers
INTRODUCTION

Cancer immunotherapies aim at stimulating the immune system of patients to reactivate its anti-
oncogenic activities (Escors, 2014). The most successful anti-cancer immunotherapies are currently
those based on immune checkpoint blockade with antibodies (ICIs). Under normal physiologic
conditions, immune checkpoints function as regulators of excessive inflammation following T-cell
activation, and mechanisms to prevent auto-reactive responses. Unfortunately many cancer cells
exploit these T-cell inhibitory mechanisms by up-regulating the expression of immune checkpoint
molecules that will bind their ligands on activated T cells leading to their inactivation. It is thought
that ICI therapies act primarily on the reactivation of T lymphocytes to exert cytotoxic activities
over cancer cells. The emergence of ICI therapies over the last decade has transformed to the core
cancer treatments, as they show good efficacies, and less toxicity than conventional chemotherapy or
in.org April 2020 | Volume 11 | Article 4411
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targeted therapies. However, for most cancer types only a subset
of all patients effectively respond to these therapies, which is a
major clinical, economic, and ethical problem (Topalian et al.,
2011; Nishino et al., 2017; Prasad et al., 2017; Kamada et al.,
2019; Martins et al., 2019). It is often said that ICI therapies have
revolutionized oncology, although their efficacy is still limited.
But, what do we mean when we claim that ICI therapies have
caused a revolution?

Before the success stories of ipilimumab (Hodi et al., 2008), and
before the publication of the results from the first clinical trials of
PD-L1/PD-1 blockers (Brahmer et al., 2012; Topalian et al., 2012),
immunotherapies were not seriously considered as viable
therapeutic options by most oncologists and pharmaceutical
companies. Most of their efforts were directed towards the
development of small molecule inhibitors for targeted therapies,
or novel chemotherapies. And even though targeted therapies
showed good efficacies, they were largely limited to patients with
tumors harboring the targeted mutations. So, what did ICI
treatments truly change? The truly astonishing result is that with
only a single drug, objective responses were obtained in a very large
number of cancer types largely independent of their ontogeny.
Moreover, these drugs are not even directed towards the cancer cell.
For example, the anti-PD-1 antibody pembrolizumab has achieved
objective responses in cancers as different asmelanoma, lung cancer,
head and neck, urothelial, gastric cancer, mesothelioma, and
Hodgkin lymphoma, among others.

The inhibitory co-receptors that modulate the activation of T
cells are generally associated with the T-lymphocyte receptor
(TCR) complex at the immunological synapse. These molecules
constitute major control points and serve as targets to enhance
antitumor immune responses. Some examples expressed in T
cells are programmed cell-death protein 1 (PD-1), T-cell
immunoglobulin and mucin domain-containing protein 3
(TIM-3), cytotoxic T-lymphocyte antigen 4 (CTLA-4), or
lymphocyte-activation gene 3 (LAG-3) (Saito et al., 2010; Chen
and Flies, 2013; Esensten et al., 2016; Schildberg et al., 2016;
Lichtenegger et al., 2018). Several ICI antibodies targeting
CTLA-4 or the PD-L1/PD-1 axis are approved for use by the
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Food and Drug Administration (FDA) and European Medicines
Agency (EMA) for treatment of different cancer types. These
antibodies have demonstrated clinical efficacy, with durable
clinical responses. Due the success of blockade strategies of
CTLA-4 and PD-1 pathways, several antibodies targeting other
immune checkpoints are now at different stages of development.
Moreover, several combination strategies with ICIs are under
evaluation in clinical trials, emerging as new opportunities to
enhance anti-tumor immunity (Table 1) (Pardoll, 2015).

Since 2012, antibodies blocking PD-1/PD-L1 interactions are
demonstrating very promising results (Brahmer et al., 2012;
Topalian et al., 2012), demonstrating their efficacies and safety.
Truly, these results have no precedent in the history of cancer
treatments due to their wide range of activities and the durability of
responses. To date, six immune checkpoint inhibitors blocking the
PD-L1/PD-1 axis are approved by the FDA and the EMA: three
PD-1 inhibitors (nivolumab, pembrolizumab, and cemiplimab), and
three PD-L1 inhibitors (atezolizumab, durvalumab, and avelumab).
Most of them have also been approved by the Chinese National
Medical Products Administration (NMPA), and by the
Pharmaceuticals and Medical Devices Agency (PMDA) in Japan.
Additionally, the NMPA has recently approved the use of four more
PD-1 inhibitors (toripalimab, tislelizumab sintilimab, and
camrelizumab) in China. These drugs are indicated for the
treatment of several cancer types such us melanoma, non–small
cell lung cancer (NSCLC), renal cell carcinoma, head and neck
squamous cell carcinoma, urothelial carcinoma, microsatellite
instability–high colorectal cancer and metastatic cutaneous
squamous cell carcinoma.

However, despite these successes the majority of patients in
many cancer types do not truly benefit from PD-L1/PD-1 blockade
therapies and show resistance, either intrinsic resistance when the
treatment directly fails, or acquired resistance where a proportion of
responders will also develop resistance. Other patients show some
response in the form of stable disease, or acceleration of disease in
the form of hyperprogression (Zuazo et al., 2018). Still, the specific
mechanisms of resistance and response remain to be elucidated.
Therefore, the understanding of the basic mechanistic pathways of
TABLE 1 | Clinical trials targeting the PD-L1/PD-1 axis and combinations.

PD-1/PDL-1 clinical trials Targets NCT identifier

PD-1/PD-L1 monotherapy PD-1/PD-L1 axis NCT03936959, NCT03013101, NCT03167853, NCT03142334,
NCT02853344, NCT02702414, NCT02838823, NCT02836795,
NCT03010176, NCT03219775, NCT03692442, NCT02358031

Combination
therapies with
PD-1/PD-L1
blockade

with other
immunotherapies

PD-1/PD-L1 axis and CTLA-4, LAG-3,
OX40, TIM-3, GITR, CD20 mAbs, IL2R,
IL12, IL7R, IL1B, CD19, CD40, CD38,
41BB

NCT03179007, NCT03615313, NCT03190811, NCT03732547,
NCT03970382, NCT03527251, NCT03894215, NCT01968109,
NCT02658981, NCT03680508, NCT04198766, NCT04215978

with targeted therapies PD-1/PD-L1 axis and VEGF/VEGFR, ERK1/
2, RAF, AMPK, EGFR, FGFR, MEK, RAF
pathways

NCT03851614, NCT04010071, NCT02133742, NCT04152356,
NCT03955354, NCT04303741, NCT04014101, NCT03722875,
NCT03394287, NCT03359018, NCT02873390, NCT03182816

with chemotherapy PD-1/PD-L1 axis and direct cancer cell
cytotoxicity

NCT03903887, NCT03311789, NCT03737123, NCT04152889,
NCT03041181, NCT03515629, NCT03701607, NCT03409614,
NCT04225364, NCT02220894, NCT02819518, NCT03221426

Other combinations
(radiotherapy,
chemoradio, multi-way
combo, others)

PD-1/PD-L1 axis and direct cancer cell
cytotoxicity

NCT02821182, NCT04017897, NCT03898895, NCT03557411,
NCT03984357, NCT03671265, NCT03984357, NCT03619824,
NCT03474094, NCT02992912, NCT02434081, NCT02525757
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resistance and the identification of predictive biomarkers of
response have become a clinical necessity. Here, we review the
current knowledge on resistance to PD-L1/PD-1 blockade therapies
and discuss whether tumor intrinsic or extrinsic factors are the main
determinants of response and resistance.
PROGRAMMED CELL DEATH PROTEIN 1
(PD-1) AND PROGRAMMED CELL-DEATH
1 LIGAND 1 (PD-L1) AXIS

PD-1 (CD279) is a type 1 transmembrane glycoprotein from the
B7-CD28 immunoglobulin superfamily discovered in 1992 for
which Prof Honjo received the Nobel Prize (Ishida et al., 1992).
This protein is encoded by Pdcd1 gene on the human chromosome
2, and it is composed of a short signal sequence, an extracellular
IgV-like domain, a stalk region, a transmembrane domain, and an
intracellular cytoplasmatic tail containing the two tyrosine-based
signaling motifs; the immunoreceptor tyrosine-based inhibitory
motif (ITIM) and the immunoreceptor tyrosine-based switch
motif (ITSM) (Figure 1). These two motifs contribute to the
inhibitory functions of PD-1. PD-1 has two main ligands, PD-L1
(B7-H1, CD274) and PD-L2 (B7-DC, CD273) (Dong et al., 1999;
Freeman et al., 2000; Latchman et al., 2001; Tseng et al., 2001) (16–
19). PD-L1 is a type I transmembrane protein encoded by the
Cd274 gene on the human chromosome 9 discovered in 1999 as an
additional member of the B7 family. PD-L1 is composed of a signal
sequence, an IgV-like domain, an IgC-like domain, a
transmembrane domain, and a highly conserved short
intracellular region with intracellular signal transduction capacities
Frontiers in Pharmacology | www.frontiersin.org 3
(Pascolutti et al., 2016; Gato-Canas et al., 2017; Escors et al., 2018)
(Figure 1). The intracellular domain presents three highly
conserved sequence motifs, two of which are required for
regulating interferon-mediated cytotoxicity (RMLDVEKC and
DTSSK) (Gato-Canas et al., 2017; Escors et al., 2018). PD-L2 is a
type I transmembrane protein encoded by the Pdcd1lg2 gene was
discovered in 2001 (Latchman et al., 2001; Tseng et al., 2001) and
exhibits a similar molecular oganization than PD-L1.

After engagement with PD-L1, PD-1 inhibits T cell functions
through direct and indirect pathways (Arasanz et al., 2017)
(Figure 2). Direct pathways are dependent on the recruitment
of SHP-1 and SHP-2 phosphatases phosphatases to PD-1 ITIM
and ITISM motifs following their tyrosine phosphorylation by
Lck (Plas et al., 1996; Chemnitz et al., 2004; Sheppard et al., 2004;
Hui et al., 2017). SHP phosphatases inhibit ZAP70 and PI3K
activities by dephosphorylation, and thus ending the TCR-CD28
signal transduction and its downstream dependent intracellular
pathways (ERK and PKCq). PD-1 also inhibits T cell activities
through indirect pathways. After engaged with PD-L1, PD-1
leads to increased expression of CBL E3 ubiquitin ligases, which
ubiquitylate components of the TCR leading to its internalization
and degradation (Karwacz et al., 2011; Karwacz et al., 2012;
Liechtenstein et al., 2014). Also, an indirect pathway of PD-1-
dependent inhibition of TCR signal transduction is caused when
PD-L1 engages to PD-1 by inhibiting the transcription of CK2
through an unclear mechanism, resulting in de-phosphorylated
PTEN that will in turn de-phosphorylate PI3K and terminating
in this way downstream pathways (Patsoukis et al., 2013;
Arasanz et al., 2017).

In physiological conditions PD-L1/PD-1 interactions keep T
cell tolerance toward autoantigens (Latchman et al., 2004).
FIGURE 1 | Molecular structures of PD-1 and PD-L1. The domain organization of PD-1 is shown on top, with each domain indicated. The domain organization of
PD-L1 is shown below, with each domain indicated.
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Conversely, in pathological conditions these inhibitory receptors
lead to regulation of T-cell effector functions in autoimmunity
and infection (Barber et al., 2006; Sharpe et al., 2007). Tumor
survival can depend on the PD-L1/PD-1 pathway to attenuate
immunogenicity and facilitate resistance to anti-apoptotic
stimuli (Hirano et al., 2005; Azuma et al., 2008; Keir et al.,
2008; Gato-Canas et al., 2017; Escors et al., 2018). PD-L1 is
overexpressed in many tumor types to evade the immune attack
and its expression generally (but not always) correlates with
progression (Gato-Canas et al., 2017; Escors et al., 2018;
Bocanegra et al., 2019; Kattan et al., 2019). PD-1 is expressed
in T lymphocytes and interferes with their activation when
bound with their ligands PD-L1, inhibiting the effector phase
and thus dampening the ability of these T cells to kill cancer cells
(Keir et al., 2008; Gato-Canas et al., 2017; Zuazo et al., 2019).
MECHANISMS OF RESISTANCE TO
PD-L1/PD-1 IMMUNOTHERAPY

PD-L1/PD-1 blockade immunotherapy demonstrates longer
duration of responses, and it is better tolerated than traditional
therapies. However, despite the recent successes, a large number
of patients do not respond to the therapy. This fact indicates
intrinsic (or primary) resistance. In addition, a percentage of
responder patients end up progressing through mechanisms of
acquired resistance. Primary and acquired resistances are
important barriers in terms of benefit to the patient (Pitt et al.,
2016; Restifo et al., 2016; Sharma et al., 2017; O’Donnell
et al., 2019).

Some of the patients treated with PD-L1/PD-1 immunotherapy
show hyperprogressive disease, characterized by an unexpected
drastic acceleration in tumor growth after the initiation of the
therapy with fatal consequences (Champiat et al., 2017; Kato et al.,
2017; Saada-Bouzid et al., 2017; Champiat et al., 2018; Ferrara et al.,
2018; Zuazo et al., 2018; Kim et al., 2019). Moreover, a certain
Frontiers in Pharmacology | www.frontiersin.org 4
percentage of responder patients show an apparent progression of
neoplastic lesions caused by massive tumor infiltration by immune
cells. This response has been termed pseudoprogression, and it is a
confounding factor for evaluation of responses by standard
techniques such as computerized tomography (Onesti et al., 2019).
These variety of atypical responses have prompted the development
of immune-related response criteria (irRC) to better characterize the
distinct types of responses associated to immunotherapies (Wolchok
et al., 2009), in contrast to conventional evaluation criteria by
Response Evaluation Criteria in Solid Tumors (RECIST).
Nonetheless, the techniques and biomarkers currently integrated in
clinical practice are not sufficient to identify responses. A deeper
understanding of themechanisms leading to resistance to PD-L1/PD-
1 blockade is required.

In addition, every patient is unique as a result of genetic and
clinical backgrounds. Hence, the mechanisms leading to clinical
response or resistance are highly complex and might differ not
only according to tumor type but also to patient-specific factors.
Therefore, the contribution of tumor-cell intrinsic and patient-
specific extrinsic factors needs to be elucidated. In the context of
immunotherapies, it is unclear which ones are the main
determinants of response and resistance.

Tumor-Intrinsic Factors and Resistance to
PD-L1/PD-1 Blockade Therapies
A number of intrinsic characteristics of the patients are
prognostic markers. In principle, we will disregard these
general characteristics and focus on more specific factors
contributing to immunoresistance. Without any doubt, tumor-
intrinsic factors definitely contribute to response or progression
in immune checkpoint blockade (Sharma et al., 2017; Chowell
et al., 2018; Kalbasi and Ribas, 2020).

Tumor-intrinsic factors that contribute to primary and
acquired resistance to PD-L1/PD-1 immunotherapy conform a
genetic and signaling landscape that prevents immune cell
infiltration in the tumor microenvironment (TME) (Figure 3).
FIGURE 2 | PD-1 signaling pathways in T cells. The figure schematically summarizes the direct and indirect T cell inhibitory signaling mechanisms as indicated.
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Resistance to PD-1 blockade immunotherapy is often associated
with insufficient tumor antigenicity, constitutive PD-L1
expression, defects in IFN signal transduction within cancer
cells and alterations in the regulation of oncogenic pathways
(Escors, 2014; Sharma et al., 2017).

The loss of tumor antigenicity is a major escape mechanism
for many tumor types (Escors, 2014). This is mainly caused by
cancer immunoediting, a process by which the immune system
exerts a strong and sustained selective pressure over the most
immunogenic cancer cell variants (Schreiber et al., 2011). Hence,
recognition of tumor-specific antigens by effector T cells is
crucial for cancer immunoediting (DuPage et al., 2012).
Effector T cells will eliminate the most immunogenic cancer
cells and control tumor progression for some time (Restifo et al.,
2016; Sharma et al., 2017). However, the less immunogenic
cancer cell variants will overgrow and progress. Therefore,
tumor immunoediting does constitute a strong mechanism of
acquired resistance to immunotherapies. The resulting surviving
cancer cells usually show a strong decrease in tumor antigen
expression (Matsushita et al., 2012; Escors, 2014), or a down-
modulation of molecules involved in antigen presentation such
as lack of MHC I or beta-microglobulin expression (Gubin et al.,
2014). In this context, ICI therapies will fail simply because no
endogenous T cell responses can be raised against these tumors.
It has to be noted that immunoediting as a mechanism of
immunological escape has been relatively well studied in
immunotherapies other than ICIs (Schreiber et al., 2011; Teng
et al., 2015; O’Donnell et al., 2019). Therefore, the real extent of
the impact of immunoediting over resistance to ICI treatments
has not yet been systematically quantified. The detection of less
immunogenic variants in samples from patients before the start
of immunotherapies may provide the means for adequate patient
selection. For instance, characteristics such as genomic instability
or epigenetic alterations in pre-existing tumor cell variants, may
enable these cancer cells to evade ICI therapies. And these may
even facilitate tumor grown, immune evasion, and tumor escape.
Frontiers in Pharmacology | www.frontiersin.org 5
These escape variants are likely to be naturally selected especially
if potent immunostimulatory therapies are applied (Khong and
Restifo, 2002). For example, the loss of functional b2
microglobulin from tumor cells, a structural component of the
major histocompatibility complex (MHC) 1, confers resistance to
tumor-specific CD8 T cells (Restifo et al., 1996). In addition,
acquired homeostatic resistance has been described in which
tumor cells alter gene expression profiles in response to
interactions with the immune system (Pardoll, 2015).

We could include within these mechanisms the adaptive up-
regulation of PD-L1 expression as a response to interferons
produced during the anti-tumor attack (Garcia-Diaz et al.,
2017; Gato-Canas et al., 2017; Escors et al., 2018). Cancer cells
with up-regulated PD-L1 would not only inactivate PD-1-
expressing T cells, but will also show increased resistance to
IFN-mediated apoptosis through reverse signaling by PD-L1
within cancer cells (Gato-Canas et al., 2017; Jalali et al., 2019).
It has been known for some time that PD-L1 had intrinsic
signaling properties in cancer cells that protected that protected
them from a range of apoptotic stimuli, and that its intracellular
domain was required for this protection (Azuma et al., 2008).
Moreover, PD-L1 was also shown to stimulate cancer cell growth
by modulating the activity of AKT/mTOR, autophagy, and
glycolysis (Chang et al., 2015; Clark et al., 2016; Gupta et al.,
2016). The intracellular part of PD-L1 contains three non-
classical signaling motifs; The “RMLD,” “DTSSK,” and
“QFEET” motifs (Figure 1). The RMLD sequence is required
for the anti-apoptotic activities of PD-L1 through the inhibition
of STAT3 expression and alternative phosphorylation. The
DTSSK motif has regulatory properties, and when it is
removed or mutated, PD-L1 molecules exhibit hyperactivated
signaling (Gato-Canas et al., 2017). The QFEET motif has been
recently shown to be the docking site for the de-ubiquitinase
USP22 (Huang et al., 2019).

Inhibition of STAT3 by PD-L1 intrinsic signaling ensures the
abrogation of interferon-mediated apoptosis (Gato-Canas et al.,
FIGURE 3 | Schematic summary of cancer-intrinsic characteristics influencing clinical responses to PD-L1/PD-1 blockade therapies. The figure depicts the
interaction of a T cell with a cancer cell, highlighting cancer cell intrinsic factors that can inactivate T cell activities, as indicated by the arrows.
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2017), stimulates the inflammasome pathway in cancer cells
(Theivanthiran et al., 2020), and directly inhibits PD-L1-positive
T cells (Diskin et al., 2020). PD-L1-regulated inflammasome
activation triggers a series of signaling cascades that end up with
the recruitment of granulocyte myeloid-derived suppressor cells
(MDSC) in the tumor environment. This accumulation of MDSCs
contribute to resistance to PD-L1/PD-1 blockade strategies.
Therefore, PD-L1 expression by cancer cells regulates several pro-
carcinogenic mechanisms that can contribute to resistance: First,
PD-L1 as an inhibitor of T cell effector activities; second, PD-L1 as
an anti-apoptotic shield; and third, PD-L1 as a recruiter of MDSCs
into the tumor microenvironment. In agreement with this, it is not
surprising that human carcinomas with inactivating mutations in
the DTSSK motif of PD-L1 can be selected by immunoediting
(Gato-Canas et al., 2017), as these mutations increase the signaling
capacities of PD-L1.

Hence, PD-L1 expression in tumors could be considered a
tumor-intrinsic factor of resistance. PD-L1 up-regulation in
tumor cells is generally associated with tumor progression,
proliferation and invasion, antiapoptotic signaling, and T cell
inhibitory activities via engagement with PD-1 (Escors et al.,
2018). PD-L1 expression on tumor cells seems to be sufficient for
immune evasion and inhibition of CD8 T cell cytotoxicity
(Juneja et al., 2017). Therefore, PD-L1 expression is a
recognized biomarker for patient stratification in PD-L1/PD-1
blockade immunotherapy. Some immunohistochemistry assays
to quantify PD-L1 expression are currently FDA-approved such
as Dako 28-8, Dako 22C3, Ventana SP142, and Ventana SP263.
However, the systems of detection are not currently
standardized, as different immunochemistry assay and scoring
system offer different classifications for tumor PD-L1 status
(Arasanz et al., 2018; Bocanegra et al., 2019). Additionally, PD-
L1 expression can be highly variable and heterogeneous. Some
patients with PD-L1-negative tumors may still benefit from anti-
PD-L1/PD-1 therapies as PD-L1 is also expressed by many other
cell types including myeloid antigen-presenting cells (Karwacz
et al., 2011; Motzer et al., 2015; Horn et al., 2017; Bocanegra et al.,
2019). Because of these limitations, PD-L1 expression as a
predictive biomarker for responses is still under debate.
Nevertheless, the application of radioactively-labeled probes
specific for PD-L1 and in vivo PET visualization of labeled
tumors, and their metastasis is very likely going to solve many
of these issues. First, detection of PD-L1 expression levels
without the need of obtaining a limited amount of tumor
tissue. Second, sensitive detection of “silent” metastases. Third,
discrimination of true progression from pseudoprogression, at
least for cancers that are PD-L1 positive. So far, several different
approaches have been applied in pre-clinical models and in
cancer patients. For example, by using PD-L1-specific
nanobodies labeled with technetium-99m (Broos et al., 2017),
PD-L1-specific cyclic peptides labeled with Gallium (De Silva
et al., 2018), and radio-labeled anti-PD-L1 antibodies (Heskamp
et al., 2015; Niemeijer et al., 2018).

Several other approaches based on intrinsic tumor characteristics
have been established for patient selection. From these, the tumor
mutational burden (TMB) has gained popularity as a potential
Frontiers in Pharmacology | www.frontiersin.org 6
predictive biomarker associated with response to ICI therapies.
TMB provides a quantification of the number of mutations per
megabase of genomic DNA within the tumor encoding genome. It
is thought that “high” TMB tumors may have increased expression
of neoantigens and enhanced immunogenicity (Alexandrov et al.,
2013; Yuan et al., 2016). Neoantigen load is associated with response
and has some predictive value on long-term clinical benefit of PD-
L1/PD-1 blockade therapies. The mutational load before the start of
immunotherapies seems to be associated to a higher
nonsynonymous mutation burden in tumors, higher neoantigen
expression, and mutations within the DNA repair pathways (Gubin
et al., 2014; Le et al., 2015; Rizvi et al., 2015; Schumacher and
Schreiber, 2015). A reflection of this is exemplified by mismatch
repair deficiency in cancers, which predicts response to PD-1
blockade for some tumor types such as colon cancer (Le et al.,
2015; Le et al., 2017). Therefore, the FDA approved in 2017 the PD-
1 inhibitor pembrolizumab for treatment of progressive mismatch-
repair deficient solid tumors, consolidating mismatch repair
(MMR) defect as a clinically applicable biomarker.

Tumor-Extrinsic Factors and Resistance
to PD-L1/PD-1 Blockade Therapies
ICI immunotherapies differ substantially from conventional
therapies in which the target is the immune system. Therefore,
it is fair to assume that tumor extrinsic factors linked to the
immune system will be associated to response or resistance to ICI
therapy. So far, a variety of such factors have been associated to
resistance. These include irreversible T cell exhaustion,
expression of additional immune checkpoint molecules and
their ligands (CTLA-4, TIM-3, LAG-3, TIGIT, VISTA, and
BTLA), differentiation and expansion of immunosuppressive
cell populations, and release of immunosuppressive cytokines
and metabolites both systemically and within the TME (IL-10,
IL-6, IL-17, IFNg, CSF-1, tryptophan metabolites, TGF-b, IDO,
increased adenosine production) (Figure 4) (Fridman et al.,
2017; Sharma et al., 2017; Fares et al., 2019).

One of the oldest prognostic immune biomarkers is the
quantification of the type, location, and density of immune
cells that infiltrate the TME (O’Donnell et al., 2019). Anti-
neoplastic treatments and not only immunotherapies are most
efficacious in patients with increased tumor-infiltrating
lymphocytes (TILs) in biopsies. This is also true for ICI
therapies, and the use of TIL quantification together with PD-
L1 tumor positivity is generally associated to good responses
(Taube et al., 2012; Bindea et al., 2013). Indeed, there is a positive
correlation of TIL infiltration with PD-L1 expression by cancer
cells. There are several ways to quantify TIL infiltration, but one
of the most successful at least for colon cancer is the so-called
“immunoscore” (Galon et al., 2014; Pages et al., 2018; Angell
et al., 2020). This biopsy scoring system is a powerful prognostic
tool based on the quantification of CD3 and CD8 T lymphocytes
on the tumor center and at the tumor invasive margins.

Not surprisingly, TIL infiltration correlates with good
prognosis and objective responses to ICI therapies. Oligoclonal
TILs are expanded in the tumor tissues of responders to anti-PD-
1 blockade. These T cells show enhanced helper T cell type 1
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(Th1) cellular immunity (Inoue et al., 2016). Patients can be
stratified into four different types according to the characteristics
of the TME tumor based on TILs and PD-L1: type I or adaptive
immunoresistant (PDL1(+), TIL(+)), type II or immunologically
ignorant (PD-L1(-),TIL(-)), type III (PD-L1(+), TIL(-)), and type
IV or immune-tolerant (PD-L1(-), TIL(+)) (Teng et al., 2015).
This stratification may provide a means for therapy selection.
However, other factors contribute to efficacious responses. For
instance, the TILs/PD-L1 ratio can be altered according to the
expression of oncogene drivers in cancer cells as well as the
anatomical location of the neoplastic lesions.

Recent studies demonstrate that ICI therapies do also alter the
dynamics and characteristics of systemic immune cell
populations. Interestingly, some of these studies highlight the
CD28-CD80 costimulation signaling pathway as a major
contributor to efficacious responses to ICI (Hui et al., 2017;
Zuazo et al., 2019). Indeed, several studies show a key role for IL-
12-expressing dendritic cells with cross-presentation capacities
for good responses to immunotherapies (Kerkar et al., 2011;
Liechtenstein et al., 2014; Goyvaerts et al., 2015; Berraondo et al.,
2018; Garris et al., 2018; Etxeberria et al., 2019). These results
reinforce the idea that a systemic functional immunity is very
likely a required factor for the efficacy of immunotherapies. This
was elegantly shown in murine models (Spitzer et al., 2017) as
well as in human patients undergoing PD-L1/PD-1 blockade
therapies (Kamphorst et al., 2017; Zuazo et al., 2019). A systemic
expansion in peripheral blood of a population of CD28+ PD-1+
Frontiers in Pharmacology | www.frontiersin.org 7
CD8 T cells was shown in melanoma patients responding to anti-
PD-1 therapy (Kamphorst et al., 2017). Patients with non-small
cell lung cancer undergoing ICI therapies that presented systemic
dysfunctional CD4 T cells that strongly co-expressed PD-1 and
LAG-3 failed to respond to therapies (Zuazo et al., 2019).
Interestingly, these CD4 T cells did not lose their capacities for
multi-cytokine production following in vitro stimulation, albeit
with a strong Th17-type of responses. These results suggested
that these T cells could not be considered exhausted. However,
they showed a degree of proliferative dysfunctionality that was
indicative of some type of anergy. Importantly, these patient
cohorts were enriched in hyperprogressors, suggesting a key role
for T cell dysfunctionality in hyperprogressive disease (Zuazo
et al., 2019). These results highlighted the up-regulation of LAG-
3 as a major escape mechanism to PD-1/PD-L1 monoblockade
strategies. Very similar results were obtained in two other
independent studies by Kagamu and collaborators, and Julia
and collaborators (Julia et al., 2019; Kagamu et al., 2020). In the
study by Zuazo et al. responders had a high percentage of highly
differentiated CD27− CD28− memory CD4 T cells before starting
immunotherapies, and could be used as a predictive biomarker.
Similarly, Kagamu et al. identified this population as CD62Llow

CD4 cells, while Julia et al. described this population as central
memory CD4 T cells.

The expansion of immunosuppressive immune cell populations
systemically or infiltrating the TME also contributes to extrinsic
factors of resistance. Regulatory T cells (Tregs) strongly suppress
FIGURE 4 | The figure schematically represents tumor-extrinsic mechanisms contributing to response or resistance to PD-L1/PD-1 blockade therapies. The figure
depicts on top a T cell interacting with a cancer cell, and the effects caused by the tumor microenvironment (TME) are boxed below. These include the recruitment of
immunosuppressive cells as indicated, the expression of immunosuppressive metabolites and the induction of alternative immune checkpoints on the T cell.
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tumor-specific T cell functions and disrupt effector T cell function.
The mechanisms of Treg-mediated immune suppression are varied
and include direct cell-to-cell contact and secretion of potent
immunosuppressive cytokines such us L-10, IL-35 or TGF-b
(Viehl et al., 2006; Sakaguchi et al., 2008; Arce et al., 2011). Some
of these cytones will differentiate naïve T cells into inducible Tregs
especially in the context of antigen presentation from tolerogenic
DCs (Arce et al., 2011). It is increasingly clear the negative impact
that the expansion of myeloid-derived suppressor cells have not
only in immunotherapy, but also in conventional therapies.
Although there is some controversy on their ontogeny and
nature, MDSCs englobe a collection of myeloid populations with
potent immunosuppressive activities. Tumor infiltrating MDSCs
promote angiogenesis, tumor cell invasion, and establish distal
metastatic niches (Srivastava et al., 2012; Meyer et al., 2013;
Liechtenstein et al., 2014; Dufait et al., 2015; Gato-Canas et al.,
2015; Ibanez-Vea et al., 2017). A special case of immunosuppressive
myeloid cells constitutes tumor associated macrophages (TAMs).
Tumor infiltration with TAMs usually correlates with poor
prognosis, particularly with M2 macrophages characterized by
high production of immunosuppressive cytokines. Therefore,
tumor infiltration with M2 macrophages over M1 macrophages
has an impact on tumor angiogenesis, invasion, metastasis, and
immunosuppression (Chanmee et al., 2014; Gato et al., 2016;
Ibanez-Vea et al., 2018). The recruitment of M2 macrophages
seems to lead to immunotherapy resistance, and recent reports in
murine models of cancer treated with PD-L1/PD-1 blockade
therapies link macrophages with hyperprogressive disease by
removing therapeutic antibodies through interactions with their
Fc receptors (Lo Russo et al., 2019).

Othermore subtlemechanismsmay also contribute to resistance. In
recent years it has been shown that long non-coding RNAs (lncRNAs)
constitute systemic regulators of many biological functions including
cancer (Schmitt and Chang, 2016). Interestingly, some immune-related
lncRNAs regulate immunosuppressivemechanisms leading to immune
evasion and resistance to immunotherapy. Some examples include loss
of antigen presentation, PD-L1 overexpression, regulation of T-cell
exhaustion, and MDSC and Treg differentiation and expansion (Zhou
et al., 2019; Zheng et al., 2019).

Finally, recent metagenomic studies have shown that
abnormal gut microbiome affects antitumor immunity,
influencing on the response to PD-1-based blockade (74, 75).
For example, the abundance of Bifidobacterium spp. in the gut
microbiome enhances anti-PD-L1 therapy efficacy and improves
antitumor immunity by affecting dendritic cells (Sivan et al.,
2015). Responders to immunotherapy showed abundant
Bifidobacterium longum and adolescentis , Collinesella
aerofaciens, Parabacteiodes merdae, and Fecalibacterium spp.
on their microbioma, while non-responders had increased
abundance of Ruminococcus obeum and Roseburia intestinalis
(Gopalakrishnan et al., 2018; Matson et al., 2018). A large
presence of Akkermansia muciniphila and A. muciniphila
contributes to the immunogenicity of PD-1 blockade, and its
abundance was correlated with clinical responses. Fecal
microbiota transplantations restore the efficacy of IL-12-
dependent anti-PD-1 blockade (Routy et al., 2018). These
Frontiers in Pharmacology | www.frontiersin.org 8
observations are not restricted to PD-L1/PD-1 blockade, as the
presence of Bacteroides spp in the gut microbioma was required
for anticancer immunity in anti-CTLA-4 therapy (Vetizou
et al., 2015).
DISCUSSION AND CONCLUSIONS

It is undisputed that ICI therapies are currently leading the way
for the development of efficacious anti-neoplastic treatments.
Nevertheless, it is yet unclear which mechanisms are driving
resistance to ICI treatments and how to tackle them. The relative
contribution of tumor cell intrinsic and extrinsic factors to
primary, adaptive, and acquired resistance is currently highly
confusing. A deeper understanding of the mechanisms
underlying the complex immunological pathways in cancer
and the molecular mechanisms underlying the PD-L/PD-1
blockade will provide insight into the subject.

Considering all the current evidence, we propose that
performing highly detailed systemic immunological profiling is
right now a requirement for any study involving ICIs. Not only
to identify potential responders, but also to monitor the “real time”
performance of ICI therapies by quantifying the dynamic changes of
immune cell populations. An increasing number of clinical studies
are addressing this particular issue by quantification of the relative
abundance of distinct immunological populations in peripheral
blood. Nowadays, flow cytometry panels composed of more than
10 markers are routinely used for immunological profiling without
the need of setting up CyTOF technologies. In a recent study
published by our group, quantification of the relative proportion of
highly differentiated CD27- CD28- CD4 T cells before the start of
immunotherapies was sufficient to identify a cohort of NSCLC
patients with a high probability of response to PD-L1/PD-1 blockers
(Zuazo et al., 2019). More specifically, responder patients had high
percentages of central and effector memory CD4 T cells. This
analysis relied on a panel of 8 markers to stain T cells from a
small blood sample by standard flow cytometry. Importantly, our
study was validated by the results from two similar studies which
used other alternative T cell markers. The first study correlated the
high baseline frequency of central memory CD4 T cells with
response to immunotherapy in NSCLC and renal cancer patients
using flow cytometry (Julia et al., 2019). In the second study,
NSCLC patients with high baseline percentages of CD62Llow

effector CD4 T cells quantified by CyTOF had a high chance of
responding to PD-L1/PD-1 blockade (Kagamu et al., 2020). The
dynamics and behavior of these CD4 T cell subsets were identical to
those from highly-differentiated memory CD4 T cells in our study,
strongly suggesting that we were all monitoring the same CD4 T cell
subsets but with different markers. Cytotoxicity assays performed
with peripheral T cells have also been shown to have predictive
capabilities for nivolumab efficacy (Iwahori et al., 2019), as well as
the quantification of PD-1+ CD8 T cells in peripheral blood after
administration of PD-1 blockers (Kamphorst et al., 2017).
Therefore, all these studies including our own demonstrate that
simple analytical techniques can be effectively applied in clinical
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practice for defining an immunological profile based on systemic T
cell subsets without the need of obtaining a tumor biopsy sample.

In addition, the dynamic changes of the immune populations
in peripheral blood provides invaluable clinical information.
Changes in T cell compartments have been recently shown by
others and us to correlate with progression and even
hyperprogression. The study by Kagamu and collaborators
showed that a decrease in peripheral CD62Llow CD4 T cells
right after therapy correlated with acquired resistance (Kagamu
et al., 2020). In our particular NSCLC cohort, a low baseline
percentage of memory CD27- CD28- CD4 T cells correlated with
intrinsic resistance (Zuazo et al., 2019). Moreover, a sudden
increase in highly differentiated CD4 T cells (CD4 THD burst)
following the first cycle of immunotherapy was indicative of
hyperprogressive disease (Zuazo et al., 2018; Arasanz et al.,
2020). The identification of hyperprogressors is also of the
outmost importance, as these patients deteriorate very quickly
with fatal outcomes. Hence, we propose that the generation of a
“systemic immunological file” containing the relative
percentages of at least T cell subsets before and after the first
cycle of immunotherapies will provide the means to identify
patients according to probabilities of response and provide useful
information to the clinician.

Considering the most recent evidence, we do think that an
“immunological file” on each patient provides information over
immediate responses to immunotherapy. However, cancer cells can
select several mutations that interfere with the specific molecular
pathways stimulated by ICI therapies. For example, mutations in
JAK1, JAK2, and beta2-microglobulin in cancer cells abrogate
interferon-mediated apoptosis and prevent PD-L1 up-regulation
by interferons (Zaretsky et al., 2016; Garcia-Diaz et al., 2017;
Sharma et al., 2017; Shin et al., 2017). Some mutations in the
DTSSK domain of PD-L1 present in human carcinomas enhance
the capacities of PD-L1 to counteract IFN-cytotoxicity by interfering
with STAT3 expression and its alternative phosphorylation (Gato-
Canas et al., 2017). Moreover, this inhibition of STAT3 has been
recently shown to activate the inflammasome in cancer cells leading
to the recruitment of granulocytic MDSCs to the tumor and causing
acquired resistance to immunotherapy (Theivanthiran et al., 2020).
The molecular characterization of cancer cells, particularly focusing
on genetic traits and mutations, will identify patients with high risk
of acquired resistance. New generation sequencing is currently on
the increase in clinical oncology, with panels that cover the major
oncogenic and driver mutations. In ICI therapies, it is likely that
new panels covering mutations affecting immunological signaling
pathways and immune checkpoints will be of relevance in the near
future. Currently, this is an expanding research subject that will
surely play a key role in the future oncology.

By a better understanding of the key pathways involved in these
processes, we will develop treatments to effectively counteract
resistance. The identification of truly predictive and prognostic
biomarkers of response is currently a top priority in clinical
practice. Some therapeutic strategies to overcome resistance could
include the modulation of the TME to increase immunogenicity,
overcome T-cell exhaustion, enhance tumor infiltration, and
modulate epigenetic regulation. The incorporation of the
Frontiers in Pharmacology | www.frontiersin.org 9
“immunological file” to be included in the clinical profile of each
patient could be a practical example. NSCLC patients with
dysfunctional CD4 systemic immunity before starting
immunotherapies have intrinsic resistance (Julia et al., 2019;
Kamada et al., 2019; Zuazo et al., 2019; ; Kagamu et al., 2020). A
closer analysis of these patients uncovered a high co-expression of
PD-1 and LAG-3 (Zuazo et al., 2019), TIM-3 up-regulation (Julia
et al., 2019), or an expansion of Tregs (Kamada et al., 2019). These
patients could therefore be selected on the basis of their “systemic
immunological profile” for combination therapies with anti-PD-1/
anti-LAG-3, anti-PD-1/anti-TIM-3 or anti-PD-1/anti-CTLA4
antibodies. In addition, minimizing immunological escape and the
onset of resistance will be likely achieved by combination therapies
with targeted therapies. Other combinations such as with
chemotherapy, radiotherapy, CAR-T cells, or the application of
additional immune checkpoint blockade agents targeting LAG-3,
TIM-3, CSF1R, IDO, GITR, or CD134 could be the key to achieve
long-lasting clinical responses.
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