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Physical access for residue-mineral 
interactions controls organic 
carbon retention in an Oxisol soil
Chenglong Ye1, Tongshuo Bai1, Yi Yang1, Hao Zhang1, Hui Guo1, Zhen Li1, Huixin Li1 &  
Shuijin Hu1,2

Oxisol soils are widely distributed in the humid tropical and subtropical regions and are generally 
characterized with high contents of metal oxides. High metal oxides are believed to facilitate organic 
carbon (C) accumulation via mineral-organic C interactions but Oxisols often have low organic C. Yet, the 
causes that constrain organic C accumulation in Oxisol soil are not exactly clear. Here we report results 
from a microcosm experiment that evaluated how the quantity and size of crop residue fragments affect 
soil C retention in a typical Oxisol soil in southeast China. We found that there were significantly higher 
levels of dissolved organic C (DOC), microbial biomass C (MBC) and C accumulation in the heavy soil 
fraction in soil amended with fine-sized (<0.2 mm) compared with coarse-sized (5.0 mm) fragments. 
Attenuated total reflectance-Fourier transform infrared spectroscopy analysis further showed that 
fine-sized residues promoted stabilization of aliphatic C-H and carboxylic C=O compounds associated 
with mineral phases. In addition, correlation analysis revealed that the increased content of organic C in 
the heavy soil fraction was positively correlated with increased DOC and MBC. Together, these results 
suggest that enhancement of contact between organic materials and soil minerals may promote C 
stabilization in Oxisols.

Emerging evidence from advanced isotopic and spectroscopic studies has recently shown that physicochemical 
and biological influences of the surrounding environment, rather than the recalcitrance of organic matter, play a 
primary role in soil organic carbon (SOC) stabilization1, 2. Interaction with the mineral phase, particularly iron 
(Fe) and aluminum (Al) oxides, is a major mechanism that prevents microbial decomposition and thus stabilizes 
organic C in mineral soils for centuries or millennia3–5.

Oxisol soils are widely distributed in tropical and subtropical zones of the world and food productions from 
these soils supports a large and increasing proportion of the world population6, 7. High contents of Fe and Al oxide 
minerals in Oxisol soils, in theory, can stabilize organic compounds through their large surface area and various 
bonding sites8, 9. However, because of the high microbial decomposition resulting from abundant rainfall and high 
temperature together with inappropriate utilization and management, these soils generally have low content of 
SOC that critically constrains their productivity10, 11. The causes that constrain organic C accumulation in Oxisols 
are not clear and a better understanding of mechanisms that control organic-mineral interactions in Oxisols is 
needed for us to ameliorate current agricultural practices that facilitate SOC retention and sequestration.

No-tillage agricultural practices and crop residue or manure incorporation are two potentially effective strat-
egies to increase C stock in agricultural soils12, 13. Surface placement of crop residues is encouraged to reduce soil 
disturbance and increase SOC content14. However, the residues on soil surface were mostly respired by microbes 
and contributed little to formation of SOC15, 16, particularly in the humid, warm tropical and subtropical areas. 
In contrast, several long-term fertilization studies have shown that incorporation of organic fertilizers into the 
degraded Oxisol soil profile significantly enhanced the content of SOC17, 18. These results suggest that limited 
contact between residues and soil minerals may be an important cause that constrains organic C accumulation 
in Oxisols and enhancement of physical contact between crop residues and soil minerals may be a key for C 
sequestration.
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The size of crop residues may critically affect the contact area between organic materials and soil minerals, 
and the subsequentent formation of stabilized SOC19. On one hand, fine-sized residue particles can expose more 
surface area for microbes and is thus conducive to microbial processing of residue C. Consequently, microbes will 
invest less C into substrate acquisition, and then enhance the ratio of residue C allocated to microbial biomass 
and dissolved organic C (DOC)20, 21. Because microbial biomass and DOC produced during microbial decom-
position of plant residues constitute a major component that interacts with soil minerals22, 23, higher microbial 
activities and growth may increase DOC and microbial biomass, and thus facilitate soil C retention. On the other 
hand, fine-sized residues often decompose faster than the coarse-sized ones, particularly in sandy and sandy loam 
soils24, 25, suggesting that soils with low content of clay minerals may limit the accumulation of residue-derived C 
in soil and the ultimate fate of the decomposition products may be strongly dependent on soil texture20. Oxisol 
soils contain high content of clay and have strong capability for organic C absorption. Yet, limited studies have 
so far assessed the impact of residue particle sizes on the formation of organo-mineral associations in Oxisols.

To assess the impact of the amount and the size of residue inputs on partitioning of residue C to the soil sta-
bilized C pool in Oxisols, we conducted a laboratory incubation experiment using two levels of maize residue 
size (0.2 mm and 5 mm) at three residue addition rates (1%, 2% and 3%). CO2 effluxes were detected regularly 
throughout the experiment of 105 days, and DOC, dissolved inorganic N (DIN), microbial biomass C (MBC) 
and microbial biomass N (MBN) were measured at days 25, 60 and 105 of the incubation. Mineral-associated C 
and structure chemistry of SOC in the heavy soil fraction were also measured at the end of the incubation. We 
hypothesized that (1) high residue inputs enhance C retention in the stabilized C pool due to both high plant- and 
microbe-derived organic C, and (2) compared to coarse-sized residue fragments, fine-sized residues increase 
microbial C use efficiency (that is, higher proportion for biomass production and lower for respiration) and thus 
lead to more microbially-derived DOC for organo-mineral associations.

Results
Microbial respiration.  The microbial respiration rate of samples from the two sized litter treatments showed 
a similar temporal pattern. Increasing litter addition rate resulted in markedly higher microbial respiration rate 
(P < 0.05; Fig. 1a). However, different residue sizes did not significantly affect the microbial respiration rate 
(Fig. 1a). Also, increasing litter addition rate made no difference when the respiration rate was expressed per unit 
soil C (Fig. 1b). The cumulative C lost by microbial respiration significantly increased with the high residue rate, 
while residue size did not affect the cumulative C loss (Fig. 1c). When normalized by soil C, cumulative C efflux 
showed a trend of convergence among the treatments with different residue addition rates (Fig. 1d).

DOC, DIN, MBC and MBN.  Both residue addition rates and sizes significantly affected DOC, DIN, MBC 
and MBN (P < 0.05; Fig. 2). DOC increased along the residue addition rates and decreased with the residue size 
across the whole incubation period, leading to a significant addition rate × residue size interaction (P < 0.05; 
Fig. 2a). In general, the differences for DIN, MBC and MBN were significant only at 60 days (P < 0.05; Fig. 2b,c 
and d).

Bulk soil C, total C and Fe/Al–bound C in the heavy soil fraction.  Higher residue addition rates 
resulted in higher bulk soil C, organic C in the heavy soil fraction and Fe/Al–associated C (P < 0.05; Fig. 3a,b 
and c). Although residue size had no significant impacts on bulk soil C, fine-sized residues led to more C accu-
mulation in the heavy soil fraction as well as Fe/Al–bound C than coarse-sized residue (P < 0.05; Fig. 3b and c). 
Significant positive correlations were observed between the increased MBC and the increased SOC in the heavy 
soil fraction (R2 = 0.42, P = 0.037, Fig. 4a) as well as between the increased DOC and the increased SOC in the 
heavy soil fraction (R2 = 0.50, P = 0.028, Fig. 4b).

Structure chemistry of residues and soil organic C.  The chemical structure of residue and total C in 
the heavy soil fraction in the treatment with 1.5 g residue addition was characterized by ATR–FTIR (Fig. 5a). Soils 
amended with fine-sized residues had marked peaks at 2950–2860 cm−1 and 1640–1600 cm−1 that respectively 
correspond to the stretching of aliphatic C-H groups and C=O or C=C groups compared to soils amended with 
coarse-sized residue (Fig. 5b and d). However, the peaks for the stretching of C=O at 1738, 1722 and 1712 cm−1 
and C=C or N–H at 1547, 1529 and 1514 cm−1 were not affected by residue size (Fig. 5c and e).

Discussion
Results from our study showed that although the size of added residues did not significantly affect the C min-
eralization rate (Fig. 1a and c), it significantly impacted the proportion of residue C being stabilized in the soil 
(Fig. 3b). The insignificant effect on C mineralization was unexpected and contrasting to the general view that 
reducing residue size should stimulate microbial decomposition24–26. The fine-sized residues promoted more 
organic C retention in the heavy soil fraction (Fig. 3b), indicating that the size of residues may critically affect the 
efficiency of C retention in Oxisols.

Multiple mechanisms may contribute to the observed difference in the C retention between fine-sized and 
coarse-sized residue treatments. First, fine-sized residues were utilized more efficiently by microbes and led to 
more MBC compared to the coarse-sized residues (Fig. 2c), supporting our hypothesis that reducing residue size 
increases microbial C use efficiency. Increasing evidence has recently shown that microbial biomass is a major 
contributor to stable SOC20, 22. We also observed significant correlation between MBC and SOC in the heavy soil 
fraction (Fig. 4a). These results suggest that over time, the MBC and MBC-derived C under the fine-sized resi-
due treatment may constitute a significant source of stable SOC through strong physical and chemical bonding 
to the mineral soil matrix20, 23. Second, fine-sized residues may contribute more to the DOC pool probably due 
to more efficient leaching and microbial decay of residues, as evidenced by more DOC in soil amended with 
fine-sized residues compared with the coarse-sized ones (Fig. 2a). The significant correlation between DOC and 



www.nature.com/scientificreports/

3SCiENtifiC REPOrTS | 7: 6317 | DOI:10.1038/s41598-017-06654-6

SOC in the heavy soil fraction (Fig. 4b) further confirms that sorptive stabilization of DOC is another important 
process for the formation of stable SOC27, 28. In addition, compared to the coarse-sized residues, fine-sized res-
idues have large surface areas and can better reach to soil minerals. The Oxisol soil is characterized by high clay 
content that provide a large surface to sequester C. Thus, reducing the size of residue particles could enhance the 
opportunities for organic C-mineral interactions. In addition, our ATR-FTIR results indicated that fine-sized 
residues contributed more aliphatic and carboxylic groups to attach to soil mineral matrix than coarse-sized 
residues (Fig. 5b and d), which further suggest that enhancing the opportunities for interactions between both 
residue- and microbial-derived C and soil minerals promote organic C retention. Synthesizing above understand-
ing, we argue that enhancement of physical contact between decomposing residues and soil minerals is a key for 
C sequestration in Oxisols.

Several recent studies have shown that Fe and Al oxide minerals can function as an important regulator for 
the stabilization of SOC in Oxisols9, 29. The enhanced Fe/Al-bound C content with fine-size residues observed 
in our experiment (Fig. 3c) indicates that reducing particle size was more accessible for adsorption of the 
residue-derived C onto Fe/Al oxides and led to an enhanced preservation of organic C by metal oxides. The Fe/
Al-bound C accounted for approximate 27% of the increased SOC in the heavy soil fraction, suggesting that the 

Figure 1.  Effects of residue addition rate and size on microbial respiration rate (a), C-normalized respiration 
rate (b), cumulative C efflux (c) and C-normalized cumulative C efflux (d).
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strong capability of Fe and Al oxides to sorb organic C8. Together, these results suggest that Fe/Al phases serve as 
a key factor in the stabilization of SOC and fine-sized residues would be more bound to Fe and Al oxide minerals 
as organo-mineral complexes due to a better soil-residue contact in Oxisols.

Our results also showed that higher residue inputs led to higher total C retention (Fig. 3b), a phenomenon 
that has been well documented30. Also, cumulative C losses by microbial respiration did not increase linearly 
with increasing organic C inputs when normalized by soil C concentrations (Fig. 1b and d), indicating that more 
residue-derived C was transformed into MBC and DOC by microbes. Consequently, more DOC and secondary 
microbial compounds would enter the stable SOC through strong chemical bonding to the mineral soil matrix20, 

23. Thus, sufficient amounts of residue inputs are required to ensure that the proportion of the added residues that 
interact with soil matrix is large enough for substantial C sequestration, especially for soils with low content of 
SOC but high contents of clay and metal oxides like Oxisols.

Our study provides evidence showing that enhancement of physicochemical interactions between organic 
residues and soil minerals facilitates organic retention in clay dominated soils. These results suggest that in areas 
with high surface residue decomposition, practices that promote organic C incorporation into the soil matrix and 
maximize the opportunity for organic C-mineral interactions is the key to achieve soil C stabilization. However, 
incorporation of crop residues into soil profiles needs plowing, which likely stimulates the decomposition of SOC 
through soil aggregate disruption and exposure of SOC to microbial decomposition12, 31. Hence, the net effect on 
the soil C will be determined by the difference between the increased C retained from residue incorporation vs. 
the stimulated C release induced by tillage. Experimental evidence has shown that tillage stimulation of soil C 
decomposition did not hold true for all soil types and tillage had less effect on dynamics of soil aggregates and 
SOC in soils dominated by clay minerals and metal oxides than in sandy loam soils32, 33. Also, metal oxide min-
erals play a more important role in the stabilization of SOC than soil aggregates in soils with high content of Fe 
and Al oxides9, 34. Considering the fact of high decomposition of surface litter under warm, humid conditions, 
enhancement of physicochemical interactions between organic residues and soil minerals by tillage should facil-
itate more organic C retention in Oxisols than other sandy or sandy loam soils.

To summarize, results from our experiment showed that both the quantity and surface area of organic inputs 
critically affected the retention of organic C in the heavy soil fraction. Compared to the coarse-sized residues, 
fine-sized residues increased labile C (DOC and MBC) and promoted the formation of Fe/Al-bound C and sub-
sequently organic C accumulation in the heavy fraction, particularly aliphatic and carboxylic compounds associ-
ated with soil minerals. These results highlight the key role of the contact area between organic materials and soil 
minerals for the formation of mineral-associated SOC. These findings suggest that residue incorporation to pro-
mote residue contact with soil minerals should be a key component of residue or manure management regimes 
that aim to facilitate C sequestration in Fe and Al rich acidic soils.

Materials and Methods
Soil and residue characterization.  For the incubation experiment, we used a long-term bare fallow soil 
from the Institute of Red Soil, Jinxian County (28° 37′N, 116° 26′E, 26 m above sea level), Jiangxi Province, China. 
This site is under a typical subtropical climate with a distinct arid season in the summer (July–September) and a 
humid season (March–June). The mean annual temperature and rainfall are 17.2 °C and 1549 mm, respectively. 
The soil was derived from the Quaternary red clay and was classified as an Oxisol in the USDA soil taxonomy. The 

Figure 2.  Effects of residue addition rate and size on dissolved organic C (a), dissolved inorganic N (b), 
microbial biomass C (c) and microbial biomass N (d).
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clay, silt and sand contents were 35.4%, 36.3% and 28.3%, respectively. The crop residue we used was derived from 
maize leaf material. The maize plants were grown in a greenhouse for two months and then collected and dried 
at 60 °C until constant weight.

Analyses of basic soil and residue properties.  Soil pH was measured with a Mettler Toledo pH meter 
in a 1:2.5 soil–water ratio. Total C and nitrogen (N) concentration of soil and residue were determined by dry 
combustion using a CN analyzer (Elementar Vario Micro Cube, Germany). The free Fe oxides (Fed) and free Al 
oxides (Ald) were extracted by the dithionite–citrate–bicarbonate (DCB) method35. Briefly, air-dried soil samples 
were added to a solution containing sodium bicarbonate and trisodium citrate in 50 mL polycarbonate centrifuge 
tubes and heated to 80 °C in a water bath, and then sodium dithionite was added to the tubes and maintained 
at 80 °C for 15 min. After centrifugation at 3000 g for 10 min, the supernatant was separated from the solid frac-
tion. The procedure repeated three times and the supernatant was combined to determined dissolved Fe and Al 
concentration using Agilent 5100 ICP-OES. The basic properties of soil and residue were summarized in Table 1.

The laboratory incubation experiment.  To better characterize residue quantity and residue size contri-
bution to SOC formation, microcosms were constructed with three rates of residue addition and two different 
sizes of residues. The coarse-sized residues were cut into 5 mm with scissors and fine-sized residues were ground 

Figure 3.  Effects of residue addition rate and size on bulk soil C (a), total C (b) and Fe/Al-bound C (c) in heavy 
fraction.
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through a 0.2 mm sieve. Specifically, 0.5, 1.0 and 1.5 g residues with size of either 5 mm or 0.2 mm were added to 
50 g of sieved soil (<2 mm), respectively, were then thoroughly mixed with soil, and placed into a 250-mL plastic 
jar for each sample. A sieved original soil with no residue was included as a control. This resulted in seven treat-
ment combinations with 12 replicates per treatment combination. The soils were incubated in dark up to 105 days 
at 25 °C and at 60% maximal water holding capacity. For each treatment combination, three replicate jars were 
used for microbial respiration measurement. To avoid excessive CO2 accumulation in the headspace, jars were 
flushed with air and resealed every day. To maintain the water content, we also weighed each jar and moistened 
the soil as needed every day. The remaining jars were sampled at days 25, 60 and 105 for determinations of an 
array of soil and microbial parameters.

Microbial respiration.  Soil microbial respiration was measured on days 1, 3, 5, 7, 9, 13, 20, 26, 33, 40, 48, 
62, 76, 90, and 105 of the incubation by determining the CO2 respired. Microbial respired CO2 was captured in 
5.0 mL of 0.25 M NaOH contained in a beaker suspended inside each plastic jar. Then the NaOH solution was 
removed and titrated with 0.05 M HCl to determine the amount of CO2 evolved36. The cumulative C lost by respi-
ration during incubation was calculated as

∑=
=

R TCumulative C loss
i

n

i i
0

where n is the number of incubation days, Ri is the mean respiration rate between two successive respiration 
measurements, Ti is the hours between two successive respiration measurements37.

Microbial biomass C and N, dissolved organic C and inorganic N.  Microbial biomass C (MBC) 
and N (MBN) were determined using the chloroform extraction methods and conversion factors KC (0.38) and 
KN (0.45) were used for MBC and MBN, respectively38, 39. Dissolved organic C (DOC) in the nonfumigated 

Figure 4.  Relationships between the increased soil C in heavy fraction and the increased microbial biomass C 
(a) or the increased dissolved organic C (b) after incubation for 105 days.
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extracts was measured on a TOC analyzer (Elementar Vario Micro Cube, Germany). Dissolved inorganic N 
(DIN, i.e. NO3

−N and NH4
+-N) was extracted with 1 M KCl and determined using a flow injection auto analyzer 

(SEAL-AA3, Germany).

Density fractionations and their C contents.  Density fractionation of soil samples was performed at 
the end of the 105-day incubation, following a procedure adapted from Liu et al.37 and Steffens et al.40. Dry soil 
samples (10.0 g) were placed in 100 mL polycarbonate centrifuge tubes and filled with 60 mL of 1.8 g cm−3 NaI 
solution. The tubes were shaken by hand and allowed to settle at room temperature for 2 h. The floating free 
fraction (<1.8 g cm−3) was removed by means of a water jet pump. After repeating the procedure three times, 
the remaining slurry was ultrasonically dispersed with an energy input of 450 J ml−1. Subsequently, the dispersed 
sample was centrifuged (15 min at 3000 g) to remove the occluded particulate organic matter from the mineral 
residue. The remaining heavy fraction (organic C associated with mineral surfaces) was washed several times 

Figure 5.  Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for the samples 
with the highest residue addition rate treatments after incubation for 105 days (a). Signal intensities of C–H 
groups (b), C=O groups (c), C=O or C=C groups (d) and C=C or N–H groups (e).

C (g kg−1) N (g kg−1) C/N pH Fed (g kg−1) Ald (g kg−1)

Soil 8.8 0.8 11.0 4.7 25.4 7.9

Residue 408.0 20.8 19.7 — — —

Table 1.  Basic properties of soil and plant residues used in the incubation experiment.
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with deionized water until the electrical conductivity was <50 μS cm−3. The heavy fractions were oven dried at 
60 °C and ground to a fine powder for C analysis using a CN analyzer (Elementar Vario Micro Cube, Germany).

Determination of Fe/Al-bound C.  After the heavy soil fraction was treated by DCB method described 
above, the residual soil was rinsed three times with deionized water and then oven dried at 60 °C for C analysis. 
Then, the amount of C in the heavy soil fraction after DCB extraction was subtracted from the amount of C before 
treatment to obtain iron-associated organic C. We also conducted a control experiment to correct our results 
following the procedure described by Lalonde et al.8.

Carbon composition.  Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 
was used to determine C compositions in residue and heavy soil fractions. The spectra data were acquired at 
the resolution of 4 cm−1 after 100 scans across a range of 4000 to 400 cm−1 using a Thermo Scientific Nicolet 
iS5 FTIR. Ambient air was used as background for all samples. The spectra were converted to absorbance (log 
1/R), smoothed, corrected for baseline and then averaged (n = 3) for each treatment. Data collection and spec-
tral calculations were accomplished using OMNIC software version 8.2.0. All spectra were analyzed at the 
below-mentioned absorption bands to indicate specific functional groups. Specifically, the absorption bands at 
2950–2860 cm−1 were assigned to aliphatic C-H band41. The bands at 1738, 1722 and 1712 cm−1 were assigned to 
C=O stretching in lactones, ketones, aldehydes, and fatty acids42. The bands at 1600–1640 cm−1 were assigned to 
C=O groups in amides and carboxylic acids or aromatic C=C groups43. The bands at 1547, 1529 and 1514 cm−1 
were assigned to C=C groups of aromatic compounds and N–H groups of amides42.

Statistical analyses.  Effects of residue addition rates and size on the microbial respiration rate, DOC, DIN, 
MBC and MBN were analyzed using repeated measured analysis of variance. Cumulative respiration efflux, bulk 
soil C, organic C and Fe/Al-bound C in heavy fraction were analyzed using a two-way ANOVA. We performed 
linear regression models to analyze the relationships between the increased soil C in the heavy soil fraction and 
the increased DOC or MBC. Data were log-transformed to improve normality and homogeneity of variance 
when necessary. Difference at P < 0.05 level was considered to be statistically significant. All statistical analyses 
were performed using the R software version 3.1.2 (R Development Core Team, 2014).
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