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Abstract: A set of nitro-activated ruthenium-based Hoveyda-Grubbs type olefin metathesis
catalysts bearing sterically modified N-hetero-cyclic carbene (NHC) ligands have been obtained,
characterised and studied in a set of model metathesis reactions. It was found that catalysts bearing
standard SIMes and SIPr ligands (4a and 4b) gave the best results in metathesis of substrates with more
accessible C–C double bonds. At the same time, catalysts bearing engineered naphthyl-substituted
NHC ligands (4d–e) exhibited high activity towards formation of tetrasubstituted C–C double bonds,
the reaction which was traditionally Achilles’ heel of the nitro-activated Hoveyda–Grubbs catalyst.
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1. Introduction

Although first transition metal complexes bearing N-heterocyclic carbene (NHC) ligands were
studied independently by Wanzlick [1] and Öfele [2] in the late 1960s, these intriguing species remained
unexplored for many years. They re-entered the stage in 1991 when Arduengo and co-workers prepared
the first stable and crystalline N-heterocyclic carbene (IAd) [3]. Since then, because of easy fine-tuning
of the steric and electronic properties of these compounds [4], NHCs have been widely used both as
organocatalysts and as ligands for numerous transition metals catalysed reactions [5].

Olefin metathesis is a useful methodology enabling formation of multiple carbon–carbon double
bonds [6–8]. Pioneering studies on this reaction were undertaken by scientists working in industry
and in academia, where one might mention milestone contributions by Anderson and Merckling
(Du Pont–norbornene polymerization) [9], Banks and Bailey (Philips Petroleum—so-called the
three-olefin process) [10], and Natta (linear and cyclic olefin polymerization) [11]. In these early
contributions, undefined catalytic systems and harsh conditions were usually applied, which limited
the applicability of this transformation to rather simple systems. The discovery of Schrock's
molybdenum [12] and Grubbs' first-generation ruthenium [13] complexes in the 1990s significantly
enhanced pertinence of this methodology, but the real avalanche of olefin metathesis applications
happened only after the introduction of the so-called second-generation Ru catalysts, i.e., Ru-complexes
bearing at least one NHC ligand [14–16]. Currently, a number of complexes are commercially available,
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inter alia, general-use catalysts like Umicore Grubbs Catalyst M2a (1a) [17] introduced in 1999 [18] and
its SIPr variant (1b), Umicore M2 (2a) [19], Hoveyda–Grubbs' catalyst (3a) [20] and SIPr analogue (3b),
and nitro-catalysts 4a,b (Figure 1) [21–23].

 

Figure 1. Examples of commercial Ru-based olefin metathesis catalysts and N-heterocyclic carbene
(NHC) ligands (a–e).

Given the importance of the NHC ligand in ruthenium olefin metathesis catalysts, these ligands
(L) have been optimised over the years. It was found that modification of the central five-membered
N-heterocycle leads to decreasing activity or faster decomposition of the corresponding complex [24,25].
Similar results were obtained when replacing the aromatic side chain substituents with aliphatic
ones [26–30]. However, unsymmetrically substituted NHC ligands, bearing one aromatic and one
aliphatic N-substituent, have found their important niche as specialised catalysts [31–33]. On the other
hand, introducing slightly bulkier aryl substituents compared to SIMes [34–37] or modifications of the
4 and 5 position in the imidazolium ring [26,38–40] cause usually an opposite effect resulting in an
increase of the catalysts’ activity.

Besides varying the NHC ligand, benzylidene ligands offer a broad testing ground for modifications
of the catalytic properties of these ruthenium complexes [41]. Our group has developed a nitro-activated
version of the Hoveyda complex 4a [42–45]. The presence of an electron-withdrawing group
(EWG) [43,46] in para position results in weakening of Ru-O bond, therefore accelerating the initiation
rate of the resulting catalyst. As a consequence, 4a has been utilised as a successful metathesis catalyst
in natural products and target-oriented syntheses [47,48], as well as the industrial context, such as in
the ring-closing metathesis (RCM) at scale up to 7 kg leading to the antiviral BILN 2061 agent precursor
at Boehringer–Ingelheim plant [49,50], anticancer agent Largazole at decagrams scale at Oceanyx
Pharmaceuticals, Inc. [51], and in continuous flow using a scalable membrane pervaporation device at
Snapdragon Chemistry, Inc. [52]. Interestingly, the iodide-containing analogue of 4a gave very good
results in a number of challenging CM and RCM reactions [53]. Importantly, increased stability towards
ethylene makes this diiodo derivative especially suitable for macrocyclization RCM of unbiased
dienes [53]. Based on the excellent results reported by Bertrand and Grubbs on cyclic-alkyl-amino
carbene (CAAC) ligands [54], Skowerski et al. obtained a CAAC analogue of 4a that promoted
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difficult RCM macrocyclization at 30 ppm, and cross metathesis of acrylonitrile at 300 ppm Ru
loading and lower [55]. In addition, the successful nitro-catalyst design has provided an impetus for
developing a number of derivative catalysts utilising the same EWG-activation concept [46,56–58].
On the other hand, replacement of the chelating oxygen atom by groups containing sulphur [59–61] or
nitrogen [61–63] results in so-called latent complexes [64,65]. These catalysts exhibit increased stability,
but have to be activated thermally, chemically or photochemically.

Herein, we describe the synthesis of a small set of nitro-activated catalysts bearing NHC ligands
(L) of different steric properties (Figure 1 and Scheme 1). Catalyst 4a bearing a well-known SIMes
ligand (Figure 1, NHC structures: a) was chosen as the benchmark, while the less known SIPr (Figure 1,
4b) [53] and the new complexes with Me2IMes [40] and with two naphthalene based ligands (Figure 1,
NHC structures: c–e) developed by Dorta, were studied in detail [66–69]. These five complexes were
characterised structurally and then tested in model olefin metathesis reactions [70] to check how steric
properties of the different NHC ligands influence structural and catalytic properties of the resulting
Ru complexes.

 

Scheme 1. Synthesis of complexes 4a–e.

2. Results and Discussion

2.1. Synthesis of the Ruthenium Complexes

All complexes were synthesised via the stoichiometric metathesis-ligand exchange reaction
according to a procedure initially disclosed by Hoveyda [71] and illustrated on Scheme 1. Depending on
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the NHC precursor, the reactions were performed either in toluene or in DCM, in the presence of
copper(I) chloride—a commonly used phosphine scavenger [71]. Complexes 4a and 4b were obtained
from commercially available second-generation indenylidene complexes 2a and 2b in 83% and 62%
yield, respectively. Interestingly, during these syntheses, we were able to isolate the putative CuCl•PCy3

complex in pure form and solve its crystallographic structure. It is stated that despite the fact that CuCl
is being used as a phosphine scavenger in the preparation of various Hoveyda complexes for almost 20
years [71], according to our knowledge the product of this reaction has not yet been unambiguously
characterised [72]. The synthesis of complexes 4c–e was carried out using appropriate Grubbs second
generation complexes 1c–e as the source of ruthenium [40,66,68,73].

Complex 4c was obtained in the reaction of 1c with propenylbenzene derivative 5 in the presence
of CuCl as a microcrystalline brownish solid with a moderate yield of 63%. Complexes 4d and 4e
were obtained in a similar way from 5 and corresponding Grubbs-type catalysts [66,68,73] 1d or 1e
as greenish microcrystalline solids in good yields, 87% and 77% respectively. General conditions
for the synthesis of complexes 4a–e are shown in Table 1. As solids, all new Ru-compounds were
stable when under an inert atmosphere and were stored for weeks without any sign of decomposition
(acc. to TLC and NMR). Having these catalysts in hand, we were ready to study how different NHC
arrangements [74] present in 4a–e influence the resulted complex structures and activity.

Table 1. Detailed conditions used in synthesis of 4a–e.

Catalyst Solvent Time (min) Temp. (◦C) Yield (%)

4a Toluene 60 80 83
4b Toluene 60 80 60
4c Toluene 60 60 63
4d DCM 20 40 87
4e DCM 10 40 77

2.2. Structure Analysis

The crystal structures of 4b–e have been determined by applying single crystal X-ray diffraction
(Figure 2). It allows for investigation of structural conformations and steric subtleties of the studied
compounds. The structure of 4a has been previously reported [75] and another related molecule—a
catalyst 4f (Figure 3) developed by Buchmeiser [24] that contains saturated 1,3-bis(2,4,6-trimethylphenyl)
3,4,5,6-tetrahydropyrimidin-2-ylidene ligand—was included in Table 2 for comparison purposes [24]
(while selected bond lengths and angles are given in Table 2, the full set of X-ray data is provided in
Table S1 in Supplementary Materials).

All ruthenium complexes adopt a distorted square bi-pyramid coordination mode around the
central ruthenium atom. The top of these pyramids are the O(1) oxygen of the benzylidene chelate and
the C(1) carbon atoms of the NHC ligand. The average distance for the Ru-Cl bond amounts to 2.33 Å
with a small variation from this value and the chloride atoms are in the trans configuration.

Most of the geometrical parameters do not differ much as they stay in the range of the 3σ threshold,
however some interesting trends can be observed. The substitution of various NHC ligands strongly
influences the Ru-O(1) bond. The bond is shortened in comparison to the parent SIMes-bearing (4a)
compound (2.287(1) Å) with the exception of the NHC ring modification to the 6-member one in the 4f
moiety (2.310(2) Å).

An opposite trend was found for the Ru-C(1) bond, which is elongated except for the 4d molecule.
The Ru-C(2) bond changes within a smaller range with the shortest distance for the 4a and 4c (1.825(2)Å
and 1.821(3) Å, respectively), whereas the longest bond distance is recorded for the 4e structure 1.836(9)
Å and 1.838(9) Å).
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Figure 3. Molecular structures of 4a and 4f. Front, top, and side view of molecule overlay of 4a (blue),
4f (orange). For angle α values see Table 2.
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Table 2. Selected bond lengths (Å) and angles (deg) in complexes 4a–e. The 4e structure contains two
molecules in the asymmetric unit.

4a [75] 4b 4c 4d 4e a 4f [24]

Ru-C(1) 1.979(3) 1.985(4) 1.990(4) 1.970(3) 2.002(9)
2.012(9) 2.013(2)

Ru-O(1) 2.287(1) 2.244(2) 2.232(2) 2.254(2) 2.285(5)
2.252(5) 2.310(2)

Ru-C(2) 1.825(2) 1.829(4) 1.821(3) 1.827(3) 1.836(9)
1.838(9) 1.825(3)

Ru-Cl(1) 2.333(1) 2.324(1) 2.335(1) 2.328(1) 2.328(2)
2.328(2) 2.343(1)

Ru-Cl(2) 2.330(1) 2.333(1) 2.339(1) 2.331(1) 2.328(2)
2.324(2) 2.343(1)

C(1)-Ru-O(1) 178.45(6) 172.5(1) 175.6(1) 175.4(1) 176.8(3)
177.8(3) 175.93(8)

C(1)-Ru-C(2) 101.36(8) 102.1(1) 103.0(1) 102.4(1) 99.9(4)
101.6(4) 105.1(1)

Ru-C(2)-C(3)-C(4) 8.6(2) −8.9(5) 5.9(4) −5.4(3) −2(1)
2(1) −4.5(3)

C(2)-Ru-C(1)-N(1) 7.6(2) 14.2(4) 5.5(4) 13.0(3) −31.8(9)
27(1) 0.8(2)

α 19.8(1) 20.8(3) 20.1(2) 19.0(2) 19.4(7)
12.4(7) 25.4(2)

VBur (%) 35.4 36.5 34.7 34.6 34.8
36.1 38.0

a The 4e structure contains two molecules in the asymmetric unit.

The torsion angles are the most sensitive parameters in the crystal studies, and they differ in all
studied complexes, although not that significantly. The Ru-C(2)-C(3)-C(4)-O(1) ring in the Hoveyda
pre-catalyst is almost planar. The Ru-C(2)-C(3)-C(4) torsion angle, which defines the mutual orientation
of the carbene bond and the NHC ligand is more flexible (Figure 4). Yet again, similar values were found
for complexes 4a and 4c that form negative torsion angles, whereas one can see positive values of this
angle for the 4b and 4d complexes, with the 4e precatalyst in the middle of the range. The ligands with
more bulky character demand a bigger rotation of the C(2)-Ru-C(1)-N(1) torsion angle (4b, 4d and 4e).
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(yellow) complexes with label used to define selected geometrical parameters.

The angle α (Figure 3) represents visually how much the N-aryl ‘wings’ of the NHC ligands are
lowered towards the metal centre. For (S)IMes-decorated complexes (4a, 4c) this angle measures 19.8
and 20.1◦, and is only slightly larger (20.8◦) in the case of SIPr bearing 4b. Importantly, the naphthyl
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members of the series have the N-substituents more ‘up’ (19.0◦ for 4d), being in strong contrast to
complex 4f where the NHC wings are visibly lowered (25.4◦) thus shielding the Ru centre more.
However, some individual geometrical parameters can mislead the overall comparison. The root
means square (RMS) analysis, taking into account the following six atoms: Ru, C(1), C(2), O(1), Cl(1)
and Cl(2), has revealed similarity of the studied structures to the initial 4a compound. The RMS
values are 0.090, 0.053, 0.057, 0.049, 0.062 Å and 0.104 Å for 4b, 4c, 4d, 4e′, 4e′′ and 4f, respectively.
The structures 4c, 4d and 4e′ revealed a bigger similarity to the 4a complex, and this finding agrees
with the Vbur% values.

Using the data obtained from diffraction studies, we also calculated the buried volume (Vbur%)
parameters [76] for the studied series of nitro-catalysts bearing NHC ligands (Figure 5). As expected,
Vbur% value of SIPr in 4b (36.5%) was bigger than the one of SIMes in 4a (35.4%) and Me2IMes in 4c
(34.7%). The value obtained for Dorta's 2-SICyNap, present in catalyst 4d (34.6%) was similar to the
one obtained for Me2IMes in 4c (34.7%), even though the (cyclohexyl)naphthyl groups in 4d can be
considered as relatively bulkier in comparison with smaller Mes N-substituents in 4c. Therefore it
seems that they have similar steric demand of ligand (at least in the proximity of Ru).

Because crystals of catalyst 4e that were measured by us contained two molecules in the asymmetric
unit (4e′ and 4e′′), the Vbur% values were calculated for each of them (Table 2). The relatively big
difference between them was probably caused by various spatial arrangements of the naphthyl groups
in both of these molecules. 4a and 4c had the smallest NHC, while the 4d and 4e′′ the largest. In the
case of compounds 4b and 4e" the greater steric hindrance around the Ru atom is visible on the Vbur

maps, which directly influenced the increased calculated Vbur value. The least protected Ru centre in
this series is visible for complexes 4c and 4d and corresponds to the lowest Vbur values. Buchmeiser's
catalyst 4f has the highest Vbur value, which is probably correlated to the presence of the pyrimidine
ring and different electron density than for the other NHCs. The difference between 4f and other
catalysts is marginal and is best visible for 10 Å radii (Figure 5f), where below the central atom some
negative electron density is visible.
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2.3. Comparative Catalytic Activity Studies of Nitro-Catalysts 4a–e

The performance of the nitro-catalysts 4a–e was evaluated in the ring-closing
and ene-yne metathesis of six model substrates: diethyl 2,2-diallylmalonate (6),
diethyl 2-allyl-2-(2-methylallyl)malonate (8), 2,2-di(2-methylallyl)tosylate (10), diethyl
2,2-di(2-methylallyl)malonate (12), allyl 1,1-diphenylpropargyl ether (14), and
(1-(prop-1-en-2-yl-methoxy)prop-2-yne-1,1-diyl)dibenzene (16). In the first stage of this research the
RCM reaction of 2,2-diallylmalonate (6), the most commonly used model substrate [77] was examined
in the presence of 1 mol% of nitro-catalysts 4a–e (Scheme 2). Reactions were performed in NMR tubes
at ambient temperature.
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Interestingly, the least active complex was the SIMes-containing 4a. Complex 4c with an
unsaturated Me2IMes ligand initiated slightly faster and provided maximal conversion after
approximately 15 minutes. Both catalysts containing naphthyl substituents in their NHC ligands 4d
and 4e exhibited even higher activity, with a slightly better result obtained for cyclohexyl-substituted
catalyst 4d. The most active complex in the series was 4b bearing the SIPr ligand, which gave full
conversion in less than 10 min.

Diethyl 2,2-diallylmalonate (6) is a rather simple substrate to ring-close and is used more to
examine whether a newly obtained complex exhibits any catalytic metathesis activity than to show in
detail the subtle differences between similarly active catalysts. To determine how the activity of the
new Ru-complexes compare, a more difficult substrate containing substituted double bonds, diethyl
2-allyl-2-(2-methyllyl)malonate (8) was studied next (Scheme 3, Figure 7).
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In this case, under similarly mild conditions as used for the RCM of 6, namely in the presence
of 1 mol% catalyst and at room temperature, the general trend was maintained, although higher
diversity between the tested catalysts was found (Figure 7). The highest activity was observed for 4b
(SIPr) and 4d, (2-SICyNap) complexes containing relatively large aryl substituents in the NHC ligand.
After 20 minutes they reached 84 and 81% yield, respectively, reaching in both cases 97% of RCM
product 9 within 2 h.

An interesting S-shaped curve was observed for the second complex bearing bulky
naphthyl-substituted NHC (4e). The latter admittedly initialised slower than the other counterparts,
as after 20 min it reached only 45% conversion. Interestingly, after this initial latency period 4e initiated
in a fast rate giving after 100 min 90% conversion of 8. As observed previously for the conversion of 6
to 7, the least reactive complexes in this model reaction were 4a and 4c, which initiated quicker than 4e
but after two hours provided the product with only 75 and 73% yield, respectively.

Next, we examined the activity of the nitro-catalysts in the RCM formation of tetrasubstituted
olefins. Dienes 2,2-di(2-methyl allyl)tosylate (10) and diethyl 2,2-di(2-methyl allyl)malonate (12) are
known to be more demanding and usually require the use of harsh conditions and specifically designed
catalysts in order to achieve high yields [78]. Here, the reactions were performed in the presence of
5 mol% of complexes 4a–e at 80 ◦C (Scheme 4).
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When tosylate 10 was used (Scheme 4), good to very good yields were achieved,
however a significant difference between complexes bearing bulky naphthyl substituted NHCs
(4d and 4e) and the more standard ones (4a–c) was observed (Figure 8). Despite the forcing conditions
such as high catalyst loading and elevated temperature, the SIMes, SIPr and Me2IMes-bearing catalysts
produced 10 in 76–83% yield after one hour. In contrast, bulkier Dorta-type complexes 4d and 4e reached
almost quantitative conversion, 90 and 91% respectively, after only 20 min. Interestingly, when the
reaction time was extended to 24 h also complex with SIPr ligand (4b) achieved a similar conversion of
91%, while 4a and 4c died reaching 80–82% only (Table 3).
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Table 3. RCM reaction of 2,2-di(2-methylallyl)tosylate (10) with 5 mol% of 4a–e at 80 ◦C (monitored by
GC) after 1 and 24 h.

Catalyst Conversion (%)

After 1 h After 24 h

4a 76 82
4b 83 91
4c 78 80
4d 98 99
4e 95 97

When even more challenging diethyl 2,2-di(2-methylallyl)malonate (12) was used instead of
2,2-di(2-methylallyl)tosylate (10) in the presence of 5 mol% of Ru at 80 ◦C (Scheme 5, Table 4), only the
most bulky Dorta complex 4e provided a relatively satisfactory result of 62% yield in 6 h. The other
complexes (4a–d) were less active, leading to 9–21% of the desired product 13.
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Table 4. RCM reaction of diethyl 2,2-di(2-methylallyl)malonate (12) with 5 mol% of 4a–e at 80 ◦C
(monitored by GC) after 6 and 24 h.

Catalyst Conversion (%)

After 6 h After 24 h

4a 16 18
4b 9 63
4c 21 21
4d 14 66
4e 62 84

After extending the reaction time to 24 h, virtually no changes in conversion were observed in the
case of complexes with mesitylene-based NHC ligands (4a and 4c). Pleasurably, we noticed a huge
improvement in yield of the desired product when the reaction was conducted in the presence of
Dorta-type (4e and 4d) and SIPr-based (4b) catalysts (Table 4). Especially in the case of the latter two,
changes were significant (from 14% to 66% for 4d and from 9% to 63% for 4b).

Ene-yne metathesis is a highly selective and atom-economical methodology for the synthesis of
1,3 dienes, which are valuable building blocks in organic synthesis [79]. To picture the application
profile of the studied catalysts, two members of the ene-yne class of compounds were investigated
with catalysts 4a–e. Reactivity profiles for the metathesis of allyl 1,1-diphenylpropargyl ether (14) were
established first (Scheme 6).
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In the ene-yne cycloisomerisation of easy to react 14 [80] the most active were catalysts containing
the smallest substituents (4a–c), while those with more bulky side chain groups (4d–e) showed
diminished conversions (Figure 9). Nevertheless, all catalysts, but one, 4d contain a large cyclohexyl
substituent in the ortho position of the aryl ring, provided the desired product with yields above 80%
during the first 6 h of the reaction. Further extension of the reaction time to 24 h resulted in slight
improvement of the results leading to essentially quantitative conversions (over 90%) for 4a and 4c
(Table 5).
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Figure 9. Time/conversion curves for the ene-yne reaction of allyl 1,1-diphenylpropargyl ether (14)
with 1 mol% of 4a–e at 80 ◦C (monitored by GC). Lines are visual aids only.

Table 5. Ene-yne reaction of allyl 1,1-diphenylpropargyl ether (14) with 1 mol% of 4a–e at 80 ◦C
(monitored by GC) after 6 and 24 h.

Catalyst Conversion (%)

After 6 h After 24 h

4a 93 99
4b 87 87
4c 90 93
4d 60 73
4e 81 88

Next, the more challenging cycloisomerisation substrate
(1-(prop-1-en-2-yl-methoxy)prop-2-yne-1,1-diyl)dibenzene (16) [81–83] was utilised (Scheme 7). As for
substrate 12, also in this case the loading of the catalysts was increased from 1 to 5 mol% in order to
obtain near-quantitative conversions.
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Indeed, most of the complexes used gave the expected product with a yield of 90–100% in less
than 6 hours, with 4d being the most active, and after extension of the reaction time to 24 h 100% of
yield was reached (Table 6). The only exception was the complex 4b containing simple SIPr-ligand,
which under these conditions gave only 25 and 41% conversion, after 6 and 24 h respectively.
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Table 6. Ene-yne reaction of (1-(prop-1-en-2-yl-methoxy)prop-2-yne-1,1-diyl)dibenzene (16) with 5
mol% of 4a–e at 80 ◦C (monitored by GC) after 6 and 24 h.

Catalyst Conversion (%)

After 6 h After 24 h

4a 88 99
4b 15 42
4c 94 97
4d 94 98
4e 74 98

3. Experimental Section

3.1. General

All reactions were carried out under argon flow in pre-dried glassware using Schlenk techniques.
Reaction profiles performed in NMR tube were carried out in degassed CD2Cl2. CH2Cl2 (Sigma-Aldrich
Sp. z o.o., Poznan, Poland) was dried by distillation with CaH2 under argon and was stored under argon.
THF, toluene, n-hexane and xylene were dried by distillation with Na/K alloy. Flash chromatography
was performed using Merck KGaA (Darmstadt, Germany) silica gel 60 (230–400 mesh). NMR spectra
were recorded in CDCl3 or CD2Cl2 with Varian Mercury 400 MHz and Varian VNMRS 500 MHz
spectrometers. MS (FD/FAB) was recorded with a GCT Premier spectrometer from Waters Corporation
(Milford, MA, USA). MS (EI) spectra were recorded with an AMD 604 Intectra GmbH (Harpstedt,
Germany) spectrometer. Other commercially available chemicals were used as received.

3.2. Synthesis of Complexes

Synthesis of 4a: Complex (2a) (220 mg, 0.232 mmol) was dissolved in toluene (7 mL),
and 1-isopropoxy-4-nitro-2-(prop-1-en-1-yl)benzene (5) (61.6 mg, 0.278 mmol) was added. The mixture
was stirred for 5 min, CuCl (45.9 mg, 0.474 mmol) was added, and the mixture was heated at 80 ◦C for
30 min. The reaction mixture was cooled to room temperature and concentrated in vacuo. From this
point, all manipulations were carried out in air with reagent grade solvents. The product was purified
by silica gel chromatography (AcOEt/c-hexane = 1:4 v/v). The solvent was evaporated under vacuum,
and the residue was dissolved in CH2Cl2 (2 mL). MeOH (5 mL) was added and CH2Cl2 was slowly
removed under vacuum. The precipitated was filtered, washed with MeOH (5 mL), and dried in vacuo
to afford 4a as a green microcrystalline solid (130 mg, 83%). 1H-NMR (CD2Cl2, 500 MHz,): δ = 16.42 (s,
1H), 8.46 (dd, J = 9.1, 2.5 Hz, 1H), 7.80 (d, J = 2.5 Hz, 1H), 7.10 (s, 4H), 6.94 (d, J = 9.1 Hz, 1H), 5.01 (sept,
J = 6.1 Hz, 1H), 4.22 (s, 4H), 2.46–2.48 (m, 18H), 1.30 (d, J = 6.1 Hz, 6H); 13C-NMR (125 MHz, CD2Cl2):
δ = 289.1, 208.2, 156.8, 150.3, 145.0, 143.5, 139.6, 139.3, 129.8, 124.5, 117.2, 113.3, 78.2, 52.0, 21.3, 21.2,
19.4; IR (KBr):

∼
v = 2924, 2850, 1606, 1521, 1480, 1262, 1093, 918, 745 cm−1; FDMS m/z [M+] 671.1.

Synthesis of 4b: Similar to the preparation of 4a, 5 (150 mg, 0.68 mmol) was added to the solution
of complex 2b (690 mg, 0.68 mmol) in toluene (15 mL). The mixture was stirred for 5 min, and CuCl
(135 mg, 1.36 mmol) was added. 4b was obtained as green microcrystalline solid (380 mg, 62%).
1H-NMR (500 MHz, CD2Cl2): δ = 16.33 (s, 1H), 8.38 (dd, J = 9.0, 2.7 Hz, 1H), 7.69 (d, J = 2.7 Hz, 1H),
7.58 (t, J = 7.7 Hz, 4H), 7.39 (d, J = 7.7 Hz, 4H), 6.90 (d, J = 9.0 Hz, 1H), 4.99 (m, 1H), 4.20 (s, 4H), 3.56
(m, 4H), 1.40 (d, J = 6.1 Hz, 6H), 1.24 (d, J = 6.7 Hz, 12H); 13C-NMR (125 MHz, CD2Cl2): δ = 283.7,
210.3, 156.6, 149.0, 143.6, 143.0, 136.2, 130.0, 124.4, 124.0, 116.7, 112.8, 77.7, 77.2, 77.0, 76.7, 54.5, 28.8,
26.5, 23.3, 21.7; IR (KBr):

∼
v= 3096, 3069, 2970, 2951, 2927, 2868, 1527, 1341, 1270, 1095, 914, 742 cm−1;

FDMS m/z [M+] 755.10.

Synthesis 4c: Complex 2c (500 mg, 0.571 mmol) was dissolved in toluene (11 mL), and
1-isopropoxy-4-nitro-2-(prop-1-en-1-yl)benzene (5) (190 mg, 0.856 mmol) was added. The mixture was
stirred for 5 min, CuCl (113 mg, 1.14 mmol) was added, and the mixture was stirred at 70 ◦C for 40 min.
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The reaction mixture was cooled to room temperature and concentrated in vacuo. From this point,
all manipulations were carried out in air with reagent grade solvents. The product was purified by
silica gel chromatography (AcOEt/c-hexane = 1:5 v/v). The solvent was evaporated under vacuum,
and the residue was dissolved in CH2Cl2 (2 mL). MeOH (5 mL) was added and CH2Cl2 was slowly
removed under vacuum. The precipitated was filtered, washed with MeOH (5 mL) and dried in vacuo
to afford 4c as a brownish microcrystalline solid (250 mg, 63%). 1H-NMR (500 MHz, CD2Cl2): δ = 16.57
(s, 1H), 8.42 (dd, J = 9.0, 2.7 Hz, 1H), 7.92 (d, J = 2.5 Hz, 1H), 7.14 (s, 4H), 6.89 (d, J = 9.0 Hz, 1H), 4.98
(m, 1H), 2.48 (s, 6H), 2.18 (s, 12H), 1.97 (s, 6H), 1.35 (d, J = 6.1 Hz, 6H); 13C-NMR (125 MHz, CD2Cl2):
δ = 287.0, 167.0, 156.4, 145.0, 143.2, 139.7, 138.4, 129.2, 127.8, 123.3, 116.7, 112.7, 77.5, 77.3, 77.0, 76.8,
21.8, 21.1, 21.1, 19.1, 19.1; IR (KBr):

∼
v = 3103, 3084, 2986, 2969, 2921, 1604, 1571, 1520, 1384, 1337, 1320,

1095, 746, 660 cm−1; FDMS m/z [M+] 697.1.

Synthesis of 4d: Similar to the preparation of 4c, 5 (86 mg, 0.389 mmol) was added to the solution of
complex 1d (250 mg, 0.243 mmol) in CH2Cl2 (15 mL). The mixture was stirred for 5 min, and CuCl
(48 mg, 0.486 mmol) was added. 4d was obtained as green microcrystalline solid (180 mg, 87 %).
1H-NMR (500 MHz, CD2Cl2): δ = 16.04 (s, 1H), 8.30 (d, J = 8.1 Hz, 2H), 8.23 (dd, J = 9.0, 2.7 Hz, 1H),
8.08 (d J = 8.6, 2H), 7.95 (d, J = 7.9 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 7.60 (td, J = 6.9, 1.0 Hz, 2H), 7.52 (td,
J = 6.9, 1.0 Hz, 2H), 7.33 (d J = 2.5, 1H), 6.71 (d, J = 9.0 Hz, 1H), 4.77 (m, 1H), 4.48–4.34 (m, 4H), 4.12
(q, J = 14.2, 7.1 Hz, 1H), 3.11 (s, 2H), 2.16 (s, 1H), 2.04 (s, 2H), 1.98–1.96 (m, 12H), 1.74–1.55 (m, 10H),
1.48–1.37 (m, 4H), 1.25 (t, J = 7.1 Hz, 4H), 1.09 (d, J = 6.1 Hz, 2H), 1.01 (d, J = 6.1 Hz, 2H); 13C-NMR
(125 MHz, CD2Cl2): δ = 211.5, 156.5, 145.1, 143.7, 142.8, 133.0, 131.6, 129.8, 127.9, 127.0, 126.2, 125.2,
123.9, 116.6, 112.4, 77.5, 77.2, 77.0, 76.7, 60.3, 54.5, 53.4, 39.8, 36.2, 32.5, 31.5, 30.9, 28.2, 27.5, 26.6, 26.3,
25.8, 21.1; IR (KBr):

∼
v = 3067, 2925, 2849, 1735, 1523, 1441, 1340, 1267, 1091, 914, 818, 747 cm−1; FDMS

m/z [M+] 851.2.

Synthesis of 4e: Similar to the preparation of 4c, 5 (64.4 mg, 0.291 mmol) was added to the solution of
complex 1e (200 mg, 0.194 mmol) in CH2Cl2 (10 mL). The mixture was stirred for 5 min, and CuCl
(38.4 mg, 0.388 mmol) was added. 4e was obtained as green microcrystalline solid (128 mg, 77 %).
1H-NMR (500 MHz, CD2Cl2): δ = 16.39 (s, 1H), 16.21 (s, 1H), 8.21 (dq, J = 8.9, 2.5 Hz, 1H), 8.05 (d, J
= 8.9 Hz, 2H), 7.95 (s, 1H), 7.86 (dd J = 8.3, 3.2, 2H), 7.63 (t, J = 8.9 Hz, 2H), 7.50 (d, J = 2.5 Hz, 1H),
7.47–7.40 (m, 2H), 6.69 (t, J = 8.3 Hz, 1H), 4.80–4.70 (m 1H), 4.60 (s, 1H), 4.47 (t, J = 5.8 Hz, 2H), 3.65
(quint, J = 13.1, 6.7 Hz, 1H), 3.22 (quint, J = 13.5, 6.7 Hz, 1H), 3.11 (quint, J = 13.5, 6.8 Hz, 1H), 1.44–1.36
(m, 25H), 1.13 (d, J = 5.9 2H), 1.04 (d, J = 6.0 Hz, 2H), 0.93 (d, J = 6.0 Hz, 2H); 13C-NMR (125 MHz,
CD2Cl2): δ = 286.9, 286.6, 211.2, 210.7, 156.5, 147.0, 146.1, 143.9, 143.8, 142.9, 131.7, 131.0, 129.8, 129.7,
127.7, 126.3, 125.5, 123.7, 123.3, 123.2, 122.4, 116.6, 112.5, 112.4, 77.4, 77.2, 77.0, 76.7, 54.0, 34.7, 34.4, 29.2,
29.1, 25.8, 24.0, 23.5, 23.5, 23.3, 22.8, 22.6, 21.1, 21.0, 20.7; IR (KBr):

∼
v = 3090, 3058, 2960, 2870, 1604, 1525,

1473, 1340, 1256, 1092, 845 cm−1; FDMS m/z [M+] 855.3.

4. Conclusions

The family of nitro-complexes containing NHC ligands with different steric properties was
synthesised, characterised and investigated in terms of activity. Analysis of the solid-state geometrical
parameters manifested some interesting relationships. Intuitively, the most important difference in
geometry was expressed by angle α, representing visually how the N-aryl ‘wings’ of the NHC ligand
are lowered towards the metal centre (Figure 4, Table 2). In the case of the SIPr-bearing 4b the N-aryl
‘flaps’ are slightly lowered compared to (S)IMes-decorated 4a,c. Interestingly, the naphthyl members
of this series (4d–e) have the N-substituents even slightly more ‘elevated’ compared to their (S)IMes
and SIPr counterparts (4a–b). This is in strong contrast to complex 4f where the NHC wings are visibly
lowered, thus shielding much more the Ru centre. Interestingly, the latter complex, although very
useful in cyclopolymerization of diynes, in model RCM reactions was found to be less reactive than
the analogue SIMes Hoveyda-Grubbs complex [24]. The Vbur% values and steric maps calculated for
the studied complexes illustrated the same picture, rendering the naphthyl-containing complexes
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4d–e being the least crowded and 4f having the highest Vbur% value. The model reactions also sorted
the tested complexes into two groups. While in the reaction of a simple model diene (6) all catalysts
exhibited similarly high activity, in the case of a still rather straightforward cycloisomerisation of
ene-yne 14, the less bulky NHC containing complexes 4a–c were more active. At the same time,
with more demanding sterically crowded substrates, a significant advantage of complexes with bulkier
NHC ligands (4b, 4d–e) was evident. Importantly, complexes 4d–e demonstrated high activity in
formation of tetra-substituted C–C double bonds [78,84], the reaction which was traditionally Achilles’
heel of the nitro-catalyst [42–45]. It is stressed that in all cases the studied model reactions were very
clean and no side-products were observed.

Overall, the comparative study here suggests that the elaborated naphthyl-based catalysts
(4d–e) may be better for challenging, sterically crowded substrates, while the ‘easy’ substrates
can be transformed more readily in the presence of catalysts with standard NHC ligands (4a–b).
Interestingly, catalysts 4c bearing Me2IMes ligand seemed the least utile.

These results show again [85] that different catalysts can be optimal for different applications,
and that even small, sometimes incremental, variations can result in substantial changes in reactivity.

Supplementary Materials: The following are available online. Figure S1: Atomic Displacement Parameters
(ADPs) and the labeling of atoms in 4b and 4c; Figure S2: Atomic Displacement Parameters (ADPs) and the
labeling of atoms in 4d; Figure S3: Atomic Displacement Parameters (ADPs) and the labeling of atoms in 4e for
two molecules in asymmetric unit (4e′ and 4e′′); Figure S4: Overlay of molecules from the 4a structure (black)
with the 4b (magenta), 4c structure (blue), 4d structure (green), 4f structure (grey), 4e′ structure (red) and 4e′′
(yellow) and 4g (grey; Figure S5: Atomic Displacement Parameters; Table S1: Experimental details for 4b–4e
structures; Table S2: Experimental details for the CuClPCy3 measurement.
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