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Abstract

Background: Anthozoa, Endocnidozoa, and Medusozoa are the 3 major clades of Cnidaria. Medusozoa is further divided
into 4 clades, Hydrozoa, Staurozoa, Cubozoa, and Scyphozoa—the latter 3 lineages make up the clade Acraspeda. Acraspeda
encompasses extraordinary diversity in terms of life history, numerous nuisance species, taxa with complex eyes rivaling
other animals, and some of the most venomous organisms on the planet. Genomes have recently become available within
Scyphozoa and Cubozoa, but there are currently no published genomes within Staurozoa and Cubozoa. Findings: Here we
present 3 new draft genomes of Calvadosia cruxmelitensis (Staurozoa), Alatina alata (Cubozoa), and Cassiopea xamachana
(Scyphozoa) for which we provide a preliminary orthology analysis that includes an inventory of their respective
venom-related genes. Additionally, we identify synteny between POU and Hox genes that had previously been reported in a
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2 Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages

hydrozoan, suggesting this linkage is highly conserved, possibly dating back to at least the last common ancestor of
Medusozoa, yet likely independent of vertebrate POU-Hox linkages. Conclusions: These draft genomes provide a valuable
resource for studying the evolutionary history and biology of these extraordinary animals, and for identifying genomic
features underlying venom, vision, and life history traits in Acraspeda.
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Introduction

Some of the most fascinating and outstanding mysteries related
to the genomic underpinnings of metazoan biology are centered
around cnidarians [1]. Active areas of research include the ba-
sis of venom evolution and diversification [2–4], mechanisms of
independent evolution of image-forming vision (lens eyes) [5–
7], and the emergence of a pelagic adult stage within a bipha-
sic (or multiphasic) life cycle [8]. Cnidaria encompasses 3 major
clades: Anthozoa, Endocnidozoa, and Medusozoa [9–12]. Antho-
zoa comprises Hexacorallia and Octocorallia. Hexacorallia in-
cludes scleractinian corals, anemones, and zooanthids and is
characterized by a 6-fold symmetry, with species exhibiting both
colonial and solitary forms. Octocorallia includes sea fans, gor-
gonians, and soft corals; these animals are characterized by pin-
nate tentacles in 8-fold symmetry. Endocnidozoa, comprising
the parasitic lineages Myxozoa and Polypodiozoa, was only re-
cently properly classified as Cnidaria [13–15]. Medusozoans are
characterized by the emergence of a medusa life history stage
within some taxa of the clade, their high diversity in regards to
life history and morphology, the presence of a linear mitochon-
drial genome (with a variable number of chromosomes), and by
the presence of a hinged cap at the apex of the cnidocyst (cnidar-
ian stinging organelles) [8, 16, 17].

There are ∼3,900 described species within Medusozoa, classi-
fied into 4 diverse lineages: Hydrozoa (hydroids, hydromedusae,
siphonophores), Staurozoa (stalked jellyfish), Cubozoa (box jel-
lyfish), and Scyphozoa (true jellyfish) (Fig. 1A−C) [1, 11]. There
exists much debate regarding the phylogenetic relationships
among these lineages [10, 16, 18–20]. Recent phylogenomic anal-
yses have placed Staurozoa as the sister to a clade that con-
tains Cubozoa and Scyphozoa, reuniting these lineages into a
group called Acraspeda (Fig. 1D) [9, 15, 21]. Given the exten-
sive morphological diversity within Cnidaria, understanding the
evolutionary relationships and mechanisms leading to lineage-
specific innovations has been of considerable interest but has
been fraught with challenges. In particular, the evolution and
subsequent loss of the medusoid form in some lineages hints at
a complex evolutionary history within Medusozoa [22].

The mechanisms of medusa formation are variable amongst
medusozoans, often involving 2 phenotypically distinct life
stages—polyp and medusa—that are genotypically identical (re-
viewed by Lewis Ames [1]). Cubozoan polyps undergo partial or
complete metamorphosis and develop into the adult medusoid
form capable of sexual reproduction, although in some cases
a polyp rudiment remains [23]. Scyphozoan polyps (scyphis-
tomae) undergo a transition known as strobilation, in which the
upper calyx proceeds through metamorphosis and transverse
fission to produce a medusa [24]. Unlike other medusozoans,
staurozoans lack a free-swimming medusa stage but exhibit
medusa-associated characters that are present in other medu-
sozoans [25]. The basal portion of the adult forms a stalk, or
peduncle, while coronal muscles and gastric filaments, among
other features, characterize the apical portion (calyx) of the adult
[20, 25–27]. Hydrozoans exhibit the greatest variation in life his-
tory strategies and often lack a medusa form [1]. Species that

give rise to the medusoid form do so via lateral buds generated
by asexual polyps, while others possess sexual polyps without
a free-swimming stage [28, 29]. Elsewhere within Cnidaria, An-
thozoa and the parasitic Endocnidozoa lack the medusa stage
or medusoid characters entirely. Research on medusa develop-
ment has shown similar gene expression patterns between hy-
drozoans and scyphozoans, with developmental genes co-opted
for patterning the medusa body plan [30, 31]. Interestingly, stro-
bilation in scyphozoans was recently shown to be under the con-
trol of the retinoic acid pathway [32–34]; these same genes are in-
volved in metamorphosis of insects and amphibians, hinting to-
wards regulation of metamorphosis being a conserved function
in metazoans [35]. The study also found that potential lineage-
specific genes were involved in controlling strobilation, sugges-
tive of genomic innovations within Medusozoa playing a role in
medusa morphogenesis, or more specifically within Scyphozoa.

Hox genes, which control body formation during early em-
bryonic development, predate the emergence of both Bilateria
and Cnidaria, and the evolution of these genes played a crucial
role in the diversification of these lineages [36–38]. In particu-
lar, clustering and synteny has been shown to be important in
bilaterians [39], but also in some cnidarians, such as the antho-
zoan Nematostella vectensis [36, 40, 41], and in several hydrozoan
species [42–46]. Other than an initial characterization of select
Hox genes in Cassiopea xamachana [47], information about Hox
genes and Hox gene clustering in Acraspeda species has been
limited. In hydrozoans and vertebrates, Hox genes were shown
to be linked to another class of homeobox genes, the POU genes
[48], but this linkage has not been demonstrated in any other
cnidarian lineages. These new Acraspeda genomes provide us
with an opportunity to investigate the evolutionary history of
the POU-Hox linkage in more detail.

Genomic resources necessary to understand medusozoan
evolution have been lacking, with genomes predominantly
available for anthozoans and hydrozoans [49–56]. However, 3
new scyphozoan genomes, 2 genomes of the moon jellyfish Au-
relia spp. and the giant Nomura’s jellyfish Nemopilema nomurai
were recently sequenced [57–59]. In addition, the genome for
the cubozoan Morbakka virulenta has also recently been released
[59]. While the majority of Medusozoa species are represented
by hydrozoans (>90%), both cubozoans and scyphozoans garner
significant attention as a result of their impact on economy and
tourism [1, 60]. Largely due to venom being used as a mecha-
nism of defense and prey capture, the inherent risk of jellyfish
sting has been exacerbated by uncertainty about how cnidar-
ians will respond to modern-day anthropogenic disturbances
[61, 62]. Despite these risks, relatively little is known about
cnidarian venom, as compared to snakes, cone snails, and other
venomous organisms. Given the great phylogenetic distance
between cnidarians and these well-studied venomous organ-
isms, a better understanding of the cnidarian venom repertoire
can provide insight into the evolution of venom and venom-
encoding genes.

Here we present 3 new genomes for species of the 3 major
Acraspeda lineages: Calvadosia cruxmelitensis (formerly Lucernar-
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Figure 1: A, Calvadosia cruxmelitensis (Staurozoa); B, Alatina alata (Cubozoa); and C, Cassiopea xamachana (Scyphozoa). D, Phylogenetic relationship of major cnidarian
lineages after Kayal et al. [11], revealing Cubozoa and Scyphozoa as sister groups, united with Staurozoa to form Acraspeda.

iopsis cruxmelitensis) (Staurozoa, NCBI:txid1843192), Alatina alata
(Cubozoa, NCBI:txid1193083), and C. xamachana (Scyphozoa,
NCBI:txid12993). The winged box jellyfish Alatina alata (Cnidaria:
Cubozoa: Carybdeida: Alatinidae) has been of interest due to its
unusual circumtropical distribution [63], extraordinarily rapid
gonad development [64], and its reputation as a potent stinger,
earning it the honor of being the only jellyfish species to have
its own category in US weather reports [65]. The stalked jel-
lyfish C. cruxmelitensis has been the recent subject of detailed
anatomic [20] and biodiversity studies [27]. The upside-down jel-
lyfish C. xamachana is an established model for understanding
cnidarian-dinoflagellate endosymbiosis [66] and, with its ease of
culturing and tractability in the laboratory setting, is poised as a
model system for evolutionary developmental biology research
and other laboratory-based studies [67].

The genomes and corresponding gene annotations from
these 3 lineages will serve as useful resources aimed at spark-
ing investigative research into the evolution and diversification
of life history strategies across cnidarians. Furthermore, future
studies examining cnidarian venom evolution, and phylogeo-
graphic patterns of venomous jellyfish, may provide opportu-
nities for development of jellyfish-derived therapeutic drugs,

and additional novel biopharmaceuticals (reviewed by Lewis
Ames [1]).

Data Description
Genome sampling, sequencing, and assembly

These 3 acraspedan genomes were assembled at different times
throughout a 5-year period as part of several independent
projects overseen by the coauthors, using separate methods for
collection, extraction, sequencing, and assembly (see below).
This valuable resource to the scientific community is the cul-
mination of an extensive collaborative effort to respond to the
need for model medusozoan systems in a plethora of research
fields.

Cassiopea xamachana sample collection and DNA
extraction

We propagated C. xamachana polyps from a single polyp via
asexual budding (Line T1-A). Polyps were maintained symbiont-
free at 26◦C and fed 3 times weekly with Artemia nauplii. To
avoid the possibility of food source contaminates interfering
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with downstream bioinformatic analysis, we starved the polyps
for 7 days in antibiotic-treated seawater prior to preservation
in 95% ethanol; any Artemia cysts retained within the gut were
manually removed before preservation. We extracted genomic
DNA from the apo-symbiotic (lacking endosymbionts) polyps us-
ing a CTAB (cetyl trimethylammonium bromide) phenol chloro-
form extraction, first performing an overnight digestion of whole
polyp tissue with proteinase K (20 mg/L) in CTAB buffer before
proceeding with the standard protocol. DNA extract was stored
at −20◦C until further processing.

Calvadosia cruxmelitensis sample collection and DNA
extraction

We collected adult specimens of C. cruxmelitensis in January 2013
at Chimney Rock, off the coast of Penzance, Cornwall, England.
Specimens were immediately preserved in ethanol and stored at
−20◦C until further processing. We extracted genomic DNA us-
ing a phenol-choloroform protocol in an Autogen mass extractor
(Holliston, MA, USA), and stored the DNA extract at −20◦C until
further processing.

Alatina alata sample collection and DNA extraction

We collected A. alata material during a spermcasting aggregation
in Bonaire, The Netherlands (April 2014, 22:00–01:00) according
to the methods in Lewis Ames et al. [7]. We selected a single
live spermcasting male medusa from the same cohort as the
female medusa used in previously published RNA sequencing
studies (Genbank Accession: GEUJ01000000) [7, 9]. The medusa
was divided into 4 longitudinal sections, and one quarter was
placed into a 15-mL tube with pure (99%) ethanol, flash-frozen
at −180◦C (using a dry shipper), and subsequently transported to
the Smithsonian National Museum of Natural History and stored
at −20◦C. We extracted genomic DNA using a DNeasy Blood &
Tissue Kit (Qiagen: Hilden, Germany), following the manufac-
turer’s protocol. DNA extract was stored at −20◦C until further
processing.

Cassiopea xamachana sequencing and assembly

Library construction and sequencing was performed at Hudson-
Alpha Institute for Biotechnology. Four 350-bp paired-end linear
libraries with insert sizes of 500 bp were generated with Illu-
mina TruSeq DNA PCR-Free LT Prep Kits (San Diego, CA, USA)
and sequenced on the Illumina Hiseq2000. Approximately 634
million reads totaling 117.6 Gb of high-quality paired-end se-
quence data were generated. We performed adaptor trimming
and quality filtering using Trimmomatic v0.36 [68] with default
settings, followed by genome size estimation and error correc-
tion with Allpaths-LG version 52,488 [69]. We removed mito-
chondrial reads using FastqSifter v1.1.1 (RRID:SCR 017200) [70]
using the C. xamachana mitochondrial genome as a reference
(NCBI NC 01 6466.1). We performed de novo genome assemblies
using ABySS 2.0.1 with default settings [71], SPAdes genome as-
sembler v3.10.0 [72], and Platanus version 1.2.1 (with default pa-
rameters, k = 89) [73] (Table 1). We used a custom Perl script,
plat.pl [74], to invoke the Platanus commands for assembly, scaf-
folding, and gap closing. Of the 3 assembly methods, Platanus
produced the best draft assembly with 93,483 scaffolds measur-
ing a total of 393.5 Mb with an N50 of 15,563 bp (Table 1) (Euro-
pean Nucleotide Archive [ENA] Accession OLMO01000000). We
recovered 82.66% (53.63% complete and 29.03% partial) of the
core eukaryotic genes and 66.97% (58.59% complete and 8.38%

partial) of the core metazoan genes with CEGMA version 2.5 [75]
and BUSCO version 2.01 [76], respectively, through the gVolante
web server [77] (Table 1).

Calvadosia cruxmelitensis sequencing and assembly

Library construction and sequencing for C. cruxmelitensis were
performed at the University of Florida Interdisciplinary Cen-
ter for Biotechnology Research. Four 150-bp paired-end linear
libraries and four 150-bp single-end linear libraries with in-
sert size of 300 bp were generated and sequenced on the Il-
lumina NextSeq 500, generating 291,944,064 paired-end reads
and 141,911,072 single-end reads. We performed adaptor trim-
ming and quality filtering using Trimmomatic-0.32 [68] with de-
fault settings, followed by genome size estimation error cor-
rection using Allpaths-LG v.44837 [69]. We removed mitochon-
drial sequences to improve the final assembly with FastqSifter
v1.1.1 (RRID:SCR 017200) [70], using a de novo assembly of the
C. cruxmelitensis mitochondrial genome. We assembled the C.
cruxmelitensis mitochondrial genome by capturing contigs from
an initial assembly using available staurozoan mitochondrial
DNA sequences from NCBI as a reference, following the meth-
ods presented in Kayal et al. [78], using Geneious v9.0 to gen-
erate the final mitochondrial assembly. We checked complete-
ness of the mitochondrial genome using NCBI BLAST against
the non-redundant database in addition to a manually gener-
ated set of medusozoan genes, annotated transfer RNA (tRNA)
genes separately by using tRNAscan-SE [79] and Arwen [80], and
checked the integrity of the assembly by aligning the reads to
the completed mitochondrial genome. With the mitochondrial
sequences removed, we generated 2 “sub-optimal” assemblies
using Platanus v1.2.1 with k-mer size of 32 and 45 bp and de-
fault settings. Subsequently, we used these sub-optimal assem-
blies to construct artificial mate-pair libraries for 9 insert sizes
(1,000, 2,000, 3,000, 4,000, 5,000, 7,500, 10,000, 15,000, 20,000) with
MateMaker v1.0 (RRID:SCR 017199) [81]. We used the artificial
mate-pair libraries to scaffold the optimal assembly (generated
using Platanus k-mer = 45) with SSPACE Standard v3.0 [82]. This
process produced a draft assembly with 417,008 scaffolds mea-
suring a total of 209.3 Mb with an N50 of 16,443 bp (Table 1) (ENA
Accession OFHS01000000). We recovered 91.94% (61.29% com-
plete and 30.65% partial) of the core eukaryotic genes and 85.07%
(70.86% complete and 14.21% partial) of the core metazoan genes
with CEGMA and BUSCO, respectively.

Alatina alata sequencing and assembly

Illumina library preparation and sequencing was conducted at
the University of Kansas Genome Sequencing Core. Libraries
were generated with the Illumina Nextera Library Preparation
Kit (San Diego, CA, USA) and sequenced twice on the Illumina
HiSeq 2500. The 2 different runs were performed on the same
library: 1 with 100-bp paired-end, and 1 with 150-bp paired-end
sequencing, resulting in 564 million reads totaling 148.6 Gb of
paired-end sequence data. Pacific Biosciences (PacBio) library
prep and sequencing were completed at the University of Wash-
ington Northwest Genomics Center. We constructed the libraries
with unsheared DNA with end-cleanup only, with an average in-
sert size of 6,000 bp. Sequencing was completed on the PacBio
RS II platform, resulting in 486,000 long-reads totaling 990.2
Mb of data. We conducted hybrid assembly of Illumina short-
reads and PacBio long-reads using MaSuRCA 3.2.2 [83] (which
includes an error correction step for paired-end reads), which
resulted in an assembly of 291,445 contigs and an N50 of 7,049

https://scicrunch.org/resolver/RRID:SCR_017200
https://scicrunch.org/resolver/RRID:SCR_017200
https://scicrunch.org/resolver/RRID:SCR_017199
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Table 1: Statistics of Alatina alata, Calvadosia cruxmelitensis, and Cassiopea xamachana genome assemblies

Alatina alata Calvadosia cruxmelitensis Cassiopea xamachana

NCBI Taxa ID 1,193,083 1,843,192 12,993
No. of sequences 291,445 50,999 93,483
Estimated genome size 2,673,604,203 230,957,924 361,689,769
Total length (bp) 851,121,747 209,392,379 393,520,168
N50 (bp) 7,049 16,443 15,563
CEGMA (% complete) 8.06 61.29 53.63
CEGMA (% complete + partial) 29.84 91.94 82.66
BUSCO (% complete) 18.30 70.86 58.59
BUSCO (% complete + partial) 32.11 85.07 66.97
Guanine-cytosine content (%) 38.07 39.95 37.07
Assembly accession PUGI00000000 OFHS01000000 OLMO01000000
NCBI raw read accession PRJNA421156 PRJEB23739 PRJEB23739
Specimen Voucher ID USNM 1,248,604 USNM 1,286,381 UF Cnidaria 12,979
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Figure 2: Gene content distribution in cnidarian lineages. Filled circles in the bottom panel indicate shared orthogroups in those lineages. Bar graphs indicate the
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that species. Hsap = Homo sapiens; Nvec = Nematostella vectensis; Hmag = Hydra magnipapillata; Ccrux = Calvadosia cruxmelitensis; Aala = Alatina alata; Cxam = Cassiopea

xamachana.

bp (NCBI Accession PUGI00000000). We did not perform adapter
trimming prior to assembly because the MaSuRCA manual ad-
vises against preprocessing of reads, including adapter removal.
Nevertheless, we identified considerable adapter contamination
in our final assembly. Subsequently, we used a custom script
(remove adapters and 200.pl [74]) to remove adapters and se-

quences shorter than 200 nucleotides. The total length of the as-
sembly was 851.1 Mb. We recovered 29.84% (8.06% complete and
21.78% partial) of the core eukaryotic genes and 32.11% (18.30%
and 13.81% partial) of the core metazoan genes with CEGMA and
BUSCO, respectively. The low recovery rates for conserved genes
in the A. alata genome are likely due to the considerably larger
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with ClusterProfiler, with a P-adjusted cutoff of 0.01. Color indicates log10-transformed P-adjusted value. Terms are plotted within an x-y semantic space, in which
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size of the genome, which tends to be coupled with long introns,
and therefore higher rates of gene fragmentation in a draft as-
sembly [84–86].

Comparison of Assemblies

A comparison of the draft genomes assembled in this study re-
veals that the genome of A. alata is 4 times the size of that of C.
cruxmelitensis and almost twice the size of the genome of C. xa-
machana. The apparent contiguity of the assemblies is reflected
in this size difference, with the N50 of the A. alata genome
(7,049 bp) being considerably smaller for both C. cruxmelitensis
(16,443 bp) and C. xamachana (15,563 bp). The N50, the mini-
mum length of at least half the contigs/scaffolds in an assem-
bly, tends to scale with the level of completeness as measured

by CEGMA and BUSCO. For example, CEGMA recovered 91.94%
of 248 conserved eukaryotic genes (complete + partial) in C.
cruxmelitensis and 82.66% in C. xamachana, and 29.84% in A. alata
(Table 1).

Gene Model Prediction

We predicted genes for all 3 genomes using Augustus v3.2.2 [87],
with the Homo sapiens training set and hits generated with BLAT
[88] alignments of published transcriptome data (C. cruxmeliten-
sis ENA accession = HAHC01000000; C. xamachana ENA accession
= PRJEB21012; A. alata accession = PRJNA312373) to the genome
assemblies of the respective taxa [11]. The H. sapiens training
set was used because Augustus gene predictions using the Ne-
matostella vectensis v1.0 training set failed to detect intronic re-
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gions within predicted genes, thereby resulting in predicted pro-
teins consisting of single exons. We generated 66,156 gene mod-
els for A. alatina, 26,258 for C. cruxmelitensis, and 31,459 for C.
xamachana.

Gene Orthology and Lineage-Specific Gene
Ontology

We used OrthoFinder v1.1.4 [89] to construct orthologous groups
between gene models of A. alatina, C. cruxmelitensis, C. xam-
achana, N. vectensis, Hydra magnipapillata, and H. sapiens. We also
included translated transcriptome assemblies for A. alatina, C.
cruxmelitensis, and C. xamachana in these ortholog analyses, as
well as an additional transcriptome of the apo-symbiotic polyp
stage of C. xamachana, which was assembled using Trinity v2.4.0
[90] with default settings (ENA Project Accession: PRJEB23739).
All transcriptomes were translated using TransDecoder 3.0.0 [91]

with minimum protein length (-m) set to 50 and all other settings
as default. We annotated orthogroups by BLASTing a represen-
tative species against the Uniprot/Swiss-Prot database [92]. Or-
thogroups with annotations were further mapped to Gene On-
tology (GO) terms, and analysed for putative enrichment related
to biological function using ClusterProfiler [93], against a C. xa-
machana annotation database generated using AnnotationForge
[94].

Our OrthoFinder analysis generated a total of 80,482 or-
thogroups for the combined genomic datasets. Using a custom
script, we identified 756 Cnidaria-specific orthogroups, another
562 medusozoan-specific orthogroups, and yet another 1,091
Acraspeda-specific orthogroups (Fig. 2); genes in each taxon-
specific orthogroup were non-overlapping. Of these unique or-
thogroups, we were able to retrieve Swiss-Prot annotations
for 57% of Cnidaria-specific orthogroups, 32% of Medusozoa-
specific orthogroups, and 55% of Acraspeda-specific orthogroups
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(Tables S1−S3). Unannotated orthogroups may represent tax-
onomically restricted genes or genes no longer discernable as
such due to possibly extensive genetic mutation experienced
in evolutionary history. Using this framework, we identified en-
riched GO terms, uncovering 123 terms corresponding to biolog-
ical processes that appear to be enriched within Cnidaria: 107
for Medusozoa, and 14 for Acraspeda (adjusted P-value < 0.01).
We used ReViGO to remove redundant GO terms from these ini-
tial lists and grouped them further through k-means clustering
by Euclidean distance. The optimal number of clusters was pre-
dicted using the R package NbClust v3.0.

Our ReViGO analysis reduced the 123 Cnidaria-specific GO
terms for biological processes to 59 non-redundant ReViGO
terms comprising 5 clusters (Fig. 3, Table S1, Fig. S1). Within
the 5 clusters, many genes putatively encoding proteins for
the cnidarian nerve net were represented (e.g., development
and sensory perception), indicative of a system exhibiting

a complex response to physical and chemical stimuli. Ad-
ditionally, terms related to transport (ion, amines, carbon
compounds) and the extracellular matrix were also repre-
sented. Genes associated with the extracellular matrix are
possibly linked to the cnidarian novelty, the mesoglea (the
proteinaceous layer between the endoderm and ectoderm
in these diploblastic animals). The 107 Medusozoa-specific
GO terms were reduced to 41 non-redundant ReViGO terms,
which when grouped by k-means formed 3 clusters (Fig. 4,
Table S2, Fig. S2). Similar to terms represented within Cnidaria,
Medusozoa terms were also associated with response to stimuli
and the nervous system. Unique terms seemingly important
to medusozoan biology were those related to wound healing
and tissue migration, as well as apoptotic signaling regulation.
These terms are possibly associated with unique asexual
reductive traits (e.g., budding, fission, strobilation) seen within
the medusozoan lineage. Despite initially identifying 1,091
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Figure 6: Venom-encoding gene repertoire of 5 cnidarian genomes. Venom-encoding genes were identified with the venomix database using OrthoFinder and BLAST.

A, Calvadosia cruxmelitensis; B, Alatina alata; C, Cassiopea xamachana; D, Hydra magnipapillata; and E, Nematostella vectensis.

orthogroups unique to Acraspeda, only 14 GO terms were
enriched (highly abundant); this number was further reduced
to 8 non-redundant ReViGO terms (Fig. 5, Table S3). The appar-
ently low enrichment may reflect an under-representation
of Acraspeda genes within the reference database. In-
terestingly, half of the terms were associated with DNA
recombination.

Venom Analysis

We identified potential venom-encoding genes within the
cnidarian transcriptomes using the venomix database (a pub-
licly available curated set of 6,622 venom-related proteins) and
associated pipeline [95]. Additional venom-encoding genes were
identified by BLASTing the >6,000 venom-related protein se-
quences of the venomix database to the Augustus protein pre-
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Figure 8: Evolution of PPCS/POU gene fusion and POU-Hox linkage. A fusion event
involving a POU and PPCS domain occurred in the stem of Cnidaria. The syntenic
linkage of POU and Hox genes occurred at least twice in animal evolution: once
in the stem of Medusozoa and once in the vertebrate lineage.

dictions (BLAST v2.2.31+ e-value = 10−6) [96]. By combining the
results of both approaches, we identified 93 types of venom-
encoding genes in C. cruxmelitensis, 93 in A. alata, 97 in C. xa-
machana, 96 in H. magnipapillata, and 91 in N. vectensis. In total,
we identified 117 types of putative venom proteins, organized
into 32 families, that were present in ≥1 of the 5 cnidarian taxa
(Fig. 6, Table S4). To attempt to reconstruct evolutionary relation-
ships among venom proteins in cnidarians, we added the ven-
omix database to our initial set of input protein sequences and
reran our OrthoFinder pipeline. Using this process, we identi-
fied 124 orthogroups encoding venom genes in the 5 cnidarian
genomes and the human genome (Fig. 7). Of the 124 venom or-
thogroups, few were found to be specific to any 1 cnidarian lin-
eage, with 5 orthogroups present across all cnidarians, 2 span-
ning medusozoans, and 1 shared between Acraspeda. Most of
the proteins in the venomix database were identified first in bi-
laterian animals, and properly curated based on extensive sup-
porting data, whereas putative toxins identified in non-model
cnidarians often lack robust evidence to support annotations,
precluding their entry into curated databases; hence the limited
number of proteins returned in our homology search. However,
we were successful in identifying 9 cnidarian-specific toxin pro-
teins [4, 97–100]. Four of these proteins (potassium channel toxin
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BcsTx, peptide toxin Am-1, AvTx, MsepPTx) were found exclu-
sively in N. vectensis, while CqTx was exclusive to the genome
of A. alatina. Interestingly, CrTx, a toxin previously identified in
Cubozoa, including A. alatina [99, 101], was also found in C. xa-
machana and H. magnipapillata. While the genome of A. alatina
appears to possess 5 copies of the CrTx gene, we identified 3
putative copies in C. xamachana and 1 copy in H. magnipapillata
genomes, respectively. However, CrTx was absent from both the
C. cruxmelitensis genome and transcriptome, suggesting thath
this gene may have been lost from the staurozoan lineage. Ad-
ditionally, the pore-forming toxins sticholysin and hydralysin
[97, 102] were found only in the H. magnipapillata genome in
our analysis. Sticholysin was originally identified in the sea
anemone Stichodactyla helianthus, but its absence from the N.
vectensis genome may indicate that it is not an Anthozoa-specific
protein, but rather variably distributed in Cnidaria.

Hox-POU Synteny Analysis

In the hydrozoan Eleutheria dichotoma, a POU6-class homeobox
gene is fused with a phosphopantothenoylcysteine-synthetase
(PPCS), and this PPCS/POU6 fusion is linked to a Hox class home-
obox gene, Cnox5 [48]. The PPCS/POU6 fusion is known only in
Cnidaria, and its presence in the anthozoan N. vectensis suggests
that it was likely present in the last common cnidarian ances-
tor. On the other hand, PPCS/POU6 fusion is not linked to a Hox-
class gene in N. vectensis (cf. Putnam et al. 2007 assembly [55]),
suggesting that POU-Hox linkage might be a more recent event.
Of the Acraspeda genomes we find the PPCS/POU6 fusion gene
linked to a Cnox5 ortholog in C. cruxmelitensis and C. xamachana
(Fig. 8, Fig. S3). Considering that the last common medusozoan
ancestor likely >500 million years ago [103], it is reasonable to
conclude that a functional constraint has led to conserved syn-
teny for PPCS/POU6 fusion. However, the linkage to Cnox5 was
not recovered in the A. alata genome, preventing further spec-
ulation about whether POU-Hox linkage was present in the last
common acraspedan ancestor.

Based on the well-established linkage of a POU-class home-
obox gene to Hox clusters in vertebrates [48], it had been sug-
gested that a POU-Hox linkage may have been present in the
last common ancestor of cnidarians and bilaterians. To check
this, we searched several additional anthozoan genomes: Sty-
lophora pistillata [54] and Acropora digitifera [104], as well as sev-
eral invertebrate bilaterian genomes: Capitella teleta (Polychaeta)
[105], Strigamia maritima (Chilopoda) [106], Octopus bimaculoides
(Cephalopoda) [107], Mizuhopecten yessoensis (Bivalvia) [108], and
Ciona intestinalis (Ascidiacea) [109] that were not available at
the time of the original study. We found no evidence for an-
cient POU-Hox synteny in these anthozoans nor in the inver-
tebrate bilaterian genomes, suggesting that the POU-Hox link-
age in medusozoans was achieved independently from the ver-
tebrate POU-Hox linkage (Fig. 8, Fig. S3). These findings demon-
strate how the 3 new medusozoan genomes allow us to address
questions pertaining to molecular evolution, as well as the syn-
ergistic benefit of increased genomic-level taxon sampling when
testing hypotheses about ancestral states.

Conclusions

In this note we describe draft genomes for 3 species of the medu-
sozoan sub-group Acraspeda (Cnidaria)—C. cruxmelitensis (Stau-
rozoa), A. alata (Cubozoa), and C. xamachana (Scyphozoa)—and
our corresponding bioinformatics workflows for their assem-

blies and partial annotations. The findings of our preliminary
orthology analyses and annotation of Hox-linked and venom-
related genes provide a glimpse into genetic components un-
derlying the evolution of certain traits in these early metazoans.
Coupled with appropriate bioinformatics tools and data man-
agement pipelines, researchers across a broad range of scientific
fields can utilize these resources to investigate the genetic ba-
sis of defense, reproduction, and communication in this ancient
and species-rich group that encompasses a diversity of life his-
tories, some of which exhibit pelagic life stages. Furthermore,
cnidarian genomes offer strategic opportunities to investigate
possible genetic links to any number of ecological issues related
to jellyfish that are frequently reported in the scientific litera-
ture, or in news media.

These medusozoan genomes will be useful resources in de-
veloping functional constructs (e.g., CRISPR/Cas9 guide RNAs)
that can be used to understand the genomic basis for some of the
captivating biological innovations of these animals, and eventu-
ally for the design of probes for target-capture DNA sequencing.
Last, the availability of these genomic-level sequence data is an
important step forward in the pursuit to elucidate evolutionary
events that may have shaped Medusozoa, and in reconstructing
the last common ancestor of Cnidaria and Bilateria. Therefore,
we are confident that these new genomes will prove valuable for
understanding the biology of these fascinating creatures, and for
exploring key genomic events that were formative in the early
evolution of animals.

Availability of supporting data and materials

Accession numbers for raw sequencing reads and assemblies are
available in Table 1. Custom scripts and parameters used for the
analyses are available in a github repository [74]. Other data sup-
porting this work are available in the GigaScience repository, Gi-
gaDB [110].

Additional files

Supplementary Figure S1. ReViGO output for Cnidaria genes
clustered through k-means clustering by Euclidean distance.
Number of optimal clusters predicted prior to clustering using
NbClust.

Supplementary Figure S2. ReViGO output for Medusozoa
genes clustered through k-means clustering by Euclidean dis-
tance. Number of optimal clusters predicted prior to clustering
using NbClust.

Supplementary Figure S3. Linkage of PPCS-POU genes with
Hox genes in cnidarian genomes. Genomic scaffolds for 3 Medu-
sozoa lineages (Eleutheria dichotoma, Calvadosia cruxmelitensis,
and Cassiopea xamachana) show linkage of the PPCS-POU gene
linked to a Hox gene (dark green). This linkage is not seen in
Anthozoa (Nematostella vectensis). The light green region indi-
cates the transcribed portion of the scaffold, and exons are rep-
resented within by curved rectangles (PPCS exons = purple, POU
exons = yellow). Scaffold length shown to the right of each bar.
Edic: E. dichotoma; Ccrux: C. cruxmelitensis; Cxam: C. xamachana;
Nvec: N. vectensis.

Table S1. Orthogroups specific to Cnidaria identified using Or-
thoFinder and annotated by a representative gene from the Hy-
dra magnipapillata genome. Protein annotations were retrieved
from Swiss-Prot.

Table S2. Orthogroups specific to Medusozoa identified using
OrthoFinder and annotated by a representative gene from the
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Hydra magnipapillata genome. Protein annotations were retrieved
from Swiss-Prot.

Table S3. Orthogroups specific to Acraspeda identified using
OrthoFinder and annotated by a representative gene from the
Hydra magnipapillata genome. Protein annotations were retrieved
from Swiss-Prot.

Table S4: Venom-encoding gene repertoire of 5 cnidarian
genomes identified via the venomix database and pipeline.
Venom genes are categories by families (column 1). Both ge-
nomic and transcriptomic data were used, with transcriptomic
isoforms counted as a single venom-encoding gene.
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