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Abstract

Background: The heterogeneity within Alzheimer's disease (AD) seriously challenges the development of disease-
modifying treatments. We investigated volume of the basal forebrain, hippocampus, and precuneus in atrophy
subtypes of AD and explored the relevance of subtype stratification in a small clinical trial on encapsulated cell
biodelivery (ECB) of nerve growth factor (NGF) to the basal forebrain.

Methods: Structural MRI data was collected for 90 amyloid-positive patients and 69 amyloid-negative healthy
controls at baseline, 6-, 12-, and 24-month follow-up. The effect of the NGF treatment was investigated in 10
biopsy-verified AD patients with structural MRI data at baseline and at 6- or 12-month follow-up. Patients were
classified as typical, limbic-predominant, hippocampal-sparing, or minimal atrophy AD, using a validated visual
assessment method. Volumetric analyses were performed using a region-of-interest approach.

Results: All AD subtypes showed reduced basal forebrain volume as compared with the healthy controls. The limbic-
predominant subtype showed the fastest basal forebrain atrophy rate, whereas the minimal atrophy subtype did not
show any significant volume decline over time. Atrophy rates of the hippocampus and precuneus also differed across
subtypes. Our preliminary data from the small NGF cohort suggest that the NGF treatment seemed to slow the rate of
atrophy in the precuneus and hippocampus in some hippocampal-sparing AD patients and in one typical AD patient.
Conclusions: The cholinergic system is differentially affected in distinct atrophy subtypes of AD. Larger studies in the
future should confirm that this differential involvement of the cholinergic system may contribute to subtype-specific
response to cholinergic treatment. Our preliminary findings suggest that future clinical trials should target specific
subtypes of AD, or at least report treatment effects stratified by subtype.

Trial registration: ClinicalTrials.gov identifier: NCT01163825. Registered 14 July 2010.
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Background

Finding a cure for Alzheimer’s disease (AD) continues to
be a major challenge. More than 200 AD clinical trials
have failed to date [1], possibly due to the recruitment of
heterogeneous populations. Different biological subtypes
can be found in AD [2]. Murray et al. [3] showed that AD
patients often have balanced neurofibrillary tangle (NFT)
counts in the hippocampus and association cortex, i.e., the
typical AD subtype. However, two other subtypes were
also identified, corresponding to limbic-predominant and
hippocampus-sparing AD, with NFT counts predomin-
antly in the hippocampus or the association cortex, re-
spectively. Structural magnetic resonance imaging (sMRI)
can reliably track these subtypes in vivo [4] and has con-
sistently identified a fourth subtype with minimal atrophy,
i.e., the minimal atrophy AD subtype [5-9].

Currently approved treatments for AD are symptomatic,
and the most widely established treatments are cholinester-
ase inhibitors (ChEI) targeting the cholinergic system [1].
However, ChEI have limited effectiveness and alternative
treatments targeting the cholinergic system are being inves-
tigated [10, 11]. The basal forebrain is the major source of
cholinergic innervation in the brain targeting the hippo-
campus and cortical areas [12—14]. AD patients with less
hippocampal atrophy seem to respond better to ChEI [15].
This raises the hypothesis of whether hippocampal-sparing
and minimal atrophy AD could have a better response to
cholinergic treatment. Interestingly, hippocampal-sparing
and minimal atrophy are the most frequent subtypes
among patients with dementia with Lewy bodies (DLB)
[16], who often respond well to ChEI [17]. Hence, impaired
cholinergic system but relatively intact hippocampal func-
tion may be prognostic factors for a good response to ChEI
[18]. However, no previous studies have investigated cho-
linergic system integrity or cholinergic treatment response
across subtypes of AD.

We investigated impairment of the cholinergic system by
analyzing atrophy in the basal forebrain and its target re-
gions across the four subtypes of AD, both cross-
sectionally and longitudinally, in vivo. We then explored
the effect of AD subtype on regional atrophy rates in AD
patients with and without a cholinergic treatment consist-
ing of encapsulated cell biodelivery (ECB) of nerve growth
factor (NGF) to the basal forebrain. The atrophy rates of
the treated sample (NGF cohort) were compared to the
“expected” atrophy rates from an independent and un-
treated AD sample. This NGF treatment was an add-on to
ChEI treatment since all patients were already under ChEI
treatment. Targeted delivery of NGF has emerged as a po-
tential therapy based on its regenerative effects on the basal
forebrain cholinergic neurons [19-21]. Our AD patients
treated with NGF are part of a study of targeted delivery of
NGF to the basal forebrain over 6 or 12 months [22, 23].
Hence, the present study includes a unique “experimental
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manipulation” of the basal forebrain in AD subtypes. We
hypothesized that (1) the four AD subtypes would have sig-
nificantly less volume in the basal forebrain at baseline
compared with healthy controls, (2) the AD subtypes
would show different baseline and atrophy rates of the
basal forebrain with typical and limbic-predominant AD
undergoing faster atrophy, (3) the different AD subtypes
would show distinct correlations between longitudinal at-
rophy of the basal forebrain and longitudinal atrophy of
the target regions, and (4) the NGF treatment may have
better response in patients with no hippocampal atrophy,
i.e, slower atrophy rate than expected in hippocampal-
sparing and minimal atrophy AD subtypes.

Method

Participants

A total of 90 AD patients and 69 healthy controls were
selected from the ADNI-1 cohort [24]. All AD patients
were amyloid B (Ap)-positive, and all healthy controls
were AfB-negative, using established cutoffs [25]. Partici-
pants’ selection and diagnostic criteria can be found on
the ADNI webpage (http://www.adni-info.org). Stable
doses of baseline medications, including ChEI (i.e., Ari-
cept, Exelon, or Reminyl), were permitted if listed in the
ADNI procedures manual. The ADNI is a longitudinal
multisite study from the USA and Canada launched in
2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, private pharmaceutical
companies, and non-profit organizations (principal in-
vestigator Michael W. Weiner). The ADNI was approved
by the institutional review board at each site. Informed
consent was obtained from all participants.

In addition, 10 AD patients were recruited from the
memory clinic at the Karolinska University Hospital (Hud-
dinge, Sweden) (from here referred to as the NGF cohort).
Inclusion criteria were as follows: (1) a probable diagnosis
of mild or moderate AD according to the NINCDS-
ADRDA criteria [26], (2) aged 55-80vyears, (3) a Mini-
Mental State Examination (MMSE) [27] score of 16-24,
(4) living at home with a caregiver, and (5) stable treatment
with similar ChEI as the ADNI cohort, for at least 9
months before enrollment, which remained stable during
the study. All 10 AD patients underwent surgical implant-
ation of NGF-releasing cell capsules, using encapsulated
biodelivery bilaterally implanted into the basal forebrain.
For details on study design, neurosurgical procedure, and
clinical follow-up, please see Wahlberg et al. [22] and
Eriksdotter et al. [23]. AD diagnosis was histopathologically
confirmed in nine patients using cortical brain biopsies ob-
tained during the surgical procedure [10]. In one patient,
the biopsy failed and only provided fibrotic tissue. Diagno-
sis of the remaining patient was based on core clinical cri-
teria and pathological CSF AD biomarkers. Exclusion
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criteria were the same as for the ADNI cohort, also includ-
ing smoking.

MRI methods

MRI data acquisition and processing

All ADNI and NGF patients were scanned at 1.5 T scan-
ners with a harmonized high-resolution 3D T1-weigthed
sequence. The MRI acquisition protocols are described in
Appendix A and elsewhere [28, 29]. MRI data was col-
lected at identical follow-up intervals for both cohorts, i.e.,
baseline, 6- and 12-month follow-ups. In addition, 24-
month follow-up was also included for the ADNI cohort
to investigate atrophy over a longer period (Table 1).

The MRI data were processed using the statistical
parametric mapping software (SPMS8) and the voxel-
based morphometry (VBM8) toolbox (http://dbm.neuro.
uni-jena.de/vbm/). First, baseline and follow-up images
of each individual were rigidly registered to each other
and bias corrected for magnetic field inhomogeneities.
Next, images were segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) parti-
tions. GM and WM partitions from all subjects and
timepoints were then high-dimensionally registered to a
customized template corresponding to the group’s
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anatomic mean using the DARTEL algorithm [30] (see
Appendix A for more details). Flow fields resulting from
this DARTEL registration were then used to warp the
corresponding GM segments, and voxel values were
modulated to preserve the amount of GM volume
present before warping.

Regions of interest

The cholinergic space of the basal forebrain was defined
using a stereotactic map of cholinergic basal forebrain
nuclei in MNI standard space that was derived from
combined post-mortem MRI and histologic staining as
described in Kilimann et al. [31]. Other masks available
in the SPM software were used to segment the precu-
neus (AAL atlas), the hippocampus, and the primary
somatosensory cortex (PSC) (anatomy toolbox) (Fig. 1a).
The hippocampus and precuneus are target regions of
basal forebrain cholinergic projections [32]. The PSC
was included as a negative control region [33]. Volumes
from the left and right hemispheres were summed up
for the four masks. The masks defined in MNI space
were warped to the DARTEL customized space, and the
GM volumes of the four ROIs were extracted for each
individual and timepoint by summing up the modulated

Table 1 Baseline demographic and clinical characteristics of the ADNI and NGF cohorts

ADNI cohort NGF p value
cohort
HC AD AD subtypes AD ADNI (4 AD ADNI (AD)
patients Typical ~ Limbic-predominant Hippocampal-sparing Minimal patients  subtypes and HC) and NGF (AD)
AD AD AD atrophy AD

Baseline, n 69 90 46 18 15 11 10
6 months, n 69 83 41 18 14 10 4*
12 months, n 64 68 31 17 13 7 6"
24 months, n 43 54 27 13 9 5 -
Sex, % female 51% 42% 28% 56% 47% 73% 50% .035* 641
Age 753 742 756 745 (6.9) 758 (9.1) 652 (74" 625(57) <.001 <.001

(5.4) (7.7) 6.2)
Years of 159 152 153 15.1 (1.8) 153 (34) 146 (3.1) 121 (40 761 .007
education (2.7) (3.3) (3.8)
CDR total, % 0/0 56/44 50/50 67/33 60/40 55/45 50/50 671° 741
(0.5/1)
MMSE 29 (1.1) 234 230 238 (1.9) 237 (19 242 (1.2) 214 (24) 126° .002

(1.9 (1.8)

APOE, % &4 9% 74% 76%" 83%" 53%" 829%" 80% <.001 199
carriers

The table shows count for number of participants at baseline, 6-, 12-, and 24-month follow-ups; mean and standard deviation (SD) for age, years of education, and

MMSE; and percentage for sex, CDR total, and APOE &4 carriers at baseline

Abbreviations: n sample size, CDR clinical dementia rating, MMSE Mini-Mental State Examination, APOE apolipoprotein E, €4 allele epsilon 4, AD Alzheimer’s disease,
HC healthy controls, ADNI Alzheimer's Disease Neuroimaging Initiative, NGF nerve growth factor

*Significantly different to typical AD, limbic-predominant, and hippocampal-sparing

TSignificantly different to healthy controls. Bold numbers indicate p values under 0.05

*Post hoc analysis showed no differences between the five ADNI groups

SCDR and MMSE p values are reported for the comparison between the AD subtypes (excluding HC)
*NGF patients with 6- and 12-month follow-up corresponded to different participants. Two of the NGF patients with 6 months follow-up were classified as typical
AD subtype, one limbic-predominant, and one hippocampal-sparing subtype. Regarding the other six NGF patients with 12 months follow-up, four were classified

as hippocampal-sparing and two as typical AD subtype
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Fig. 1 a Regions of interest (ROIs) depicted in colors and b examples of Alzheimer's disease subtypes. Alzheimer's disease subtypes are based on
patterns of brain atrophy classified according to the different visual rating scales. Abbreviations: A, anterior; P, posterior; R, right; L, left

&

£

Primary
somatosensory cortex

Precuneus

Hippocampal-

: Minimal atrophy
sparing

voxel values of the respective warped GM image. The
total intracranial volume (TIV) was calculated as the
sum of the total volumes of the GM, WM, and CSF par-
titions. ROI volumes were corrected for the TIV using
residuals from linear regression [34].

AD subtypes based on patterns of brain atrophy

All scans were rated by an experienced neuroradiologist
who was blinded to participant’s information and has dem-
onstrated excellent intra- and inter-rater reliability in pa-
tients from the ADNI cohort [7, 35]. Three visual rating
scales were used for subtyping as detailed elsewhere [36].
Briefly, atrophy in the medial temporal lobe was evaluated
with the medial temporal atrophy (MTA) scale [37], atrophy
in the posterior cortex was evaluated with the posterior atro-
phy (PA) scale [38], and atrophy in the frontal lobe was eval-
uated with the global cortical atrophy scale—frontal subscale
(GCA-F) [35]. AD subtyping was determined by combining
the scores from MTA, GCA-F, and PA, as previously de-
scribed [7]. Please see Appendix A for detailed information.

Other measures

We selected age, sex, and years of education for the demo-
graphic description of the cohorts. Clinical variables in-
cluded the clinical dementia rating (CDR) total score [39]

for disease severity (very mild (0.5) and mild (1) dementia)
and the Mini-Mental State Examination (MMSE) total
score [27] for global cognition. We also included APOE
genotype, with presence of at least one €4 allele considered
for carriership.

Statistical analysis

One-way ANOVA was used for continuous and dummy
variables. Spearman’s correlations were used to investi-
gate the association of volume of the basal forebrain
with the other ROIs. Linear mixed effect models were
applied to investigate the interaction between study
group (between-subjects factor, 5 levels including
healthy controls and the four AD subtypes) and time
(within-subjects factor, 4 levels) separately for the four
brain ROIs. Estimates of volumetric change over time
(mm?® per time unit) from the linear mixed effect models
are reported as a measure of atrophy rate. p values in all
post hoc analyses were adjusted using the Benjamini-
Hochberg correction for multiple comparisons. Results
were deemed significant when p < .05.

Results
The AD subtypes in the ADNI cohort did not differ
from each other in key clinical measures (Table 1). The
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NGF AD patients displayed younger age, less years of
education, and lower MMSE score compared with the
ADNI AD patients (Table 1).

Basal forebrain atrophy across AD subtypes (ADNI cohort)
At baseline, the four AD subtypes had comparable volumes
of the basal forebrain (p>.05), but the volumes were re-
duced compared with the healthy controls (all p <.05 when
uncorrected; only typical and limbic-predominant AD
p <.05 when corrected for multiple comparisons) (Table
S1). In contrast, longitudinal basal forebrain atrophy rates
differed between the AD subtypes. The mixed model
showed a significant interaction between study group (all
the AD subtypes and healthy controls) and time (F4, 3g3) =
2.407; p = .049, Fig. 2a). We found a significantly faster atro-
phy rate in limbic-predominant AD (estimate — 17.7) com-
pared with healthy controls (estimate —8.1; t379) = 2.914,
p=.004), typical AD (estimate -10.7; tsgz) =1.990,
p =.047), and minimal atrophy AD (estimate — 7.0; ¢3g5) =
2.015, p = .045). No other significant differences were found
in atrophy rates. All study groups except for minimal atro-
phy AD showed significant volume decline over time
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(p <.001). All the models were controlled for age, sex, and
TIV (see model’s full details in Table S2).

Hippocampus, precuneus, and PSC across AD subtypes
(ADNI cohort)
At baseline, the AD subtypes displayed regional atrophy co-
herent with the definition of the AD subtypes (Table S1).
The mixed model for the hippocampus showed a signifi-
cant interaction between study group and time (Fy, 378) =
18.262; p <.001, Fig. 2b). The rate of hippocampal atrophy
significantly exceeded that of the healthy controls (estimate
-452) in typical (estimate -151.9; 37 =—"7.054,
p <.001), limbic-predominant (estimate — 169.9; £577) = -
6.419, p <.001), and hippocampal-sparing AD (estimate —
127.0; t378) = — 3.710, p <.001). Minimal atrophy AD (esti-
mate —93.6) showed a slower hippocampal atrophy rate
compared to typical (f3g0)=—1.998, p=.047) and limbic-
predominant AD (f3709)=—2412, p=.016). The mixed
model for the precuneus showed a significant interaction
between study group and time (Fy, 361)=4.882; p <.001,
Fig. 2c). All the AD subtypes showed a faster atrophy rate
than the healthy controls (p < .05), but no significant differ-
ences were found among the AD subtypes (p >.05). The
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mixed model for the PSC showed no significant interaction
between study group and time (F, 376)=1.218; p=.303,
Fig. 2d). All the models were controlled for age, sex, and
TIV (see models’ full details in Table S3).

We also investigated the correlation between longitu-
dinal atrophy of the basal forebrain (over 24 months)
and longitudinal atrophy of its target regions, separately
for each subtype. We obtained a moderate to weak cor-
relation indicating that faster atrophy in the basal fore-
brain was associated with faster atrophy in the
hippocampus in the typical AD subtype (r, =0.393,
p =.021, Fig. 3). No other significant correlations were
found (scatter plots are shown in Appendix C: Supple-
mentary Figures).

Regional atrophy in the NGF AD patients as compared
with subtype-specific ADNI data

The NGF treatment modifies the trajectories of global
brain atrophy and CSF biomarkers [28, 40]. In order to
understand whether this effect could depend on the AD
subtype, we investigated longitudinal atrophy rates of
the basal forebrain and its target regions in the different
subtypes. First, using ADNI data, we calculated subtype-
specific cutoffs for longitudinal atrophy rates based on
the upper 10th percentile (+1.3 standard deviations)
[41]. Second, NGF AD patients were classified into one
of the four AD subtypes and their longitudinal atrophy
rates were compared to the subtype-specific cutoffs

Typical AD subtype

-600 -

Hippocampal atrophy rate
over 24 months (in mm3)

-800 -+

-1000

60 0 -60 -120  -180
Basal forebrain atrophy rate
over 24 months (in mm3)

Fig. 3 Association between longitudinal atrophy rates of the basal
forebrain and the hippocampus (ADNI cohort). Longitudinal atrophy
rate is calculated as volume at 24-month follow-up minus volume at
baseline (please see Fig. ST in Appendix C of the supplementary
material for the plots of the remaining AD subtypes)
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derived from the ADNI data. After this classification, pa-
tients above the cutoff reflected slower atrophy rate than
expected, hence suggesting a possible treatment effect.
Figure 4 shows that atrophy rates of the basal forebrain
fell below the cutoff for all the NGF AD patients. In con-
trast, basal forebrain target regions such as the hippo-
campus and precuneus showed slower atrophy rates
depending on AD subtype (Fig. 4). In particular, 2/4
NGF patients with the hippocampal-sparing subtype
showed slower atrophy rate of the precuneus (values
above the cutoff). In addition, 3/4 NGF patients with the
hippocampal-sparing subtype and 1/2 NGF patients with
the typical AD subtype showed slower atrophy of the
hippocampus. A patient with the hippocampal-sparing
subtype also showed slower atrophy of the PSC. Some
interesting clinical observations are that the youngest
patients and those with highest education, as a com-
monly used proxy for cognitive reserve, showed the
slowest hippocampal atrophy rate. On the contrary, the
patient with fastest atrophy of the basal forebrain had
the lowest level of cognitive reserve.

Discussion

The aim of this study was to investigate (1) differences
in basal forebrain volume and longitudinal atrophy rates
between different subtypes of AD and healthy controls,
(2) differences in longitudinal atrophy rates of the basal
forebrain target regions (hippocampus and precuneus),
(3) the association between basal forebrain atrophy and
its target regions, and (4) regional atrophy rates of AD
patients with and without a cholinergic treatment con-
sisting of encapsulated NGF biodelivery to the basal
forebrain. All four AD subtypes showed comparable vol-
ume of the basal forebrain at baseline, while they all
showed significantly reduced volume of the basal fore-
brain compared with the healthy controls. Further, lim-
bic-predominant AD showed faster basal forebrain
atrophy over 24 months as compared with the other sub-
types, whereas the basal forebrain volume in minimal at-
rophy AD did not change significantly over time.
Compared to healthy controls, all AD subtypes showed
faster atrophy in the hippocampus (except for the minimal
atrophy subtype) and precuneus, but not in the PSC. Fur-
ther, the basal forebrain atrophy rate was significantly as-
sociated with hippocampal atrophy rate in typical AD. In
some patients, the NGF treatment seemed to slow down
atrophy rates of the precuneus and hippocampus, but not
of the basal forebrain. Importantly, this effect was largely
dependent on the AD subtype, suggesting the best re-
sponse in hippocampal-sparing AD patients.

The study of AD subtypes has attracted great attention in
the last years. Despite an increasing number of publications,
possible differences in cholinergic system integrity across
subtypes have not yet been investigated systematically. In a
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voxel-wise analysis, Dong et al. [42] reported clusters of re-
duced gray matter volume corresponding to the basal fore-
brain in two AD subtypes that resembled limbic-
predominant and typical AD. Hence, our study is to our
knowledge the first systematic investigation of the basal
forebrain across established atrophy subtypes of AD, in-
cluding both cross-sectional and longitudinal data, in vivo.
Extending the incidental findings in the voxel-wise study of
Dong et al. [42], we demonstrated that cholinergic basal
forebrain volume is reduced in all AD subtypes, including
minimal atrophy AD. This is a relevant finding raising the
hypothesis that cholinergic disruption due to neurodegen-
eration of the basal forebrain may be the basis of the clin-
ical symptoms in the absence of overt cortical atrophy in
minimal atrophy AD. Similar findings in pre-dementia
stages support this hypothesis. For instance, volume of the
basal forebrain was found to be atrophied and to correlate
with reduced cognition in pre-dementia patients lacking
overt cortical atrophy [32, 43]. Further, atrophy in the basal
forebrain appears to precede atrophy in the medial tem-
poral lobe in the development of AD [33, 44]. The patho-
physiological explanation that possibly underlies this
finding is that the basal forebrain is among the earliest sites
for pre-tangle lesions [45].

Even though all AD subtypes displayed comparable basal
forebrain volume at baseline, the longitudinal atrophy rate
of the basal forebrain was different. Limbic-predominant

AD showed fastest progression, and minimal atrophy AD
showed no significant decline over time, with typical and
hippocampal-sparing AD having an intermediate atrophy
rate. Limbic-predominant AD in the ADNI-1 cohort is
among the subtypes displaying fastest cognitive decline [7].
Also, AD patients with high atrophy in the medial temporal
lobe are known to respond worse to ChEI [15], which could
be related to the fast neurodegeneration rate of the basal
forebrain in this subtype. We also hypothesized that typical
AD would undergo fast atrophy of the basal forebrain. Al-
though the atrophy rate in typical AD was not significantly
different from that of the healthy controls, the estimate of
atrophy rate was the fastest in typical AD, right after
limbic-predominant AD. All these findings highlight a pos-
sible inter-relation between atrophy of the basal forebrain,
patterns of cortico-limbic atrophy, disease progression, and,
possibly, treatment response. Baseline volumes and longitu-
dinal atrophy of the hippocampus and precuneus were as
expected and coherent with the definition of the AD sub-
types (e.g., larger hippocampal atrophy in typical and
limbic-predominant AD; larger precuneus atrophy in
hippocampal-sparing and typical AD). To our knowledge,
no previous studies have reported longitudinal atrophy
rates for these brain regions in different subtypes of AD.
The discussion above highlights the role of the basal
forebrain as part of a large network projecting to the
hippocampus and diffuse neocortical association regions
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[13, 14, 46]. Differential involvement of this cholinergic
network could be the basis of different patterns of neu-
rodegeneration in these AD subtypes. Limbic-
predominant atrophy would stem from disruption of
basal forebrain projections to the hippocampus, whereas
hippocampal-sparing atrophy may be related to non-
hippocampal basal forebrain projections to regions such
as the precuneus [14]. Typical AD would include disrup-
tion of both types of basal forebrain projections. We
attempted to test this hypothesis by investigating
subtype-specific explorative correlations between the at-
rophy rate of the basal forebrain and atrophy rates of the
hippocampus and precuneus, respectively. We only
found a significant association with the hippocampus in
typical AD. A similar association has previously been
found in cross-sectional analyses of cohorts including a
heterogeneous group of AD patients [32, 43]. Although
we did not find a correlation between atrophy of the
basal forebrain and atrophy of the precuneus in
hippocampal-sparing and typical AD, such a correlation
has been found in cross-sectional studies of heteroge-
neous AD cohorts as well [32, 43, 47]. Future studies in-
cluding connectivity analyses in larger subtype groups
may be of relevance for testing this hypothesis further.
For example, we recently found that fronto-parietal and
occipital networks are altered in both typical and
hippocampal-sparing AD, but not in limbic-predominant
AD [48].

Considering the potential relevance of these subtypes
for precision medicine interventions, we explored
subtype-specific effects of NGF treatment on rates of re-
gional atrophy in 10 patients. While this NGF cohort
from a phase 1 study is too small for valid statistical test-
ing, this is the first MRI study exploring the potential
relevance of AD subtypes for detecting effects of cholin-
ergic treatment. Our findings suggest different response
to the NGF treatment depending on the AD subtype.
Among the three subtypes available in the NGF cohort
(i.e., typical, limbic-predominant, and hippocampal-
sparing AD), hippocampal-sparing AD seemed to have
the best response to the NGF treatment. In particular,
four out of five of the hippocampal-sparing AD patients
had slower atrophy rates in the hippocampus, precuneus,
or PSC, as compared with the reference group of
hippocampal-sparing ADNI AD patients. A possible ex-
planation for this finding is that AD patients with high at-
rophy in the medial temporal lobe are known to respond
less to pharmacologic cholinergic treatment [15], whereas
hippocampal-sparing AD lacks atrophy in the medial tem-
poral lobes. Another potential explanation is comorbidity
with dementia with Lewy bodies (DLB)-related pathology
in this subtype, as recently suggested in a systematic re-
view with meta-analysis [2]. Hippocampal-sparing atrophy
is the most frequent pattern of atrophy in DLB patients
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[16], who also respond better to cholinergic treatment
than AD patients do [17]. We observed that younger age
and higher cognitive reserve may also positively influence
treatment response, in agreement with the conclusions
from our previous study on the NGF cohort [28].

One limitation of this study is the small sample size of
the NGF cohort (N =10). We decided to classify atrophy
rates based on the well-established clinical cutoff of the
10th percentile [41], and described the findings instead
of performing statistical testing in the small NGF cohort.
We thus consider the NGF part as exploratory, and we
report those results as preliminary but of interest due to
the unique nature of that dataset. In addition, longitu-
dinal data for the hippocampal-sparing and minimal at-
rophy AD subtypes at 12- and 24-month follow-up in
the ADNI-1 cohort was limited, which reduces statistical
power and thus the possibility to obtain statistically sig-
nificant results. We used mixed effect models, which are
superior on small groups and censored longitudinal data
[49]. Future studies including larger cohorts are war-
ranted. Further, meaningful translational approaches,
such as crossing validation of the subtype stratification
with the genetic sequencing, could be considered. Our
interpretations on treatment effects are based on the
NGF treatment, which is an add-on treatment since all
the patients were on stable ChEI treatment before and
during the study. It is possible that the effects reported
here are even larger in drug naive AD patients, but this
is difficult to test because patients in most of the avail-
able AD cohorts are under symptomatic treatment.
Moreover, one must consider the effect of the combined
administration of NGF and cholinesterase inhibitors, as
these two agents can modulate several signaling path-
ways that are known to affect neurogenesis, synaptic
modulation, and regeneration [50—52]. Finally, connect-
ivity analyses using other imaging modalities such as dif-
fusion tensor imaging or functional MRI at the resting
state [14, 53] might shed further light on the contribu-
tion of the cholinergic system to the different subtypes
of AD. Unfortunately, we did not have these data avail-
able on the NGF cohort, and only a subset of the ADNI-
1 cohort includes these data.

Conclusions

The heterogeneity within AD is one of the greatest chal-
lenges for the development of successful disease-
modifying drugs. Precision medicine based on disease
biomarkers has recently emerged as one of the most
promising strategies to guide AD research, drug discov-
ery, and clinical disease management. Distinct atrophy
subtypes of AD are now well recognized, but there is still
a long way to completely understand the mechanisms
and modulating factors underlying these subtypes. Such
understanding is needed because these mechanisms and
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modulating factors may determine differential treatment
response across subtypes [2]. This is a very attractive field
and approach, but very few data exist yet. Our current
study is the first in investigating differences in cholinergic
system degeneration across different subtypes of AD,
in vivo, which is a first step towards improving precision
medicine-based therapeutics in the future.
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