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for investigators seeking a convenient and customizable visualization of eQTL and
GWAS data colocalization.
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Background

Non-protein-coding genetic variants make up the majority of statistically significant as-
sociations identified by genome wide association studies (GWAS). As these variants
typically do not have obvious consequences for gene function, it can be difficult to map
their effects to specific genes. To address this issue, genomic studies have increasingly
begun to integrate expression quantitative trait loci (eQTL) information into their ana-
lysis pipelines, with the thought that non-coding variants might be exerting their effects
on patient phenotypes through the modulation of expression levels of nearby genes.
Through this approach, indirect evidence for causality can be obtained if a genetic
locus significantly associated with candidate gene expression levels is found to colocal-
ize with a genetic locus significantly associated with the phenotype of interest.

A number of excellent tools have been developed to discover and analyze colocaliza-
tion between eQTL and GWAS association signals [1-8], but few packages provide the
necessary tools to visualize these colocalizations in an intuitive and informative way.
LocusCompare [8] allows for the side-by-side visualization of eQTL and GWAS signal
colocalization, but does not visually integrate this data. LocusZoom [9] produces a sin-
gle plot integrating linkage disequilibrium (LD) information and GWAS data, but does
not consider eQTL data. Furthermore, no colocalization visualization tool exists that
takes into account the direction of effect of an eQTL with relation to the direction of
effect of colocalizing GWAS signals.

For these reasons, we developed eQTpLot, an R package for the intuitive visualization
of colocalization between eQTL and GWAS signals. In its most basic implementation,
eQTpLot takes standard GWAS summary data, formatted as one might obtain from a
GWAS analysis in PLINK [10], and cis-eQTL data, formatted as one might download
directly from the GTEx portal [11], to generate a series of customizable plots clearly
illustrating, for a given gene-trait pair: 1) colocalization between GWAS and eQTL
signals, 2) correlation between GWAS and eQTL p-values, 3) enrichment of eQTLs
among trait-significant variants, 4) the LD landscape of the locus in question, and 5)
the relationship between the directions of effect of eQTL signals and colocalizing
GWAS peaks. These clear and comprehensive plots provide a unique view of eQTL-
GWAS colocalization, allowing for a more complete understanding of the interaction
between gene expression and trait associations. We believe eQTpLot will prove a useful
tool for investigators seeking a convenient and robust visualization of genomic data
colocalization.

Implementation
eQTpLot was developed in R version 4.0.0 and depends on a number of packages
for various aspects of its implementation (biomaRt, dplyr, GenomicRanges, ggnews-
cale, ggplot2, ggplotfy, ggpubr, gridExtra, Gviz, LDheatmap, patchwork) [12-21].
The software is freely available on GitHub (https://github.com/RitchieLab/
eQTpLot) and can be downloaded for use at the command line, or in any R-based
integrated development environment, such as RStudio. Example data and a
complete tutorial on the use of eQTpLot and its various features have also been
made available on GitHub.

At a minimum, eQTpLot requires two input files, imported into R as data frames:
one of GWAS summary statistics (as might be obtained from a standard associations
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study as completed in PLINK [10]) and one of cis-eQTL summary statistics (as might
be downloaded directly from the GTEx portal at gtexportal.org [11]). Table 1 summa-
rizes the formatting parameters of the two required input files and of the two optional
input files. Additionally, there are many options that can be specified to generate
variations of the main eQTpLot, as discussed below. Table 2 shows the complete list of
command line arguments that can be passed to eQTpLot, with descriptions of their

use.

Results and discussion

In its simplest implementation, eQTplot takes as input two data frames, one of GWAS
summary data and the other of eQTL summary data, with the user specifying the name
of the gene to be analyzed, the GWAS trait to be analyzed (useful if the GWAS data
contains information on multiple associations, as one might obtain from a Phenome-
wide Association Study (PheWAS)), and the tissue type to use for the eQTL analysis.
Using these inputs, eQTpLot generates a series of plots intuitively illustrating the colo-
calization of GWAS and eQTL signals in chromosomal space, and the enrichment of
and correlation between the candidate gene eQTLs and trait-significant variants.
Additional parameters and data can be supplied, such as pairwise variant LD informa-
tion, allowing for an even more comprehensive visualization of the interaction between
eQTL and GWAS data within a given genomic locus.

One major implementation feature that sets eQTpLot apart from other eQTL
visualization software is the option to divide eQTL/GWAS variants into groups based
on their directions of effect. If the argument congruence is set to TRUE, all variants
are divided into two groups: congruous, or those with the same direction of effect on
gene expression and the GWAS trait (e.g., a variant that is associated with increased ex-
pression of the candidate gene and an increase in the GWAS trait), and incongruous,
or those with opposite directions of effect on gene expression and the GWAS trait (e.g.,
a variant that is associated with increased expression of the candidate gene but a de-
crease in the GWAS trait). The division between congruous and incongruous variants
provides a more nuanced view of the relationship between gene expression level and
GWAS associations — a variant associated with increased expression of a candidate
gene and an increase in a given GWAS trait would seem to be operating through differ-
ent mechanisms than a variant that is similarly associated with increased expression of
the same candidate gene, but a decrease in the same GWAS trait. eQTpLot intuitively
visualizes these differences as described below. This distinction also serves to illuminate
important underlying biologic difference between different gene-trait pairs, discriminat-
ing between genes that appear to suppress a particular phenotype and those that appear
to promote it.

Another important feature of eQTpLot that is not found in other eQTL visualization
software is the ability to specify a PanTissue or MultiTissue eQTL visualization. In
some instances, it may be of interest to visualize a variant’s effect on candidate gene
expression across multiple tissue types, or even across all tissues. Such analyses can be
accomplished by setting the argument tissue to a list of tissues contained within
eQTL.df (e.g. c(“Adipose_Subcutaneous”, “Adipose_Visceral”)) for a MultiTissue ana-
lysis, or by setting the argument tissue to “all” for a PanTissue analysis. In a PanTissue
analysis, eQTL data across all tissues contained in eQTL.df will be collapsed, by
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Table 1 Description of required and optional input data frames for eQTpLot

Required Input Data Frames

GWAS.df, a data frame, one row per SNP, with columns as one might obtain from a genome-wide association
study performed in PLINK using either the --logistic or --linear flags

Column Data type Description

Name

CHR Integer Chromosome for SNP (sex chromosomes coded numerically)

BP Integer Chromosomal position for each SNP, in base pairs

SNP Character Variant ID (such as dbSNP ID “rs..". (Note: naming scheme must be the same
as what is used in the eQTL.df to ensure proper SNP matching)

P Numeric P-value for the SNP from GWAS analysis

BETA Numeric Beta for SNP from GWAS analysis

PHE Character Name of the phenotype for which the GWAS data refers. This column is

(Optional) optional and is useful if your GWAS.df contains data for multiple

phenotypes, such as one might obtain from a PheWAS. If GWAS.df does
not contain a “PHE” column, eQTpLot will assume all the supplied GWAS
data is for a single phenotype, with a name to be specified with the “trait”

argument.

eQTL.df, a data frame, one row per SNP, with columns as one might download directly from the GTEx Portal in

csv format

Column Data type Description

Name

SNP.Id Character Variant ID (such as dbSNP ID “rs..". (Note: naming scheme must be the same
as what is used in the GWAS.df to ensure proper matching).

Gene.Symbol Character Gene symbol to which the eQTL expression data refers (Note: gene symbol
must match entries in Genes.df to ensure proper matching)

P.value Numeric P-value for the SNP from eQTL analysis

NES Numeric Normalized effect size for the SNP from eQTL analysis (Per GTEx, defined as
the slope of the linear regression, and is computed as the effect of the
alternative allele relative to the reference allele in the human genome
reference.

Tissue Character Tissue type to which the eQTL pvalue/NES refer (Note: eQTL.df can contain
multiple tissue types)

N Numeric The number of samples used to calculate the p-value and NES for the eQTL

(Optional) data. This value is used if performing a MultiTissue or PanTissue analysis

with the option CollapseMethod set to “meta” for a simple sample size
weighted meta-analysis.

Optional Input Data Frames

Genes.df, an optional data frame, one row per gene, with the following columns (Note: eQTpLot automatically
loads a default Genes.df containing information for most protein-coding genes for genomic builds hg19 and hg38,
but you may wish to specify our own Genes.df data frame if your gene of interest is not included in the default
data frame, or if your eQTL data uses a different gene naming scheme (for example, Gencode ID instead of gene

symbol))

Column Name Data type Description

Gene Character Gene symbol/name (Note: gene naming scheme must match entries in
eQTL.df to ensure proper matching)

CHR Integer Chromosome the gene is on (Note: do not include a “chr” prefix, and sex
chromosomes should be coded numerically)

Start Integer Base pair coordinate of the beginning of the gene (Note: this should be the
smaller of the two values between Start and Stop)

Stop Integer Base pair coordinate of the end of the gene (Note: this should be the larger
of the two values between Start and Stop)

Build Character, "ng19”  The genome build (either hg19 or hg38) for the location data

or "hg38"

LD.df, an optional data frame of SNP linkage data, one row per SNP pair, with columns as one might obtain
from a PLINK linkage disequilibrium analysis using the PLINK --r2 option. (Note: If no LD.df is supplied, eQTpLot
will plot data without LD information)
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Table 1 Description of required and optional input data frames for eQTpLot (Continued)

Column Name Data type Description

BP_A Integer Base pair position of the first variant in the LD pair

SNP_A Character Variant ID of the first variant in the LD pair (Note: only variants that also
appear in the GWAS.df SNP column will be used for LD analysis)

BP_B Integer Base pair position of the second variant in the LD pair

SNP_B Character Variant ID of the second variant in the LD pair (Note: only SNPs that also

appear in the GWAS.df SNP column will be used for LD analysis)

R2 Numeric Squared correlation measure of linkage between the two variants

variant, into a single pan-tissue eQTL; a similar approach is used in a MultiTissue ana-
lysis, but in this case eQTL data will be collapsed, by variant, across only the specified
tissues. The method by which eQTpLot collapses eQTL data can be specified with the

” o«

argument CollapseMethod, which accepts as input one of four options — “min,” “me-

” o«

dian,” “mean,” or “meta.” By setting CollapseMethod to “min” (the default), for each
variant the tissue with the smallest eQTL p-value will be selected, such that each vari-
ant’s most significant eQTL effect, agnostic of tissue, can be visualized. Setting the par-
ameter to “median” or “mean” will visualize the median or mean p-value and NES
value for each SNP across all specified tissues. Lastly, setting CollapseMethod to
“meta” will perform a simple sample-size-weighted meta-analysis (i.e. a weighted Z-
test) [22, 23] for each variant across all specified tissues, visualizing the resultant p-
value for each variant. It should be noted that this meta-analysis method requires a
sample size for each eQTL entry in eQTL.df, which should be supplied in an optional

«

column “N.” If sample size numbers are not readily available (as may be the case if dir-
ectly downloading cis-eQTL data from the GTEx portal), eQTpLot gives the user the
option to presume that all eQTL data is derived from identical sample sizes across all
tissues — this approach may of course yield inaccurate estimates of a variant’s effect in
meta-analysis, but may be useful to the user.

What follows is a description of the process used to generate each of the plots pro-
duced by eQTpLot, along with a series of use examples to both demonstrate the utility
of eQTpLot, and to highlight some of the many options that can be combined to gener-
ate different outputs. For these examples we have analyzed a subset of data from our
recently-published analysis of quantitative laboratory traits in the UK Biobank [24] —
these summary statistics are available in full at https://ritchielab.org/publications/
supplementary-data/ajhg-cilium, and the subset of summary data used for our example
analyses can be downloaded from the eQTpLot GitHub page such that the reader may
experiment with eQTpLot with the pre-supplied data.

Generation of the main eQTL-GWAS Colocalization plot

To generate the main eQTL-GWAS Colocalization Plot (Figs. 1A, 2A, 3A, 4A), a locus
of interest (LOI) is defined to include the target gene’s chromosomal coordinates (as
listed in Genes.df, for the indicated gbuild, for the user-specified gene), along with a
range of flanking genome (specified with the argument range, with a default value of
200 kilobases on either side of the gene). GWAS summary statistics from GWAS.df
are filtered to include only variants that fall within the LOI. The variants are then plot-
ted in chromosomal space along the horizontal axis, with the inverse log of the p-value
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Table 2 Description of required and optional arguments for eQTpLot

Required Arguments

Argument Description

eQTL.df A data frame of eQTL summary statistic data, as defined in Table 1

GWAS.df A data frame of GWAS summary statistic data, as defined in Table 1

gbuild Default value is “hg19”. The genome build, in quotes, to use for fetching genomic

information for the genome track (panel B). This build should match the genome build
used for “CHR” and “BP" in the GWAS.df. Currently the only compatible options are
"hg19” and "hg38"

gene The name/symbol of the gene to analyze, in quotes (Note: gene name must match an
entry in Genes.df for the specified gbuild)

sigpvalue_eQTL Default value is 0.05. The significance threshold to use for eQTL data (variants with an
eQTL p-value larger than this threshold will be excluded from the analysis)

sigpvalue_GWAS Default value is 5e-8. The significance threshold to use for GWAS data (this value will
be used for a horizontal line in plot A, and to define GWAS significant/non-significant
variants for the eQTL enrichment plot).

tissue Default value is “all”. The tissue name, in quotes, to use for analysis. eQTL.df entries
will be filtered to contain only data on this tissue. If this parameter is set to “all’,
eQTpLot will pick the smallest eQTL p-value for each SNP across all tissues for a PanTis-
sue analysis. Alternatively, a list of tissue names can be supplied (in the format c(“tissue1”,
“tissue2”, ...) to perform a PanTissue analysis on just these tissues. (Note: the tissue name
must match at least one entry in the eQTL.df Tissue column)

trait The name of the GWAS phenotype to analyze, in quotes. If all the data in GWAS.df is
for a single phenotype and no PHE column is present, this argument will be used as the
name for the analyzed phenotype. If GWAS.df contains information on multiple
phenotypes, as specified in the optional GWAS.df PHE column, this parameter will be
used to filter in GWAS.df entries for only this phenotype.

Optional arguments

Argument Description

Genes.df A data frame of gene coordinates, as defined in Table 1

LD.df A data frame of pairwise linkage data, as defined in Table 1

congruence Default value is FALSE. If set to TRUE, variants with congruent and incongruent effects

will be plotted separately, as described below.

genometrackheight Default value is 2 Used to set the height of the genome track panel (B). Gene-dense re-
gions may require more plotting space, whereas gene-sparse regions may look better
with less plotting space.

getplot Default value is TRUE. If set to FALSE, eQTpLot will not display the generated plot in
the viewport.

LDcolor Only used if LD.df is supplied. Default value is “color”. For the LDheatmap panel, the
heatmap will be filled using a grayscale palate if this argument is set to “black’, or with a
full color palate if this argument is set to “color”.

LDmin Only used if LD.df is supplied. Default value is 10. For the LDheatmap panel, only
variants that are in LD (with R? > R2min) with at least this many other variants will be
displayed. This parameter can be useful to thin the number of variants being plotted in
the LDheatmap.

leadSNP Only used if LD.df is supplied. This parameter is used to specify the lead SNP ID, in
quotes, to use for plotting LD information in the P-P plots. The specified variant must be
present in both the GWAS.df and LD.df data frames.

NESeQTLRange the maximum and minimum limits in the format ¢ (min,max), to display for the NES
value in eQTL.df. The default setting will adjust the size scale automatically to fit the
displayed data, whereas specifying the limits will keep them consistent between plots.

R2min Only used if LD.df is supplied. Default value is 0.1. The threshold for R? to use when
selecting LD data from LD.df. Variant pairs with R> < R2min will not be included in the
analysis.

range Default value is 200. The range, in kB, to extend the analysis window on either side of
the gene of interest, as defined by the Start and Stop points for the specified gene in
Genes.df.

res Default value is 300. The resolution, in dpi, for the output plot image
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Table 2 Description of required and optional arguments for eQTpLot (Continued)

saveplot Default value is TRUE. If set to TRUE, eQTpLot will save the generated plot in the
working directory with the name “gene.traittissue. Congreunce_Info.LD_
Info.eQTplLot.png”, using the variables and arguments provided.

wi Default value is 12 if LD.df is not supplied, 14 if LD.df is supplied. The width of the
output plot image, in inches. The height of the plot is calculated from this argument as
well to maintain the appropriate aspect ratio.

xlimd used to manually adjust the x axis maximum for the P-P plot, if needed

ylima used to manually adjust the y axis maximum in plot A, if needed

ylimd used to manually adjust the y axis maximum for the P-P plot, if needed
CollapsMethod Default value is “min”. This parameter dictates the method used to collapse eQTL p-

values and NES across tissues if a MultiTissue or PanTissue analysis is specified. If set to
“min" the p-value and NES from the tissue with the smallest p-value for each variant will
be selected. If set to “median” or “mean” the median or mean p-value and NES for each
variant, across all specified tissues, will be selected. If set to “meta” eQTpLot will perform
a simple sample-size-weighted meta-analysis [22, 23] of the p-values across all specified
tissues.

(NOTE: If “meta” is specified, eQTL.df should include a column with header “N” indicating
the number of samples used to derive the given eQTL data. If no column N is present,
eQTplot will give the user the option to complete a meta-analysis assuming equal sample
sizes for all tissues, which may lead to inaccurate results. Also note that if “meta” is specified,
no meta-analyzed NES will be computed, and all variants will be displayed as the same size
in the main eQTpLot figure.)

Gene.List Default value is FALSE. If set to TRUE, this parameter will output the Pearson correlation
between eQTL and GWAS p-values for a given tissue across a user-supplied list of genes,
ordered by significance. No plots will be generated. If the user sets the parameter tissue
to “all,” or to a list of tissues, eQTpLot will collapse the eQTL data for these tissues by
variant, using the method specified by the parameter CollapseMethod. This may be a
useful parameter to obtain a very simple bird's-eye view of the genes at a locus whose
expression is most closely correlated to a relevant GWAS signal for a given trait.

Tissue.List Default value is FALSE. If set to TRUE, this parameter will output the Pearson correlation
between eQTL and GWAS p-values for a given gene across a user-supplied list of tissues,
ordered by significance. No plots will be generated. If the user sets the parameter tissue
to “all,” eQTpLot will consider each tissue included in eQTL.df. This may be a useful par-
ameter to obtain a very simple bird’s-eye view of the tissues in which a given gene's ex-
pression is most closely tied to a relevant GWAS signal for a given trait.

of association with the specified GWAS trait (Pgwas) plotted along the vertical axis, as
one would plot a standard GWAS Manhattan plot. The GWAS significance threshold,
sigpvalue_GWAS (default value 5e-8), is depicted with a red horizontal line.

Within this plot, variants that lack eQTL data for the target gene in eQTL.df (or for
which the eQTL p-value (P.qr1) does not meet the specified significance threshold,
sigpvalue_eQTL (default value 0.05)) are plotted as grey squares. On the other hand,
variants that act as eQTLs for the target gene (with P.qr1, < sigpvalue_eQTL) are plot-
ted as colored triangles, with a color gradient corresponding to the inverse magnitude
of Pcqr1. As noted above, an analysis can be specified to differentiate between variants
with congruous versus incongruous effects on the GWAS trait and candidate gene ex-
pression levels — if this is the case, variants with congruous effects will be plotted using
a blue color scale, while variants with incongruous effects will be plotted using a red
color scale (as seen in Fig. 4A). The size of each triangle corresponds to the eQTL nor-
malized effect size (NES) for each variant, while the directionality of each triangle is set
to correspond to the direction of effect for the variant on the GWAS trait.

A depiction of the genomic positions of all genes within the LOI is generated below
the plot using the package Gviz (Figs. 1B, 2B, 3B, 4B) [12]. If LD data is supplied, in the
form of LD.df, a third panel illustrating the LD landscape of eQTL variants within the



Drivas et al. BioData Mining

(2021) 14:32

-

eQTpLot analysis for LDL and BBS1
PanTissue analysis, eQTLs collapsed by minimum value

GWAS of LDL, colored by eQTL data for BBS1
(Significance thresholds: GWAS, 5e-08; eQTL, 0.05)

o v GWAS Direction
of Effect

¥ Negative
A Positive

eQTL Normalized Effect Size

A oa A os A\ 12 /\ 16

~10g10(Powas)
<4

V"
v v Y ey . ~10g10(P.a)
V. v W v
A LT IWTY Y
A v 5 10 15 20

AM ,A.‘-

sLozonz NPASH PeLs ast orse ||| ces Rema
BRwst WRpLT opPs AcThs e .
RIN1 ZDHHC24 ccoes7 SPTBN2
B3oNTI RBM1d-ABMA
66.1 mb 66.2 mb 66.3 mb 66.4 mb
C. . D
Enrichment of eQTLs among P-P plot
GWAS-significant SNPs P
1.26- =
r = 0.823 o
= 9.51e- = “3a
~p=0.57e-46 p = 1.62e-127 g
2,1 — o T
Za <
()= L ; .
— 5075 H &
[s]
3 L6 . .
So Il Non-eatL = .
£ © 0.50- QL 2 .
g5 g, A -~
& = 025 ' S ® g0 ®
; ey N
e . o
0.00- 0 % Voo
Non-significant  Significant 5 10 15 20
GWAS significance
9 -10g10(Peqrt)

(threshold p < 5e-08 )

Fig. 1 Example eQTpLot for LDL cholesterol and the gene BBST. eQTplLot was used to generate a series of
plots illustrating the colocalization between eQTLs for the gene BBST and a GWAS signal for the LDL
cholesterol trait on chromosome 11 using a PanTissue approach as described in example 1. Panel A shows the
locus of interest, containing the BBST gene, with chromosomal space indicated along the horizontal axis. The
position of each point on the vertical axis corresponding to the p-value of association for that variant with the
LDL trait, while the color scale for each point corresponds to the magnitude of that variant's p-value for
association with BBST expression. The directionality of each triangle corresponds to the GWAS direction of
effect, while the size of each triangle corresponds to the NES for the eQTL data. The default genome-wide p-
value significance threshold for the GWAS analysis, 5e-8, is depicted with a horizontal red line. Panel B displays
the genomic positions of all genes within the LOI. Panel C depicts the enrichment of B8ST eQTLs among
GWAS-significant variants, while panel D depicts the correlation between Pgyas and Peory for B8ST and the LDL

trait, with the computed Pearson correlation coefficient (r) and p-value (p) displayed on the plot

LOI is generated using the package LDheatmap (Fig. 3C, 4C) [20]. To generate this
panel, LD.df is filtered to contain only eQTL variants that appear in the plotted LO],
and to include only variant pairs that are in LD with each other with R* > R2min (de-
fault value of 0.1). This dataset is further filtered to include only variants that are in LD

(with R? > R2min) with at least a certain number of other variants (user-defined with

the argument LDmin, default value of 10). These filtering steps are useful in paring

Page 8 of 17
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eQTpLot analysis for LDL and ACTN3
PanTissue analysis, eQTLs collapsed by minimum value

A.
GWAS of LDL, colored by eQTL data for ACTN3
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Fig. 2 Example eQTpLot for LDL cholesterol and the gene ACTN3. eQTplLot was used to generate a series
of plots illustrating the colocalization between eQTLs for the gene ACTN3 and a GWAS signal for the LDL
cholesterol trait on chromosome 11 using a PanTissue approach as described in example 1. Panel A shows
the locus of interest, containing the ACTN3 gene, with chromosomal space indicated along the horizontal
axis. The position of each point on the vertical axis corresponding to the p-value of association for that
variant with the LDL trait, while the color scale for each point corresponds to the magnitude of that
variant's p-value for association with ACTN3 expression. The directionality of each triangle corresponds to
the GWAS direction of effect, while the size of each triangle corresponds to the NES for the eQTL data. The
default genome-wide p-value significance threshold for the GWAS analysis, 5e-8, is depicted with a
horizontal red line. Panel B displays the genomic positions of all genes within the LOIl. Panel C depicts the
enrichment of ACTN3 eQTLs among GWAS-significant variants, while panel D depicts the correlation
between Pgyas and Pear. for ACTN3 and the LDL trait, with the computed Pearson correlation coefficient (r)

and p-value (p) displayed on the plot

down the number of variants to be plotted in the LDheatmap, keeping the most in-
formative variants and reducing the time needed to generate the eQTpLot. A heatmap
illustrating the pairwise linkage disequilibrium of the final filtered variant set is
subsequently generated below the main eQTL-GWAS Colocalization Plot, with a
fill scale corresponding to R* for each variant pair. The location of each variant in
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Fig. 3 Example eQTpLot for LDL cholesterol and the gene BBST, incorporating LD data. eQTpLot was used
to generate a series of plots illustrating the colocalization between eQTLs for the gene BBST and a GWAS
signal for the LDL cholesterol trait on chromosome 11 as described in example 2, specifically within the
tissue “Whole_Blood” and with the inclusion of LD data. Panels A, B, and D are generated identically to
Figure panels 1A, 1B, and 1C respectively. Panel C depicts a heatmap of LD information of all BBS7 eQTL
variants, displayed in the same chromosomal space as panels A and B for ease of reference. Panel E depicts
the correlation between Pgywas and Pear for B8ST and the LDL trait, similar to panel 1D, only here a lead
variant, rs3741360, is identified (by default the upper-right-most variant on the P-P plot), with all other
variants plotted using a color scale corresponding to their squared coefficient of linkage correlation with
this lead variant. For reference, the same lead variant is also labelled in panel A

chromosomal space is indicated at the top of the heatmap, using the same

chromosomal coordinates as displayed in panels A and B.

Generation of the eQTL enrichment plot

For variants within the LOI with Pgwas less than the specified GWAS significance
threshold, sigpvalue_GWAS, the proportion that are also eQTLs for the gene of inter-
est (with P.qry < sigpvalue_eQTL) are calculated and plotted, and the same is done for
variants with Pgwas > sigpvalue_GWAS, (Fig. 1C, 2C, 3D, 4D). Enrichment of candi-
date gene eQTLs among GWAS-significant variants is determined by Fisher’s exact
test. If an analysis differentiating between congruous and incongruous variants is speci-

fied, these are considered separately in the analysis (as seen in Fig. 4D).

Generation of P-P correlation plots
To visualize correlation between Pgwas and Peqrr, each variant within the LOI is plot-
ted with P.qrr along the horizontal axis, and Pgwas along the vertical axis. Correlation
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Fig. 4 Example eQTpLot for LDL cholesterol and the gene BBST, discriminating between congruous and
incongruous variants. eQTpLot was used to generate a series of plots illustrating the colocalization between
eQTLs for the gene BBST and a GWAS signal for the LDL cholesterol trait on chromosome 11 as described
in example 3, with an analysis identical to that described for Fig. 3, but with the additional discrimination
between variants with congruous and incongruous directions of effect. Panel A is generated identically to
panel 1A and 3A, only instead of using a single color scale, variants with congruous effects are plotted
using a blue color scale, while variants with incongruous effects are plotted using a red color scale. Panels
B-D are identical to panels 3B-D. Panel E and F both represent P-P plots, generated similarly to the P-P plot
in panel 3E. For panel E, however, the analysis is confined only to variants with congruous directions of
effect, while for panel F the analysis includes only variants with incongruous directions of effect. A lead
variant is indicated in both panels E anf F, and both are also labeled in panel A

between the two probabilities is visualized by plotting a best-fit linear regression over
the points. The Pearson correlation coefficient (r) and p-value of correlation (p) are
computed and displayed on the plot as well (Fig. 1D, 2D). If an analysis differentiating
between congruous and incongruous variants is specified, separate plots are made for
each set of variants and superimposed over each other as a single plot, with linear re-
gression lines/Pearson coefficients displayed for both sets.

If LD data is supplied in the form of LD.df, a similar plot is generated, but the fill
color of each point is set to correspond to the LD R* value for each variant with a
specified lead variant, plotted as a green diamond (Fig. 3E). This lead variant can be
user-specified with the argument leadSNP or is otherwise automatically defined as the
upper-right-most variant in the P-P plot. This same lead variant is also labelled in the
main eQTpLot panel A (Fig. 3A). In the case where LD data is provided and an analysis
differentiating between congruous and incongruous variants is specified, two separate
plots are generated: one for congruous and one for incongruous variants (Fig. 4E-F). In
each plot, the fill color of each point is set to correspond to the LD R* value for each
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variant with the lead variant for that specific plot (again defined as the upper-right
most variant of the P-P plot), with both the congruous and incongruous lead variants
labelled in the main eQTpLot panel A (Fig. 4A).

Use examples

To more clearly illustrate the use and utility of the eQTpLot software, the following 3
examples are provided. In example 1, the basic implementation of eQTpLot illustrates
a plausible candidate gene, BBSI, for a GWAS association peak for LDL cholesterol on
chromosome 11, while also illustrating the colocalization between the GWAS signal
and eQTL data for a different, less plausible candidate gene at the same locus, ACTN3.
In example 2 the BBSI gene is further investigated through the use of the TissueList
function, and through the inclusion of LD data into the eQTpLot analysis. Lastly, in ex-
ample 3, the visualization is further refined by differentiating between variants with
congruous and incongruous directions of effect on BBSI expression levels and the LDL

cholesterol trait.

Example 1 - comparing eQTpLots for two genes within a linkage peak

A GWAS study of LDL cholesterol levels has identified a significant association with a
genomic locus at chr11:66,196,265- 66,338,300 (build hgl9), which contains a number
of plausible candidate genes, including BBSI and ACTN3. eQTpLot is employed in R
to illustrate eQTL colocalization for the BBSI and ACTN3 genes and the LDL choles-
terol signal as follows.

Using the GeneList function of eQTpLot, the user supplies both the BBSI and
ACTNS3 genes to eQTpLot, along with all required input data, to obtain a crude estima-
tion of which gene’s eQTL data most closely correlates with the GWAS signal observed
at this locus. Calling eQTpLot as follows:

eQTpLot (GWAS.Af = gwas.df.example, eQTL.df = eqtl.df.example, gene
= ¢("BBS1”, "ACTN3"), gbuild = "hg19”, trait
= "LDL", tissue = "all”, CollapseMethod = ” min”, GeneList

eQpLot generates Pearson correlation statistics between Pgwas and Peqrr for both
genes and the LDL trait, using a PanTissue approach (collapsing by method “min” as
described above). The output generated is:

eQTL analysis for gene BBS1 : Pearson correlation : 0.823, p—value : 1.62e-127
eQTL analysis for gene ACTN3 : Pearson correlation : 0.245, p—value : 1.52e-07

Demonstrating that there is significantly stronger correlation between the GWAS signal at
this locus and eQTLs for the gene BBSI, compared to the gene ACTN3. To visualize these
differences using eQTpLot, starting with the gene BBSI, eQTpLot can be called as follows:
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eQTpLot (GWAS.Af = gwas.df.example, eQTL.df = eqtl.df.example, gene
= "BBS1”, gbuild = "hg19”, trait = "LDL", tissue
“all”, CollapseMethod = ” min”)

As written, this command will analyze the GWAS data, as contained within
GWAS.df.example, within a default 200kb range surrounding the BBSI gene,
using the preloaded Genes.df to define the genomic boundaries of BBSI based
on genome build hgl9. eQTL data from eQTL.df.example will be filtered to
contain only data pertaining to BBSI. Since tissue is set to “all,” eQTpLot will
perform a PanTissue analysis, as described above.

The resulting plot (Fig. 1) illustrates clear evidence of colocalization between the
LDL-significant locus and BBS1 eQTLs. In Fig. 1A, it is easy to see that all variants
significantly associated with LDL cholesterol (those plotted above the horizontal red
line) are also very significantly associated with BBS1 expression levels, as indicated by
their coloration in bright orange. Figure 1C shows that there is a significant
enrichment (p =9.5e-46 by Fisher’s exact test) for BBSI eQTLs among GWAS-
significant variants. Lastly, Fig. 1D illustrates strong correlation between Pgwas and
P.qr1 for the analyzed variants, with a Pearson correlation coefficient of 0.823 and a
p-value of correlation of 1.62e-127 (as displayed on the plot). Taken together, these
analyses provides strong evidence for colocalization between variants associated with
LDL cholesterol levels and variants associated with BBSI expression levels at this
genomic locus.

To visualize the possibility that the LDL association signal might also be acting
through modulation of the expression of ACTN3 at this locus, the same analysis can be
performed, substituting the gene ACTN3 for the gene BBSI, as in the following
command:

eQTpLot GWAS.Af = GWAS.df.example, eQTL.df = eQTL.df.example, gene
= "ACTN3", gbuild = "hg19”, trait = "LDL", tissue
= "all”, CollapseMethod = ” min")

Unlike the previous example, the resultant plot (Fig. 2) illustrates poor evidence for
colocalization between ACTN3 eQTLs and LDL cholesterol-significant variants.
Although there is significant enrichment for ACTN3 eQTLs among GWAS-significant
variants (Fig. 2B), there is poor evidence for correlation between Pgwas and Peqry, (Fig.
2D), and it is intuitively clear in Fig. 2A that the eQTL and GWAS signals do not colo-
calize (the brightest colored points with the strongest association with ACTN3 expres-
sion are not among the variants most significantly associated with LDL cholesterol

levels).

Example 2 - the TissueList function and adding LD information to eQTpLot

The plots generated in Example 1 illustrated colocalization between BBSI eQTLs and
the GWAS peak for LDL cholesterol on chromosome 11, using a PanTissue analysis
approach. The user may next wish to investigate if there are specific tissues in which
BBSI expression is most clearly correlated with the LDL GWAS peak. Using the
TissueList function of eQTpLot as follows:
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eQTpLot GWAS.Af = gwas.df.example, eQTL.df = eqtl.df.example, gene
= "BBS1”, gbuild = "hg19”, trait = "LDL", tissue
= "all”, TissueList = T)

eQTpLot generates Pearson correlation statistics between Pgwas and Peqrr, for BBSI
and the LDL trait across each tissue contained within eQTL.df. The resultant output,
ranked by degree of correlation, is as follows
eQTL analysis for tissue Cells_Cultured_fibroblasts : Pearson correlation : 0.902, p—value : 1.12e-65
eQTL analysis for tissue Whole_Blood : Pearson correlation : 0.85, p—value, 1.64e-55
eQTL analysis for tissue Brain_Frontal Cortex_BA9 : Pearson correlation, 0.84, p—value : 1.02e-51
eQTL analysis for tissue Brain_Nucleus_accumbens_basal_ganglia : Pearson correlation : 0.841,
p-value : 1.74e-48
eQTL analysis for tissue Brain_Cortex : Pearson correlation : 0.818, p—value : 2.44e-43
eQTL analysis for tissue Esophagus_Gastroesophageal Junction : Pearson correlation : 0.852,
p-value:2.15e-23
eQTL analysis for tissue Skin_Sun_Exposed_Lower_leg : Pearson correlation : 0.562,

p-value : 1.52e-21.

This output demonstrates a strong correlation between LDL cholesterol levels and
BBSI expression levels in a number of tissues. To further explore these associations,
the user can specifically run eQTpLot on data from a single tissue, for example Whole_
Blood, while also supplying LD data to eQTpLot using the argument LD.df:

eQTpLot GWAS.df = GWAS.df.example, eQTL.df = eQTL.df.example, gene
= "BBS1”, gbuild = "hg19”, trait = "LDL", tissue
= "Whole_Blood”, LD.df = LD.df.example, R2 min
= 0.25, LDmin = 100)

Here the argument LD.df refers to the LD.df.example data frame containing a list of
pairwise LD correlation measurements between all the variants within the LOI, as one
might obtain from a PLINK linkage disequilibrium analysis using the --r2 option [10].
Additionally, the parameter R2min is set to 0.25, indicating that LD.df should be filtered
to drop variant pairs in LD with R* less than 0.25. LDmin is set to 100, indicating that
only variants in LD with at least 100 other variants should be plotted in the LD heatmap.

The resultant plot, Fig. 3, is different than Fig. 1 in two important ways. First, a heat
map of the LD landscape for all BBSI cis-eQTL variants in Whole_Blood within the
LOI is shown in Fig. 3C; this heatmap makes it clear that a number of BBSI eQTL vari-
ants are in strong LD with each other at this locus. Second, the P-P plot, Fig. 3E, now
includes LD information for all plotted variants; a lead variant, rs3741360, has been de-
fined (by default the upper-right most variant on the P-P plot), and all other variants
are plotted with a color scale corresponding to their squared coefficient of linkage cor-
relation with this lead variant. eQTpLot also labels the lead variant in Fig. 3A for refer-
ence. With the incorporation of this new data, we can now see that most, but not all,
of the GWAS-significant variants are in strong LD with each other. This implies that
there are at least two distinct LD blocks at the BBS1 locus with strong evidence of colo-
calization between the BBSI eQTL and LDL GWAS signals.
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Example 3 - separating congruous from incongruous variants

In addition to including LD data in our eQTpLot analysis, we can also include informa-
tion on the directions of effect of each variant, with respect to the GWAS trait and BBSI
expression levels. This is accomplished by setting the argument congruence to TRUE:

eQTpLot GWAS.Af = GWAS.df.example, eQTL.df = eQTL.df.example, gene
"BBS1”, gbuild = "hg19”, trait = "LDL", tissue

= "Whole_Blood”, LD.df = LD.df.example, R2 min

= 0.25, LDmin = 100, congruence = TRUE)

The resulting plot, Fig. 4, divides all BBS1 eQTL variants in Whole_Blood into two
groups: congruent — those variants associated with either an increase in both, or de-
crease in both BBSI expression levels and LDL levels — and incongruent — those
variants with opposite directions of effect on BBSI expression levels and LDL levels. In
carrying out such an analysis, it becomes clear that it is specifically variants with
congruent directions of effect that are driving the signal colocalization; that is, variants
associated with decreases in BBSI expression strongly colocalize with variants associ-
ated with decreases in LDL cholesterol.

Conclusions

eQTpLot provides a unique, user-friendly, and intuitive means of visualizing cis-eQTL
and GWAS signal colocalization in a single figure. As plotted by eQTpLot, colocalization
between GWAS and eQTL data for a given gene-trait pair is immediately visually obvious,
and can be compared across candidate genes to quickly generate hypotheses about the
underlying causal mechanisms driving GWAS association peaks. Additionally, eQTpLot
allows for Pan- and MultiTissue eQTL analysis, and for the differentiation between eQTL
variants with congruous and incongruous directions of effect on GWAS traits — two
features not found in any other visualization software. We believe eQTpLot will prove a
useful tool for investigators seeking a convenient and customizable visualization of eQTL
and GWAS data colocalization.

Availability and requirements
Project name: eQTpLot
Project home page: https://github.com/RitchieLab/eQTpLot
Operating system(s): Platform independent
Programming language: R
Other requirements: None
License: GNU GPL
Any restrictions to use by non-academics: None.
Abbreviations
eQTL: Expression Quantitative Trait Loci; GWAS: Genome-wide Association Study; LD: Linkage disequilibrium; LOI: Locus
of Interest; NES: Normalized effect size; Pawas: p-value of a given variant's association with a GWAS trait; Peqri: p-value

of a given variant's association with a gene’s expression levels; R*: the squared coefficient of linkage correlation
between two variants
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