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Global synchronization in a complex network of oscillators emerges from the interplay between its topology
and the dynamics of the pairwise interactions among its numerous components. When oscillators are
spatially separated, however, a time delay appears in the interaction which might obstruct synchronization.
Here we study the synchronization properties of interconnected networks of oscillators with a time delay
between networks and analyze the dynamics as a function of the couplings and communication lag. We
discover a new breathing synchronization regime, where two groups appear in each network synchronized at
different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the
other in anti-phase with their counterpart. For strong couplings, instead, networks are internally
synchronized but a phase shift between them might occur. The implications of our findings on several
socio-technical and biological systems are discussed.

T
echnology has furnished us with global connectivity changing the functioning of cooperative work, inter-
national business, and interpersonal relationships. For example, despite the ever faster Internet connections,
there will always be a physical limit speed to information transport, thereby imposing a time delay in

communication. As we discuss here, this time delay might pose a real challenge to the synchronizability of
oscillators. Therefore, understanding the consequences of a communication lag is of major concern in different
fields1–3. For example, the plasmodium Physarum polycephalum, an amoeba-like organism consisting of a net-
work of tubular structures for protoplasm flow, naturally shows periodic variations in its thickness, a necessary
feature for its survival. A controlled setup has been prepared by Takamatsu et al. where two regions of the same
organism have been physically separated by a certain distance with the possibility of fine tuning the commun-
ication between them4,5. Depending on the coupling strength and time delay, the two regions have been shown to
present phase and anti-phase synchronization of the oscillatory thickness. This is precisely what we find in the
regime of strong intra-network coupling. As discussed in the final section, this biological system might be a
prototype to experimentally evaluate the different regimes reported here. In what follows, we discuss the general
case of two interconnected networks but our study might have impact on several biological and techno-social
systems as, for example, functional brain networks, living oscillators, or coupled power grids, as discussed at the
end of this paper.

Recent geometrical studies of coupled networks with intra- and inter-network links have revealed novel
features never observed for isolated networks6. In particular, it has been shown that the overall robustness is
reduced7–11 and the collapse of the system occurs through large cascades of failures12,13. Dynamic properties of
coupled networks have also been studied14–21, but the impact of a time delay on their synchronization is still an
open issue, which we will address here. Typically, the intra- and inter-network couplings have different time
scales. For simplicity, we consider the case where intra-network interactions can be considered instantaneous and
the inter-network ones have a communication lag that depends on the distance between networks. In particular,
we show that, when isolated, the two networks would naturally move in unison. However, when interacting the
oscillators in the same network split into two groups, synchronized with different frequencies, leading to breath-
ing synchronization.

The Kuramoto model is the standard theoretical framework for studying synchronizability of networks22–37. A
population H of n Kuramoto oscillators is considered to be mutually interacting. We consider a random graph of
average degree four. Each oscillator i g H is described by a phase hi(t), representing its current position, and a
natural frequency vi. For simplicity, we assume the same frequency vi ; v0 for all oscillators. The actual
frequency of an oscillator is defined as the time derivative of the phase, _hi tð Þ. To move harmoniously, oscillators
try to synchronize their frequencies and phases. This interaction can be modeled in terms of the Kuramoto model
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as _hi~v0zs
Pn

j~1 AH
ij sin hj{hi

� �
, where the sum goes over all

other oscillators (i ? j), s is the coupling strength between them,
and AH is the connectivity matrix such that AH

ij ~1 if oscillator i is
influenced by j and zero otherwise. We also assume that all oscillators
have the same unitary amplitude, so that the state of each one can be
described by a phasor eihi tð Þ.

The collective motion, namely, the synchronization of the net-
work, is characterized here by the complex order parameter

rH tð ÞeiY tð Þ~
1
n

Xn

j~1
eihj tð Þ, where the sum goes over all oscillators,

Y(t) is the average phase, and the amplitude 0 # jrH(t)j# 1 measures
the global coherence, i.e., how synchronized the oscillators are. If
rH(t) 5 1 all oscillators are synchronized, while very low values of
rH imply that a significant fraction of oscillators are out of phase.

We introduce now a second populationC?H, also of n oscillators
interacting in a random graph of average degree four, representing
the second network. We couple each j g C with one, and only one,
corresponding partner i g H, forming the inter-network couplings.
In analogy to oscillators in H, the motion of each oscillator is
described by a phasor eicj tð Þ, of phase cj(t). The inter-network coup-
ling is subjected to a time delay t, corresponding to the time required
for information to travel between networks38. Previous studies intro-
duced time delay among oscillators of the same population39,40. Here
we consider the competition between an instantaneous intra-net-
work and a delayed inter-network coupling. In a nutshell, the
dynamics of oscillators is described by,

_hi~v0zsEX sin ct{t
j ið Þ {hi

� �
zsIN

PN
k~1

AH
ik sin hk{hið Þ

_cj~v0zsEX sin ht{t
i jð Þ {cj

� �
zsIN

PN
k~1

AC
ik sin ck{cj

� �

8>>><
>>>:

, ð1Þ

where the superscript t 2 t indicates the instant when the phases are
calculated, and sEX and sIN are the inter and intra-network cou-
plings, respectively.

Results
We observe that for two interconnected networks of oscillators with
time delay, a weak intra-network coupling, and random initial dis-
tribution of phases, two frequency communities emerge within the
same network, each synchronized with its mirror in a breathing
mode, as shown in Fig. 1(a). In the figure, the color describes the
frequency and the vertical position the phase. The frequency syn-
chronization within groups occurs with phase locking. Interestingly,
inter-network coupled pairs of nodes oscillate with the same fre-
quency (same color) but might be either in phase or anti-phase
(phase shift of p). Consequently, the presence of these two frequency
groups affects the perception of the new global oscillatory state,
which we call breathing synchronization. Figure 1(b) shows the time
evolution of the order parameters rH and rC for each population,
quantifying this breathing behavior. For each curve, the maximum
corresponds to the instant at which both groups of frequencies are in
phase, while the minimum to an anti-phase between groups in the
same network. Additionally, since for one frequency there is a phase
shift of p between inter-network pairs of nodes, the minimum in one
network corresponds, necessarily, to the maximum in the other.
Cohesion within each community affects the amplitude of the
breathing, as indicated by the order parameters for different values
of sIN in Fig. 1(b). The weaker the intra-network coupling, the smal-
ler is this amplitude.

The observed breathing behavior is in deep contrast with what is
expected for an isolated network (sEX 5 0). For isolated networks,
the classical Kuramoto model is recovered, with frequency and phase
synchronization emerging at a critical coupling sIN~s�IN. Above this
threshold, a macroscopic fraction of oscillators is synchronized, all

with the same frequency and phase. The value of s�IN increases with
the variance of the natural frequency distribution. Since here we
consider the same natural frequency for all oscillators (vi ; v0),
s�IN?0. The group of synchronized oscillators has frequency v 5 v0

and the order parameter rH(t) (or rC(t)) saturates in time at a non-
zero steady-state value22, which is a monotonically increasing func-
tion of (sIN{s�IN). Interestingly, in the case of coupled networks, and
for sufficient inter-network couplings, none of the two frequencies is
v0.

To better understand the breathing synchronization, and in par-
ticular the emergence of frequency groups, let us consider the case of
two coupled oscillators with time delay. The analytic solution
obtained by Schuster and Wagner38 for this problem indicates that,
depending on the initial phase difference between oscillators (see Fig.
S1 in the Supplemental Material), the pair can synchronize with
different frequencies v, which are solutions of,

v~v0{sEX sin vtð Þ: ð2Þ

In spite of oscillating with the same frequency in the stationary state,
the two oscillators might either be in phase, if cos(vt) . 0, or anti-
phase, otherwise. In the case of interconnected networks, in the limit
sIN 5 0, the stationary state is expected to include all possible solu-
tions of Eq. 2. Surprisingly, our results with a weak coupling reveal
instead two frequency groups with phase locking. Nevertheless, the

Figure 1 | The interactions between a strongly delayed inter-network
coupling and a weak intra-network coupling create two communities of
different frequencies in steady state. (a), Snapshot of populations at two

different time steps (black dashed vertical lines in b) near the steady state,

for v0 5 1.0, t 5 1.53, sIN 5 0.01, and sEX 5 0.5. The vertical position of

each oscillator represents its phase, from 2p to p, and the color represents

the frequencies achieved with oscillators mostly presenting values near the

theoretical frequencies (1.63 and 4.63) of the steady state. Superposition of

these two communities leads to breathing synchronization. (b), Time

evolution of the order-parameter of populations H (blue) and C (red)

composed of n 5 305 oscillators each with v0 5 1.0, t 5 1.53, and sEX 5

0.5. Two scenarios of weak intra-network coupling are represented: sIN 5

0.01 (continuous lines) and sIN 5 0.001 (dashed lines).
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observed frequencies are consistent with the solution of Eq. 2 and are
unique with respect to v0 and t. The final frequency of a pair of
oscillators only depends of their relative initial displacement.

As we show next, when the internal coupling (sIN) is further
increased, breathing synchronization is no longer stable and each
network is synchronized, in one of two other synchronization
regimes. In simulations with sEX 5 1.5, v0 5 2.75 and t 5 1.53,
when sIN 5 0.4 interactions among oscillators in the same network
become more relevant than the inter-network delayed coupling, and
the larger frequency group, in terms of size, dominates over the
smaller one. This competition results in all oscillators synchronizing
at the same frequency and the order parameter of each network
saturates in time. To systematically study the dependence on sIN,
we analyze the frequency correlation among intra-network neigh-
bors i and j. Figure 2 shows the scatter plots of the pair (vi, vj) for
different values of intra-network coupling strengths. The limit sIN 5

0 is represented by the blue empty circles in all panels and the radius
corresponds to the relative population of pairs when considering
several samples. In this limit, the oscillators have all one of two
possible frequencies, with four possible combinations of frequency
pairs. From the relative size of the circles, we observe that the lowest
frequency (v < 2.3 for v0 5 2.75 and t 5 1.53) is the most populated
one. As shown in Fig. 2(a), for sIN 5 0.4 most nodes are synchro-
nized with the lowest frequency and therefore a large percentage of
the pairs are in the left-bottom corner. Similarly to the Kuramoto
model, in this competing state, oscillators synchronize at a unique
stable frequency (v < 2.3), which is a solution of Eq. 2. As sIN is
further increased (Fig. 2(b)–(d)), due to the strength of the intra-
network coupling, each network tends to behave like a supernode
and, depending on the initial conditions, one of two frequencies is
obtained, which is again a solution of Eq. 2. Further analysis across
samples (See Fig. S2 in Supplemental Material) also shows that the
average phase displacement between pairs of oscillators in different
networks reachesD5 p for intermediary values of sIN, and decreases
again once the supernodes are formed (See Fig. S2(a) in Supple-
mental Material). For large sIN, the supernodes can be either in phase
or anti-phase and, therefore, the average variance within a network
has a value between zero and p (See Fig. S2(b) in Supplemental
Material). Results are qualitatively similar for networks with fixed
node degree (See Fig. S2(c–d) in Supplemental Material) or with
different average degree (See Fig. S2(e–f) in Supplemental Material).

To summarize the effect of several combinations of parameters, we
plot in Fig. 3 the phase diagram in the space of the two coupling
strengths (sIN and sEX). To identify each regime, we compute the
amount of oscillators with steady frequency below and above the
mean value of possible frequencies (see Section Methods), A1 and
A2, respectively, over different samples (see top inset of Fig. 3).
The color map of the main plot of Fig. 3 shows the ratio of these

quantities. While the blue area represents the domain of sIN and sEX

combinations that leads to the smaller frequency, the shades in red
represent the two regions where two frequencies can be achieved.
Note that, the nature of the two synchronization regimes in red is
different. The one in the left (lower sIN) is characterized by the
breathing behavior due to the presence of two frequency groups
within each network. By contrast, in the supernode regime all nodes
within a network are in phase locking, with the same frequency and,
therefore, the order parameter is constant in time in the steady state.
In the bottom inset, we show the phase boundaries for different time
delays. From this, one can also see that the transition between
regimes changes substantially for different time delays. Since delay
and natural frequency are not multiples, harmonic interactions are
considered negligible. Table I contains a brief summary of all states

Figure 2 | Scatter plot for the matrix of frequency pairs of intra-network neighboring oscillators, for 500 different realizations of random coupled
networks of n 5 750, with v0 5 2.75, t 5 1.53, sEX 5 1.5, and various sIN, namely, 0.4 (a), 0.8 (b), 1.2 (c), and 1.6 (d). Empty and filled

circles are centered on the frequency pairs (vi, vj) for each (i, j) neighboring nodes within a network, calculated with a 2D binning of size 0.05.

The filled circles color, according to a purple-yellow scale, corresponds to their relative occurrence in the dataset: purple circles are the predominant

frequencies registered, while yellow circles are less common. For comparison, blue empty circles correspond to results for sIN 5 0. The size of the symbols

is also used for the relative occurrence of each pair.

Figure 3 | Phase diagram for delayed coupled networks. Parameter space

of two coupling strengths sEX and sIN showing that the prevalence of one

frequency over the other changes according to the coupling strengths. The

color of each region represents the occurrence of the two theoretical

frequencies: red if two frequencies (v 5 2.3 and v 5 3.7) and blue if only

one (v 5 2.3) is observed. Shaded regions mark the boundaries between

states. Top inset is an example of the histogram used to calculate the main

panel: areas around the theoretical frequencies are defined (A1 and A2) and

their ratio used to define the prevalence of only one or two of them. The

lower inset exhibits the state boundaries for different time delays. The

dominant mechanisms of each region are labeled accordingly: Breathing,

Kuramoto22, Competing, and Supernode states. Regions are defined based

on simulations over 300 different realizations of random coupled networks

of n 5 500, with v0 5 2.75 and t 5 1.53.
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reported in Fig. 3. In Fig. S3 of the Supplemental Material we show
that the transitions between regimes with one and two stable fre-
quencies are abrupt.

Discussion
The presence of a time delay between two coupled networks of oscil-
lators poses a new challenge to the global control of the system. We
have shown that the interplay between coupling and delay leads to
states of either a unique or two possible synchronized frequencies.
We have found that, even with a weak intra-network coupling, oscil-
lators within the same network split into two frequency groups. Each
group has a mirror one in the other network oscillating at the same
frequency. However, depending on their frequency, a group can be
either in phase or anti-phase with its mirror in the other network,
resulting in breathing synchronization. Also, we show that an arbit-
rary increase of the intra-network coupling is not an option to
achieve phase and frequency synchronization regardless of its initial
conditions. In a certain region of the parameter space, the intra-
network coupling promotes the formation of two supernodes (one
per network), and two frequencies become stable. We have numer-
ically identified the transition regions between regimes. Future works
should consider recent advances on group synchronization to ana-
lytically study these transitions through linear stability analysis using
the master stability function41,42.

As previously mentioned, it is possible to prepare controlled
experiments to evaluate the existence of these different regimes in
biological systems. Takamastu et al.4 have shown that the distance
and interaction strength between regions of a plasmodial slime mold
can be fine tuned. This organism is a network of tubular structures
with periodic variations in the thickness. In the experimental study,
the focus was only on the regime where the intra-region interaction is
much stronger than the inter-region one. Using the same methodo-
logy, it is possible to control the intra-region interaction and study
the different regimes described here. In particular, it would be of
interest to observe oscillations with two different frequencies within
the same region due to the communication lag with the other region,
resulting in breathing synchronization.

Another example where synchronization in interdependent net-
works certainly plays a relevant role is the human brain. Being a
highly modular structure, its coherent operation must rely on the
independence of different brain modules, which are functionally
specialized, as well as on their efficient connection to ensure proper
information transmission and processing. In a recent study43, it was
shown that the optimal integration of these modules, which can be
interpreted as complex networks made of intra-network couplings, is
achieved through the addition of long-range inter-network ties,
therefore behaving globally as a small-world system. Moreover, their
experimental observations are also consistent with the fact that these
inter-network couplings should be spatially organized in such a
way as to maximize information transfer under wiring cost con-
straints44,45. To accomplish multisensory integration in this intricate
architecture of neuronal firing-oscillators46, however, information
originating from distinct sensory modalities (vision, audition, tac-
tion, etc.) must ultimately be processed in a synchronized way. This is
typically the case when the processing of a visual signal influences the
perception of an auditory stimulus and vice-versa47,48.

Methods
Equation 1 has been numerically solved using a fourth order Runge-Kutta method
with discrete time steps dt 5 0.003. The stable frequencies were computed at tmax 5

100, using the difference between phases after one dt step. The natural frequency has
been chosen as v0 5 1.00 in Fig. 1 and v0 5 2.75 for Figs. 2–3. Initial phases of
oscillators in all simulations have been sampled from a random uniform distribution
between 2p and p. Different values of v0 do not affect qualitatively the results. The
same values of dt and tmax were adopted for all simulations in this study.

In Fig. 1, Panels a) and b) are based on one pair of undirected random networks of
average degree four and 305 nodes in each. Oscillators in this figure have been
simulated for t 5 1.53, sEX 5 1.5. Panel a) is based on sIN 5 0.01.

In Fig. 2, Panels a)–d) contain the simultaneous representation of 500 pairs of
random networks of 750 nodes. Color and size of each point represents the relative
occurrence in all data. Oscillators in this figure have been simulated for t 5 1.53 and
sEX 5 1.5.

Fig. 3 is a schematic representation based on the average over 300 pairs of undir-
ected random networks of average degree four and 500 nodes in each. The upper inset
is a graphical representation of the histogram of all stable frequencies. The lower inset
contains the same study for different delays, also averaged over 300 pairs of undir-
ected random networks of average degree 4 and 500 nodes in each. A cutoff of v 5

3.00, the midpoint of the stable frequencies for sIN 5 0, was used to determine the
areas A1 and A2. Colors in the main panel are defined according to the ratio of A1 and
A2: blue if log(A1/A2) , 4 and red if log(A1/A2) . 4, with shades of these colors used to
represent the transition regions. To avoid the effect of oscillators that did not reach a
stable state by the end of the simulation, we consider only frequencies with a relative
occurrence of more than 10%. Oscillators in this figure have been simulated with t 5

1.53 in the main panel and t 5 0.53 in the lower panel.
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