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A B S T R A C T   

Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification 
of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to compre-
hensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along 
with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed 
to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision 
treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods 
for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine 
and clinical settings.   

1. Introduction 

In 2003, the International Human Genome Sequencing Consortium 
successfully concluded a monumental scientific endeavor, the Human 
Genome Project, yielding a comprehensive catalog of nucleotide se-
quences serving as a reference for over 20,000 protein-coding genes 
inherent in the human genome[1,2]. Subsequently, a nascent medical 
paradigm has emerged, namely Genomic medicine[3]. The genomic era 
revolutionized the screening and treatment of human diseases. 

Numerous targeted medicines have been added to the arsenal to treat 
cancer, particularly lung and breast adenocarcinomas. However, there 
are essential limitations of genomic and transcriptomic analyses, which 
only provide indirect measures of cellular status and cannot accurately 
reflect the corresponding protein abundance and variations such as 
post-translational modifications (PTMs). As such, exclusive reliance on 
genomic data could not offer a complete picture of the underlying dis-
ease mechanisms[4]. Nevertheless, human genome sequencing pro-
pelled the field in proteomics, enabling quantitative and qualitative 

Abbreviations: CCA, cholangiocarcinoma; ccRCC, clear cell renal cell carcinoma; ce6, chlorin e6; CRC, colorectal cancer; CEA, carcinoembryonic antigen; CYFRA 
21-1, cytokeratin 19 fragment; DGC, diffuse-type gastric cancer; DNA, DeoxyriboNucleic Acid; DVP, deep visual proteomics; EGFR, epidermal growth factor receptor; 
ErbB, erythroblastic oncogene B; ESCC, esophageal squamous carcinoma; EV, extracellular vesicles; HCC, hepatocellular carcinoma; HPLC, high-performance LC; IL- 
8, interleukin (IL)-8; IL-6R, interleukin-6 receptor; LC, liquid chromatography; MAP4Ks, mitogen-activated protein kinase kinase kinase kinases; MAPK, mitogen- 
activated protein kinase; MS, Mass Spectrometry; NGS, next-generation sequencing; NMF, non-negative matrix decomposition; NSCLC, non-small cell lung cancer; 
PCA, principal component analysis; PCR, Polymerase Chain Reaction; PEA, Proximity Extension Assay; RNA, RiboNucleic Acid; PTMs, post-translational modifi-
cations; RPPA, Reverse-phase protein array; SVM, support vector machine; TieDIE, Tied Diffusion Through Interacting Events. 

* Corresponding authors at: Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. 
E-mail addresses: fcchanxw@zzu.edu.cn (X. Han), liuzaoqu@163.com (Z. Liu).   

1 These authors have contributed equally to this work and share the first authorship 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2024.04.044 
Received 6 February 2024; Received in revised form 11 April 2024; Accepted 17 April 2024   

mailto:fcchanxw@zzu.edu.cn
mailto:liuzaoqu@163.com
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.04.044
https://doi.org/10.1016/j.csbj.2024.04.044
https://doi.org/10.1016/j.csbj.2024.04.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.04.044&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 1725–1739

1726

analysis of protein arrays that characterize cells, tissues, and organisms. 
Proteomics aimes to integrate proteomic experiments with data-based 
network consolidation analysis to investigate the composition, struc-
ture, expression, and modification status of proteins as well as the in-
teractions and connections of proteins-to-proteins in organisms. It has 
opened promising avenues for life science exploration in the 
post-genomic era, providing insights into the cellular and molecular 
mechanisms and dynamic regulation of disease[5,6]. 

Employing advanced technologies to tailor diagnosis, treatment, and 
prevention strategies according to the unique characteristics of each 
individual, such as genomics, proteomics, and metabolomics could 
promote precision medicine. Over the past decade, it has been increas-
ingly evident that even patients with the same cancer respond differ-
ently to homogeneous regimens such as chemotherapy and 
radiotherapy. Precision oncology leverages the molecular characteris-
tics of individual patient tumors to assess the likelihood of benefit or 
toxicity of personalized therapeutic interventions. The approach relies 
on the assumption that the molecular target state of the drug in a pa-
tient’s tumor matching the molecular mechanism of action with a 
therapeutic agent will optimize treatment outcomes. In recent years, 
proteomics which provides unique information relevant to cancer 
biology has become a research hotspot in the field of cancer precision 
therapy. Highly diverse and spatio-temporally dynamic proteins are 
involved in a myriad of cell functions, ranging from the transmission of 
genetic information to metabolic processes. Proteomic analysis could 
detect changes in the expression of different proteins, providing a more 
holistic tumor signature. The utilization of histology datasets in preci-
sion oncology is limited by elongated sample run durations, sophisti-
cation and ambulatory scope of proteomics samples, scarcity of inter- 
laboratory reproductive capacity, variation in quantitative methods, 
and other confounding factors[7,8]. Fortunately, accomplishments in 
instrumentation, sample preparation, and data analysis, coupled with 
standardization initiatives, have boosted the accessibility of high-level, 
reproducible, and holistic proteomics and phosphoproteomics datasets 
and agreements[9–11]. Sharma et al. developed a rigorous procedural 
and computational workflow to plot over 50,000 distinct phosphory-
lated peptides in a single tumor cell line[12]. The Clinical Proteomic 
Tumor Analysis Consortium also amassed numerous targeted and global 
proteomics datasets to assist cancer research[13]. 

Regarding the escalating threat of malignancy, proteomics could 
provide novel prospects into the tumor molecular landscape, contrib-
uting to a more accurate diagnosis and personalized therapies targeted 
at the specific tumor biomarkers. We searched for relevant literature in 
PubMed and Web of Science by using keywords including proteomics 
and precision oncotherapy. In this review, we have selected mainstream 
and cutting-edge techniques each with the analytical scope of charac-
terizing hundreds to thousands of protein targets used in proteomics for 
oncology applications. Afterward, we highlighted bioinformatics ap-
proaches for integrating proteomics data. Ultimately, we explored the 
potential applications of proteomics in the context of precision 
oncology. 

2. Proteomics analysis technology 

2.1. Mass spectrometry (MS) 

Since proteomics qualitative analysis techniques could not satisfy the 
requirements of clinical investigation, the focus gradually shifted to 
quantitative analysis, with an increasing demand for MS. Quantitative 
proteomics strategies based on MS, including global and targeted ap-
proaches, can directly measure the protein quantity in a cell. Global 
proteomics methods indiscriminately quantify and identify all proteins 
from a given sample, having the advantage of not requiring any hy-
potheses other than measurable differences in one or more protein 
species between the samples.[14]. In contrast, the targeted proteomics 
strategy narrows down the monitoring to a limited number of features 

[15]. Following the acquisition of specific proteins or biomarkers of 
interest in global proteomics, these can be further validated and exam-
ined in more samples using targeted proteomics, which requires 
knowledge of the target proteins’ amino acid sequence to set the 
appropriate mass parameters[16]. The selected reaction monitoring 
methods primarily encompassed three stages: 1) Primary MS scanning to 
screen out parent ions consistent with the specificity of the target 
molecule; 2) Collisional fragmentation of the parent ions to remove 
interfering ions; and 3) Acquisition of mass spectral signals from selected 
specific ions only[17,18]. Compared to global proteomics, targeted 
methods are optimized for higher sensitivity and throughput across a 
large number of samples. 

The quintessential solution for MS-based protein analytics is bottom- 
up proteomics (Fig. 1A)[14]. In this approach, proteins extracted from 
plasma, cells, or tissue specimens are first digested by enzymes into 
peptides. Subsequently, these peptides are typically isolated using liquid 
chromatography (LC) and then processed for analysis via electrospray 
ionization MS. Ultimately, the LC electrospray ionization tandem MS 
provides detailed information on the abundance and sequence profile of 
the peptides in the sample[14,19]. 

To enhance the accuracy and efficiency of protein/peptide identifi-
cation, MS incorporated with various separation and pre-fractionation 
techniques offers a promising approach[20]. While two-dimensional 
polyacrylamide gel electrophoresis, a standard proteomics assay based 
on charge and molecular weight, is labor-intensive and time-consuming, 
making it unsuitable for high-throughput proteomics. Nevertheless, LC 
employed polarity, charge, and protein molecular weight for protein 
separation. LC or high-performance LC (HPLC) could be coupled with 
MS as LC/HPLC-MS to facilitate the sequential separation of thousands 
of proteins from complex mixtures[21,22]. Dai et al. analyzing serum 
specimens via LCMS/MS found that the sensitivity of diagnosis was 
enhanced from 35.1% to 84.0% when alpha-enolase (ENO1) cooperated 
with tumor protein biomarkers such as carcinoembryonic antigen (CEA) 
and cytokeratin 19 fragment (CYFRA 21-1) in non-small cell lung cancer 
(NSCLC)[23]. The synergistic detection of the proteins para-
oxonase/arylesterase 1 and alpha-1-antichymotrypsin in serum speci-
mens had a sensitivity of 94.4% and a specificity of 90.2% for early 
diagnosis of NSCLC[24]. In addition, LC-MS established for the first time 
a combination of protein markers, which could differentiate primary 
squamous lung cancer from head and neck squamous lung metastatic 
cancer, leading to a trustworthy foundation for classifying unknown 
origin squamous lung cancer[25]. 

2.2. Aptamer-based detection 

Aptamers, single-stranded deoxyribonucleic acid or ribonucleic acid 
molecules, could fold into specific tertiary structures to tie with elevated 
affinity and specificity to homologous protein targets in their natural 
state[26,27]. In slow off-rate modified aptamer scanning assays, biotin 
and fluorescent markers labeled the protein to be detected. The aptamer 
captured and bound to the specific protein to form a complex and 
attached to streptavidin beads. After releasing by ultraviolet-based 
cleavage and binding to another biotin bead, the complex survived the 
subsequent challenge and was purified, characterized, and measured by 
DeoxyriboNucleic Acid (DNA) hybridization techniques to reflect pro-
tein abundance within the system (Fig. 1B)[28]. Compared to anti-
bodies, nucleic acid aptamers conferred advantages in enhanced affinity 
and specificity, facile in vitro synthesis and selection, and minimal 
batch-to-batch variation, presenting an appealing option for biomarker 
discovery[29]. 

In addition to demonstrating the ability to perform a versatile range 
of molecular target screens encompassing challenging-to-produce anti-
bodies such as low-immunogenicity targets and toxins, aptamer 
screening was characterized by cost-effectiveness and efficiency, with 
screening results obtained within a week[30]. Recently, automated 
DNA/RiboNucleic Acid (RNA) synthesis technologies have further 
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streamlined the production and chemical modification of aptamers on a 
large scale with low- to high-volume variation[31]. The chemical 
structure of these straightforward aptamers remained complete 
conformational restoration even after thermal or chemical denaturation. 

Moreover, using already-known molecular targets, like proteins, pep-
tides, or small molecules, aptamer screening allowed the indication of 
aptamers for cancer-related biomarkers. Kruspe et al. bound photosen-
sitizer chlorin e6 (ce6) to human interleukin-6 receptor (IL-6R)-binding 

(caption on next page) 
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RNA aptamer AIR-3A to produce AIR-3A-ce6, which was rapidly and 
specifically internalized by IL-6R-presenting cells. Under photo-
irradiation, the target cells were selectively killed, while the free ce6 
showed no toxic effect, doing its part in remedy of breast tumors and 
skin cancer[32]. 

The elongated shelf lifetime and nucleic acid nature granting direct 
sensitivity to antidotes were other properties of the aptamers, making 
them attractive candidates as contributors to targeted therapies[33,34]. 
It was reported that the selection of RNA aptamers for conjugating 
tumor-associated membrane antigens and the application of RNA 
aptamers to prostate-specific cellular markers[35]. In the clinical 
setting, these aptamers may function as N-acetyl-alpha-linked acid 
dipeptidase inhibitors or be modified to carry imaging and therapeutic 
agents targeting prostate cancer cells. Then, Wang and colleagues suc-
cessfully certificated DNA aptamers to promote the development of 
novel targeted cancer detection, imaging, and therapy by identifying 
multiple epidermal growth factor receptor (EGFR)-expressing cancer 
cells but not augmenting EGFR-negative cells[36]. 

2.3. Proximity extension assay (PEA) 

PEA is a unique proteomics method that uses antibodies linked to 
oligonucleotides for quantifying proteins with real-time Polymerase 
Chain Reaction (PCR). The technique had been shown to possess 
excellent readout specificity and sensitivity enabling high-volume 
multiplex analysis over a wide dynamic range as well as conserving 
minimal sample volume. By employing paired oligonucleotide-labeled 
antibodies coupled to their target antigens in a paired fashion, PEA 
could bring matched oligonucleotides into proximity. Upon antibody 
binding, the downstream procedure usually carried out by quantitative 
polymerase chain reaction entails the acquisition of DNA polymerase to 
create, amplify, detect, and quantify the PCR target sequence (Fig. 1C) 
[37,38]. To enhance the high-throughput screening of biological sam-
ples and expand assay libraries, researchers have automated, miniatur-
ized, and adopted next-generation sequencing (NGS) technology to 
propel PEA to a frontier[39]. Up to now, NGS stands as the market leader 
in massively parallel short-read sequencing. The amalgamation of PEA 
technology with NGS reads constituted an impressive landmark in the 
new era of protein identification and quantification. 

PEA remained unaffected when analyzing complex biological mate-
rials without the washing steps, becoming a panacea of liquid biopsy- 
based detection[38]. Target-specific antibody pairs were tethered to 
DNA strands and generated real-time PCR amplicons in a 
proximity-dependent manner by conjugating simultaneously to the 
target analyte in the presence of DNA polymerase. In the PEA, multiple 
antibody pairs of the target protein are aggregated, each labeled with a 
complementary DNA oligonucleotide sequence. High-fidelity discrimi-
nation hybridization could be achieved by several measures, including 
reducing pipetting steps, selecting superheat-resistant enzymes, intro-
ducing interplate controls, and novel standardized procedures[37]. As a 
superior vehicle of serological discovery, PEA was applicable to 
discriminate early-stage colorectal cancer (CRC) and identify potential 

amalgamations of plasma protein biomarkers, further extending to 
asymptomatic CRC individuals[40]. Pre-treatment plasma samples from 
anti-programmed death-ligand 1 therapy NSCLC patients were analyzed 
using PEA to quantify different immune oncology-related proteins[41]. 
By employing a similar strategy, Liu et al. deciphered the high content of 
organization pleiotrophin to be an independent predictive marker of 
chemotactic relapse and migration progress in low and moderate pros-
tate cancer[42]. 

2.4. Protein microarrays 

Protein microarrays concurrently measured a vast array of distinct 
proteins in a single experiment, permitting parallel evaluation of an 
extensive collection of proteins. There were generally two types of 
protein arrays: 1) Forward-phase protein arrays were arrayed for the 
detection of proteins and consisted of differentiated capturing sub-
stances; 2) Reverse-phase protein array (RPPA) detected molecules of 
interest such as proteins, drugs, and nucleic acids by the proteins on the 
array (Fig. 1D)[43]. 

For forward-phase protein microarrays, commonly antibody arrays, 
the components upon the array were capturing domains[44]. As trail-
blazing tools in targeted proteomics, antibody arrays parsed many 
proteins of an individual specimen to enable the discrimination of spe-
cific disease biomarkers. Antibodies, acting as capture or decoy probes, 
immobilized specific proteins on the revised plane-primed substrate 
through chemical interaction or physical encapsulation[45,46]. After a 
hybrids-like capture, the following phase was to inspect the components 
of the particular capture. There were two main classifications of 
assignment formats: label-based and sandwich-based. The former 
approach necessitated sample pre-treatment before incubating in the 
microarray. Analytes could be labeled directly with fluorescent clusters 
or quanta, or marked after capturing with secondarily labeling anti-
bodies[47]. Nevertheless, the sandwich methodology did not require 
pre-labeling, but every targeted spot demanded two separate antibodies. 
The primary antibody captured the sample and the secondary antibody 
combined with another protein-conjugated domain of the target site for 
binding detection[48]. In high-complexity analysis, materials were 
predominantly branded with fluorometric, chemo-luminescence, or 
oligo tags to permit divergent signal magnification and monitoring. The 
protocol could virtually characterize more than 1000 proteins or their 
modification forms at minimum immunogenicity crossing correlation 
triggered by the antibody response mixture. 

Antibody arrays overcome the sensitivity issues associated with non- 
targeted proteomics technologies on account of their excellent perfor-
mance in knowledge-based biological mechanism exploration. It dis-
cerned, quantified, and monitored a broad spectrum of intracellular and 
serum proteins such as cytokines, hormones, chemokines, and intra-
cellular signaling molecules to screen for disease markers, thereby 
elucidating mechanisms of disease onset and progression[49,50]. 
Cytokine antibody arrays became an awesome assistant in explaining 
the indispensable function of interleukin (IL)- 8 in breast carcinogenesis 
by measuring protein expression levels of different cytokines in breast 

Fig. 1. Proteomics Technology Processing, data analysis and integration. A Mass Spectrometry: proteins are first digested enzymatically into peptide fragments, 
which then enter the mass spectrometer for detection. In global proteomics, a full spectrum of peptide ions is obtained and fragmentation is performed to identify the 
peptide sequence. In targeted proteomics, signals that match the target ion rules are acquired with triple quadrupole mass spectrometry, with Q1 selecting the parent 
ion, Q2 fragmenting the peptide ion, and Q3 detecting the fragmented ion signal. B Aptamer-based detection: the protein to be detected is labeled with biotin and 
fluorescent markers, and the aptamer is captured and attached to a specific protein binding to a streptavidin bead. After ultraviolet cleavage, they are released and 
bound to another biotin bead, eluted and recovered for quantification, and hybridized to a custom DNA microarray to react to the amount of protein in the sample. C 
Proximity Extension Assay: each paired antibody with a unique DNA tag binds to the target protein of the sample. After binding, the DNA tags are nearby and 
hybridize, generating a double strand that is digitally recognized, amplified, and detected by qPCR, which translates into data. D Protein microarrays: in forward 
protein microarrays, specific antibodies can be immobilized on the chip surface to capture target proteins in complex samples, and the unbound components are 
washed away by rinsing to measure the fluorescence intensity at various points on the chip. In reverse-phase protein microarrays, proteins are bound to the chip, 
which is then detected with an antibody against the target protein, rinsed to remove unbound components, and fluorescence scanned to determine the fluorescence 
intensity at various points on the chip. E Data generated by technologies requires computational algorithms to derive novel biological insights. After data integration 
using relevant methods (TieDIE, PCA and NMF) and platforms (ProHits and OpenMS), visualization figures are formed through standardized analysis. 
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carcinomatosis[51]. Subsequently, leveraging antibody microarrays, 
some researchers analyzed the resistance mode of various breast carci-
noma cell clusters to adriamycin, which improved the understanding of 
protein expression changes associated with adriamycin resistance and 
identified novel biomarkers[52]. Ingvarsson et al. accessed protein sig-
natures relevant to a shorter life expectancy in the sera of pancreatic 
cancer patients by recombinant single-chain variable fragment antibody 
microarrays[53]. Taken together, antibody arrays offered valuable in-
sights into tumor diagnosis, treatments, and prognosis. 

Several decades ago, Paweletz et al. pioneered RPPA, a proteomic 
technique with a high degree of sensitivity, precision, and linearity, 
especially for quantifying the phosphorylated status of signal proteins in 
tumor cell subpopulations[54]. The platform sequence steps involved 
the immobilization of protein-containing samples on 
nitrocellulose-coated slides, antibody recognition of target proteins, 
signal amplification chemistry to detect protein-antibody complexes, 
and quantification of spot intensity. Subsequently, each RPPA slide was 
assayed with catalytic signal amplification chemistry and a primary 
antibody, a secondary antibody, and fluorescent or colorimetric dyes. 
Nowadays, this technology has been graduated for application in clinical 
trials with higher sensitivity and precision[55]. 

Protein quantified in cell lysates and PTMs in body fluids via RPPA 
could be harnessed for biomarker identification, protein pathway anal-
ysis, functional phenotyping, and drug discovery mechanisms of action, 
dramatically accelerating clinical management in individualized ther-
apy. Murakoshi et al. validated candidate plasma biomarkers for early 
detection of CRC and age/sex-matched healthy individuals by RPPA for 
plasma protein analysis[56]. The protein expression data of RPPA had 
been certified to contain substantial predictive power for cancer de-
pendencies[57]. In addition, Tibes and colleagues described the vali-
dation and robustness of RPPA in rare populations of normal and 
leukemic stem cells and pictured differences from bulk cell populations 
[58]. RPPA application in proteomic profiling of tumor-derived extra-
cellular vesicles (EVs) has become another area of interest[59]. A pre-
liminary study utilizing EV purification workflow followed by RPPA 
analysis of 276 cellular proteins, revealed seven protein biomarkers of 
breast cancer patients with diagnostic power[60]. Another RPPA study 
on EVs from prostate cancer patient sera also validated protein bio-
markers with therapeutic monitoring value[61]. 

In contrast to antibody arrays consisting of ample antibodies 
deposited onto the substrate with the specimens as probes, protein ly-
sates in RPPA were affixed onto a matrix, and a solitary primary anti-
body served as a probe molecule[54,62]. The reversed-phase modality 
facilitated simultaneous specimen quantification on a singular array, 
and the availability of multiple RPPA slides permitted for elaborate 
protein measurement, with each array acting as a comprehensive anal-
ysis. Accurate protein quantification relied on the identification of 
protein specimens in images acquired with high precision, followed by 
speckle analysis. Speckle analysis was capable of distinguishing speckles 
and measuring the pixel intensity of each speckle concerning the sur-
rounding background[62,63]. 

2.5. Combined techniques in single cell proteomics 

Off-target detection of proteins using mass spectrometry lacks suf-
ficient sensitivity to be relevant for single-cell analysis. Therefore, 
single-cell proteomics studies have relied on selective target detection 
using antibodies or similar affinity reagents (e.g., affinity bodies or 
aptamers). Although the number of epitopes that can be detected 
simultaneously is limited by the spectral overlap between fluorescent 
moieties, flow cytometry has long been the workhorse for researchers 
seeking to assess protein expression at the single-cell resolution level. 
The advent of MS-flow cytometry, which involves the use of metal iso-
topes to label antibodies, has greatly expanded the number of markers 
that can be analyzed concurrently, allowing for high-dimensional 
detection of proteins expressed on single cells. Wagner et al. used a 

combination of 35 immune cell-centric and 38 tumor cell-centric anti-
body panels to generate a comprehensive single-cell atlas of breast 
cancer[64]. Another innovation based on single-cell barcode microarray 
technology is the IsoLight system, capable of detecting proteins secreted 
by single cells[65]. The system utilizes a microfluidic chip to capture 
information from 200 to 2000 single living cells and measures cytokines, 
chemokines, growth factors, and other secreted ligands using a sand-
wich ELISA-like assay over several hours of incubation. The system also 
has the flexibility to incorporate other analytes such as metabolites. The 
initial utility of the IsoLight System has been demonstrated in a Phase 1 
trial in which patients with advanced melanoma underwent relay cell 
transfer supported by polyethylene glycolated IL-2, which resulted in 
enhanced levels of cytokines between polyfunctional T cells and NK cells 
[66]. 

Deep visual proteomics (DVP) enables single-cell analysis in a tissue 
context by first imaging the tissue at subcellular resolution using an 
optical microscope. The individual cellular or subcellular structures of 
each cell in the image are then automatically identified using sophisti-
cated deep learning-based methods, followed by proteomic analysis by 
ultra-high sensitivity mass spectrometry using automated laser micro-
dissection to target and capture the cell or region of interest. Based on 
the proteomics data, cells can be categorized into types or assigned 
functions. Based on this the proteome of cancer cell lines at different 
stages of the cell cycle characterized by fluorescence ubiquitination- 
based cell cycle indication (FUCCI) was determined[67]. In archived 
primary melanoma tissues, DVP identified spatially resolved proteomic 
changes as the transition of normal melanocytes to fully invasive mel-
anoma, revealing pathways that change spatially as cancer progresses, 
such as dysregulation of mRNA splicing in metastatic vertical growth, 
which coincides with reduced interferon signaling and antigen presen-
tation[68]. 

3. Proteomics data analysis and integration 

The technologies mentioned above could generate vast amounts of 
data, which require computational algorithms to derive novel biological 
insights (Fig. 1E). Biomarker identification faced the challenge of 
acquiring correlative and robust signatures from high-throughput pro-
teomics data. Differential expression proteins between normal and dis-
ease states could address this problem[69,70]. For instance, an 
investigation demonstrated that α-enolase, α-catenin, 14–3-3 β, VDAC1, 
and calmodulin significantly expressed at least 2-fold between cancer 
and normal mice. Changes in these marker levels could provide insights 
into the physiologic aberrations and disease stages during pancreatic 
cancer progression[70]. Additionally, more elaborate techniques 
appeared to bridge this gap, like machine learning and network-based 
approaches, enabling the discernment of corollary biomarkers and the 
dissection of intricate relationships between proteins. Proteomics data 
analysis benefited from machine learning methods such as support 
vector machine (SVM)[71], neural network[72], decision tree[73], 
random forest[74], and genetic algorithm[75]. By comparing the 
average accuracy of random forest and SVM algorithms, Ahn et al. found 
that although SVM was talented in detecting small tumors, random 
forests generically outshined SVM no matter the phase or scale of the 
tumor. They eventually constructed a biomarker array platform and 
employed the random forest feature selection algorithm to screen 
candidate biomarkers in gastric adenocarcinoma[76]. These algorithms 
harvested enhanced sensitivity and specificity, precise diagnosis capa-
bilities, and improved treatment outcomes. Frustratingly, The machine 
learning methods were weaker in the independent validation cohort, 
displaying the overfitting phenomenon[77]. Fortunately, to solve the 
deficiency of SVM in analyzing large datasets, a fast support vector 
classifier (FSVC) was proposed boasting free memory requirements and 
less time spent, showing promise for better data analysis[78]. 

Elucidating the underlying mechanisms of tumorigenesis and evo-
lution paved the way for targeted therapeutic strategies. The researchers 
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typically attempted to recognize biological processes and functions 
derived from bioinformatic data analysis, such as gene ontology or 
pathway enrichment analysis for differential regulatory entities in each 
dataset[79–81]. Locard and colleagues performed a phosphoproteomic 
analysis and constructed a map of bidirectional signaling and interaction 
pathways by navigating identified phosphomodulatory proteins to the 
Kyoto Encyclopedia of Genes and Genomes pathway, characterized by 
alterations in phosphorylation upon tumor-endothelial interaction[82]. 

Evolving technologies to analyze protein interaction networks and 
pathway architectures could detect pathways disrupted in a patient- 
specific manner[83]. Among these techniques, the Signaling Pathway 
Impact Analysis algorithm was predicated on the location of genes in the 
pathway topology, incorporating the message of differential gene 
expression and its implications for the pathway[84]. Stemming from a 
network diffusion approach, Tied Diffusion Through Interacting Events 
(TieDIE) connected genomic perturbations to variations in gene 
expression underlying cancer subtype signatures, calculating 
sub-networks of protein-protein interactions, along with forecasted 
transcription factor-to-target connections[85]. Other methods included 
network propagation[86], clustering[87], network current flow[88], 
random wandering[89], and pathway models in determining disturbed 
function blocks or routes in the net and availed these as features to layer 
individuals or differentiate carcinogenic cellular lineages[90]. Never-
theless, these algorithms gravitated towards available interactome data 
and annotation pathway data, as these were presently fragmented and 
skewed toward heavily expressing proteins[91–93]. However, 
hampered by the instrumentation or technique application and the 
dynamical scope of abundance in the specimen, their coverage of the 
entire proteome was frequently much narrower than other correlative 
histological data[94]. The kinase-substrate enrichment analysis esti-
mated kinase activity according to differences in the abundance of 
known substrates to accentuate specific signal networks active in each 
circumstance[95]. 

The methodologies amalgamating proteomics datasets with other 
omics or clinical data could be divided into homogeneous methods 
(datasets containing congruent data from diverse provenance) and 
heterogeneous methods (integrating several datasets with different 
database types). These methods could incrementally aggregate the data 
strata or products in the system integration pattern. Drake et al. adopted 
a stepwise method to consolidate genomics, transcriptomics, and 
phosphoproteomics datasets and implemented a diffusion-based algo-
rithm, TieDIE, to discover differentially expressed master transcriptional 
regulators, functionally mutated genes, and differentially activated ki-
nases[85,96]. The outcomes revealed clinically relevant pathway in-
formation as well as advanced prostate cancer patient stratification and 
targeted therapies, together with profiting from a global pathway-based 
reference for individual patient drug prioritization. The furthest pro-
spective strategies to integrate datasets in a single step entail techniques 
predicated on principal component analysis (PCA) or factor analysis and 
non-negative matrix decomposition (NMF)[97–99]. These methodolo-
gies could integrate different large datasets and perform effective 
dimensionality reduction, thereby facilitating downstream 
network-base or machine learning analysis and constructing 
system-representative models[97,100]. Moreover, distinct supervised or 
unsupervised techniques could be implemented to select proper vari-
ables and contribute to the interpretation of the result[101,102]. These 
could embrace the implementation of linear discriminant analysis[102], 
Bayesian classifiers[103], SVM[104], and K-nearest neighbor methods 
[105]. Through factor analysis and linear discriminant analysis, 
combining microRNA, mRNA, and proteomics data and exploring the 
tumor molecular mechanisms, could reveal the related gene expression 
models and identify promising immunotherapeutic spots[103]. Matrix 
decomposition techniques such as NMF and variance traditionally 
analyzed genomics and transcriptomics data and had only recently been 
extended to proteomics datasets. Yuan et al. evaluated the prediction of 
patient survival in different molecular data types and described the 

potential prognostic and therapeutic relevance of multiple cancer types 
via NMF. Among the subgroups, they pinpointed a subgroup among 
other biomarkers and activation pathways profiting from 
mitogen-activated protein kinase (MAPK)-targeted therapy[106]. 
Another integration strategy utilized for proteomics datasets was pre-
dicted for co-inertial analysis of multilateral extensions. Through inte-
grating cellular transcriptomic and proteomic profiles in NCI-60 cancer 
cells, it was uncovered that leukemia extravasation pathways were 
fundamental players in leukocyte migration and metastasis, but the 
same pathways were not observed in the analysis of individual datasets 
[107]. 

Inconsistent annotation and reporting of integrated data along with 
its dynamic nature brought about obstacles in models for investigating 
diseases or patients. With the evolvement of a standardized data 
collection and management process, it was critical to establish methods 
in synergy with extant techniques for genomic and other histological 
datasets and harness them to document relevant metadata. The growing 
sophisticated platforms and techniques such as ProHits and OpenMS, 
aimed at minimizing the variability associated with data acquisition 
[108,109]. ProHits, a software platform designed primarily for inter-
action proteomics, could deliver fancy options for data management and 
analysis to guarantee the analytical pipeline traceability[108]. Rela-
tively, as an open-source framework tailored for high-throughput MS 
data analysis, OpenMS could serve as a transparent and scalable 
approach to implement various pipelines and analysis procedures[109]. 
Additionally, Compared to selected reaction monitoring, Sequential 
Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), a 
mass spectrometric method that combines data-independent acquisition 
and targeted data analysis, could achieve the one-time, a priori gener-
ation of a specific measurement assay for each targeted protein, signif-
icantly broadening the production of targetable proteins[110]. TRIC, a 
software exploiting fragment-ion data, conducted cross-run alignment, 
consistent peak-picking, and quantification for high-throughput tar-
geted proteomics. This minimized the identification error and corrected 
for highly nonlinear chromatographic effects, filling absent components 
in the pipeline of extensively parallel targeted proteomics datasets 
analysis[111]. 

The inherent variability of proteomics and phosphoproteomics 
datasets hampered data consolidation. The single-cell research demon-
strated that activated cell-specific responses were modulated and coor-
dinated with significantly less noise and sample variability compared to 
the resting state[112]. Where feasible, the acquiring of non-stationary 
data points assisted in mitigating data variations and boosting the 
signal-to-noise ratio. By combining microfluidic chips for all-in-one 
proteomic sample preparation and data-independent acquisition MS 
for proteomic analysis down to the single-cell level, the proteomics chips 
facilitated multiplexed and automated cell isolation/counting/imaging 
and sample processing in a single device[113]. Bendall et al. married the 
depth of single-cell MS flow cytometry with developed algorithms and 
expanded it to human B-cell lymphangiogenesis to construct a trajectory 
from hematopoietic stem cells to naïve B cells. They highlighted 
checkpoints where regulatory signals parallel changes in cellular state 
and laid the groundwork for introducing them into cancer development 
[114]. 

4. Proteomics in precision oncotherapy: administrating 
individualized clinical protocols of tumor treatment 

Proteomics has become a research hotspot in the field of precision 
oncotherapy, which redefines disease subtypes, discerns the primary 
tumor cell, explores biomarkers and potential therapeutic targets, and 
ultimately discovers and validates tumor-related molecular regulatory 
mechanisms at the protein level for promoting therapeutic strategy. 
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4.1. Identification and classification of cancer subtypes 

Researchers discovered that patients with the same type of cancer 
showed substantial variations in the quality of livelihood and life ex-
pectancy, demanding imminent requirements for the clinical identifi-
cation and classification of cancer[115,116]. Molecular typing 
represented an imperative dimension in precision cancer therapy, 
whereas molecular typing based on genetic mutations and transcrip-
tional differences couldn’t guarantee satisfactory guidance in clinical 
practice. Proteomic-based molecular typing gradually attracted atten-
tion in the research field. Leveraging MS-based characterization, ovarian 
cancers were typified with four proteomic clusters corresponding to 
mesenchymal, proliferative, immunoreactive, and differentiation sub-
types as defined by genomic analysis. Specific protein acetylations 
associated with homologous recombination deficiency also provide 
stratified treatment for patients[117]. Yanovich and colleagues 
demonstrated intratumor heterogeneity of three breast cancer subtypes 
and normal tissue. One cluster of four proteomic clumps distinguished 
via unsupervised analysis manifested a novel luminal isoform charac-
terized by increased PI3K signaling, which led to phosphorylation and 
elevated transcriptional activity of ER and represented tamoxifen 
resistance. This work might serve as a springboard for a targeted study of 
hormonal treatment response, and further research including clinical 
data is warranted[118]. Ge et al. classified diffuse-type gastric cancer 
(DGC) into three subtypes (PX1–3) according to solely altered pro-
teomes. PX1 and PX2 exhibited disorders in the cell cycle with PX2 
characterized by an additional epithelial-mesenchymal transition 

procedure. PX3 had the least favorable prognosis and was unresponsive 
to chemotherapy, while containing abundant immunoreactive proteins. 
Data acquisition decrypted four major vulnerabilities adaptable for 
therapeutic management and permitted the nominating of prospective 
immunotherapy targets for DGC individuals, especially those in PX3, 
indicating a prime target for immunotherapy (Fig. 2A)[119]. In addi-
tion, many other studies have been conducted, including brain cancer 
[120], breast cancer[121,122], lung cancer[123], clear cell renal cell 
carcinoma[124], and prostate cancer[125]. Overall, proteomic analysis 
might emerge as a promising superstar in cancer molecular subtyping 
followed by genomic and RNA sequencing, whose translation into 
clinical practice and care remains to be deciphered. 

4.2. Discerning the primary cancer cell type 

With the advent of the precision oncology era, proteomics delivered 
innovative insights into the mechanisms of cancer generation, empow-
ering people to break through the constraints of previous investigations. 
Proteomic profiling unlocked that protein representation models were 
coincident with the origin of certain cancer cell types[126]. Though 
projecting the protein intensities onto a Uniform Manifold Approxima-
tion and Projection plot, Goncalves and colleagues identified tumor cell 
source type groupings including diverse populations of hematopoietic 
and lymphatic-like cells and further subdivided into different cell line-
ages. A robust and preserved cell type-specific procedure existed be-
tween transcription and translation. Ultimately, they also showed that 
protein expression characteristics correlate with cellular ancestry and 

Fig. 2. Proteomics empowering precision oncology. A Patients with the same type of cancer could be further subdivided into different molecular subtypes based 
on the results of proteomic analysis. B For metastatic cancers with unknown primary foci, proteomic analysis assists in locating the primary foci. C Tumor tissues 
release proteins into the blood, and these proteins could be specific markers of tumor types and protein detection could determine cancer types. D Preparation of 
cancer antigen vaccines and their mechanism of action. 
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established a rigorous protein quantification strategy, thereby reducing 
high-dimensional complexity[127]. 

Given that various tumors and their subtypes necessitated distinct 
treatment modalities, accurately discerning the primary tumor site of 
metastatic cancer could guide clinicians in rendering pertinent medical 
decisions and evaluating expected outcomes, and overall prognosis 
(Fig. 2B). The diagnostic approach encompassed a detailed histopath-
ological examination of formalin-fixed paraffin-embedded tissue stained 
with hematoxylin-eosin staining. This procedure was buttressed by 
histochemical reactions, immunohistochemical, and molecular biolog-
ical methods[128]. It was noteworthy that the metastases differentiated 
moderately or poorly and lost the specific hallmarks of the primary 
tumor. Imaging MS technology could investigate a large number of 
proteins in association with morphological features, simultaneously 
maintaining their spatial integrity in tissue samples[129]. 
Matrix-assisted laser desorption ionization imaging constructed tumor 
proteomic signatures to classify adenocarcinoma entities located at 
different organ sites, which could discriminate from different organ sites 
and distinct tumor types in the same site[130]. Li and colleagues 
distinguished three CRC subtypes featured by diverse clinical prognostic 
and molecular profiles and successfully differentiated metastatic cases 
by phosphorylated proteomics. Phosphoproteomic data distinguished 
the primary tumors from metastatic CRC and non-metastatic CRC, 
resulting in the classification of six phosphoproteomic subtypes in which 
SC1, SC3, and SC5 were characteristic of the former, whilst SC2, SC4, 
and SC6 were enriched in the latter. Nevertheless, metastatic tissues 
rendered high similarity to original tumors at the hereditary level rather 
than the proteomic layer[131]. To summarize, proteomics emerged as a 
capable partner for clinicians to troubleshoot the conundrum of identi-
fying the primary site of migratory cancers. Its integration with existing 
diagnostic methods was expected to refine the precision of cancer 
diagnosis. 

4.3. Detection of biomarkers 

Molecular cancer biomarkers undertook measurable indicators of 
cancer risk, genesis, or individual prognosis, and proteomics carried out 
a trustworthy strategy for the pursuit and validation of prognostic and 
predictive biomarkers (Fig. 2C). An international study conducted that 
high-throughput proteomics of serum EV identified early diagnostic 
markers for individuals at high risk of cholangiocarcinoma (CCA) and 
biomarkers for the differential diagnosis of intrahepatic CCA and he-
patocellular carcinoma (HCC). Research has documented that in vitro 
CCA human cell-derived EVs contained a greater enrichment of onco-
genic proteins versus EVs released from healthy human bile duct cells 
[132]. Wang et al. carried out profiling of pulmonary neuroendocrine 
carcinoma by quantitative tandem mass tag proteomics, characterized to 
subtype-specific secretory protein markers, and proved that insulin-like 
growth factor-binding protein 5 could emerge as a biomarker for 
oncogenic achaete-scute homolog 1 high expression small cell lung 
cancer subtype[133]. Indeed, the detection of low-abundance proteins 
presented a puzzle for tumor marker development, but Olink was 
making a difference, supplying assays and analytical data for cytokines, 
chemokines, and growth factors, among others. The research detected 
prediagnostic blood samples by the Olink96-inflammation panel and 
identified CDCP1, an early screening marker for lung adenocarcinoma, 
which in turn was demonstrated by mRNA-seq enrichment analysis to 
have a potential role in pathways associated with cell adhesion and 
migration[134]. Biomarker discoveries have also been reported in 
genomic studies of gastric[135], ovarian cancers[136,137], lung cancer 
[138], and brain cancer[139]. Protein-based and etiology-related lo-
gistic models with predictive and diagnostic capacities were emerging, 

moving a step forward into precision oncology. 

4.4. Elucidating the molecular mechanisms of tumorigenesis 

To investigate protein network regulation and cellular phenotypic 
modifications from the perspective of genomic variation remained 
extremely complicated, while direct analysis of protein co-regulation/ 
covariation at the proteomic level could reveal the effects of relevant 
gene mutations on protein networks more accurately. Roumeliotis et al. 
demonstrated that gene loss-of-function mutations could influence 
protein levels to deliver protein co-regulatory networks through prote-
omic studies. The consequences of genomic variants could be trans-
mitted and impinge on protein levels of other genes through protein 
reciprocal networks[140]. Proteogenomic research of malignancy tis-
sues validated that copy-number variances in a large portion of the 
proteome could be reduced at the protein level, constituting a protein 
homeostasis network. Sousa and colleagues assembled genomic, prote-
omic, and structural data from malignant tissues and approved that the 
majority of proteins displayed a panorama of post-transcriptional reg-
ulatory traces and interaction-dependent control of protein abundance 
[141]. Failure to eliminate DNA lesions was associated with genome 
instability, a driving force in tumorigenesis. The maintenance of cellular 
functionality assured the protein homeostasis network under conditions 
of proteome instability, addressing the triage decision of protein fold, 
hold, or degrade. The outcome increased genomic instability due to 
reduced fidelity in processes like DNA replication or repair leading to 
cancer[142]. Overall, these findings provided evidence for the existence 
of an active protein homeostasis network, which was supported by direct 
proteome measurements. 

Cancer signaling mechanisms have been investigated by diverse 
programs, and proteomics enables the visualization of gene-expressed 
proteins and shortens the research journey[143]. Proverbially, 
mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) 
constituted a mammalian STE20-like serine/threonine kinase subfamily. 
The Hippo pathway, originally authenticated and elucidated in 
Drosophila, represented a conserved signaling pathway that regulated 
organ/body size by inhibiting cell proliferation and promoting apoptosis 
and bore considerable relevance in the suppression of cancer patho-
genesis[144]. In the mammalian Hippo pathway, MAP4K1/2/3/4/6/7 
operated simultaneously with two other STE20-like kinases, MST1/2, to 
phosphorylate and activate two ACG serine/threonine kinases, LATS1/2 
phosphorylated and activated[145]. Upon phosphorylation, LATS1/2 
and its splice protein MOB1A/B sequentially phosphorylated the 
downstream effector’s YAP and TAZ. When the Hippo pathway was 
inhibited, unphosphorylated YAP/TAZ was released into the nucleus to 
form a complex with TEAD1–4 transcription factors that regulated the 
transcription of genes related to cell proliferation and survival[146]. 
Seo et al. harnessed proteomic analysis to obtain a MAP4KS interacting 
protein, STRN4, and correlation analysis of its expression with YAP in 
endometrial cancer suggested STRN4 as a putative oncogenic factor in 
endometrial cancer[147]. 

4.5. Promoting cancer immunotherapy 

Cancer survival and progression coincided with the ability of tumor 
cells to avoid immune recognition. Progress in the recognition of tumor 
immunity and mechanisms of tumor immune escape has permitted the 
evolution of immunotherapeutic approaches. However, primary and 
acquired resistance mechanisms limited the efficacy of immunotherapy. 
Further therapeutic advances required proteomics to understand the 
interplay between immune cells and tumors. Beck and colleagues 
analyzed high proteomic variability among metastatic sites and 
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identified context-specific cellular processes, with higher immune and 
mitochondrial activity in lung metastases compared to other metastases, 
highlighting potential tissue-based sensitivity to immunotherapy. Sub-
sequently, they proposed that a combination of acute MAPKis treatment 
and immunotherapy had synergistic effects while a decrease in immune 
activity upon acquired resistance to MAPKis, which reinforced the sig-
nificance of treatment regimen and timing[148]. 

The molecular composition of cancer cells approximated similarly to 
normal cells, and direct cancer vaccination frequently generated side 
effects and autoimmune reactions in the body, failing to eliminate 
cancer cells. Researchers uncovered that one should bypass the internal 
factories of cancer cells and focus on the surface of cancer cells (Fig. 2D) 
[149]. Recently, MS-based immunopeptidomics has allowed the 
exploration of noncanonical antigens-antigens generated from se-
quences beyond protein-coding regions or by noncanonical 
antigen-processing mechanisms. In combination with transcriptomics 
and ribosome profiling, it facilitated the authentication of noncanonical 
peptides, which could be detected exclusively in tumors[150]. The 
direct identification of mutated peptide ligands from primary tumor 
material by MS was proven to be possible and yielded true neoepitopes 
with high relevance for immunotherapeutic strategies in cancer[151]. 
Taken together, proteomics became a powerful weapon to break the 
limitations of previous tumor immunotherapy. 

5. Future directions for proteomics pairing with other omics 

Protein phosphorylation represented a reversible modification that 
operated on diverse kinases and phosphatases to achieve complex and 
precise biological regulation and functions in cell proliferation, survival, 
apoptosis, metabolism, transcription, and differentiation. However, 
abnormal phosphorylation of proteins ordinarily triggers disruption of 
cell proliferation, leading to tumorigenesis. For instance, there were four 
members in the erythroblastic oncogene B (ErbB) family of receptor 
tyrosine kinases: EGFR, ErbB2, ErbB3, and ErbB4. Epidermal growth 
factor-related peptides incorporated ErbB receptors and inducted the 
creation of distinct homodimers and heterodimers[152]. Receptor 
dimerization promoted internal kinase activation, resulting in the 
phosphorylation of specific tyrosines located in the cytoplasmic region 
of ErbB. Abnormal ErbB activity was significantly implicated in 
tumorigenesis and progression. Therefore, ErbB receptors have been 
proposed as promising treatment targets[153]. Besides, Yang and col-
leagues disclosed how phosphorylation modifications led to angiogen-
esis and sorafenib resistance in HCC cells[154]. Li et al. subjected 
esophageal squamous carcinoma (ESCC) to large-scale proteomic and 
phosphorylated proteomic assay to determine the molecular typing 
associated with clinical features and the potential therapeutic target of 
CDC-like kinase 1 for ESCC[155]. In studies of melanoma, investigators 
have also detected an essential role for protein phosphorylation in drug 
resistance and tumor transformation[156]. 

Understanding gene expression regulation requires deciphering 
DNA-protein interaction in chromatin. Recent developments in chro-
matin proteomics have enabled the analysis of entire chromatin or 
subfractions thereof. MS-based analysis of chromatin has emerged as an 
effective tool for identifying proteins involved in gene regulation 
through the ability to study protein function and protein complex for-
mation in their in vivo chromatin-bound context[157]. Furthermore, 
the development of Chromatin Immuno Precipitation and Selective 
Isolation of Chromatin Associated Proteins (ChIP-SICAP) method allows 
the capture of specific chromatin domains facilitating the identification 
of unknown transcription factors interacting with them. Using 
ChIP-SICAP, Kiehlmeier and his colleague identify therapeutic targets of 
the hijacked super-enhancer complex in EVI1-rearranged leukemia 
[158]. 

Recent modifications in MS-based proteomics permitted direct 
interpretation of the genomic aberrations’ impact, delivering a 
comprehensive and quantitative analysis of tumor tissue. The fusion of 

protein expression and PTMs with genomic, epigenomic, and tran-
scriptomic data manifested a frontier area of proteogenomics, bringing 
fresh perspectives to the biology and diagnosis of cancer. Genomic and 
transcriptional analyses illustrated genomic alterations and their po-
tential impact, while proteomics furnished immediate insights into 
protein regulation and signaling in response to these changes. Mertins 
et al. described genomically annotated quantitative MS-based prote-
omics and phosphoproteomics analyses of breast cancer. It elucidated 
the practical implications of somatic mutations, minimized the number 
of candidate nominations for driver genes within key deletion and 
amplification areas, and formulated therapeutic objectives[159]. To 
figure out the deregulatory function patterns driving clear cell renal cell 
carcinoma (ccRCC), Clark and colleagues undertook genomic, epi-
genomic, transcriptomic, proteomic, and phosphoproteomic signatures 
on therapeutic-naive ccRCC and paired-neighborhood organization 
(Fig. 3). A unique cohort of molecular subpopulations connected to 
genomic instability was evidenced by genomic analysis. The collabora-
tion of proteogenomic assays distinctively determined protein dysre-
gulation of cellular mechanisms influenced by genomic changes, which 
included oxidative phosphorylation-associated metabolism, protein 
translation procedures, and phospho-signaling modules[124]. 

6. Conclusions 

The advantages and limitations of cutting-edge techniques for con-
ducting highly intricate proteomics analyses for precision oncotherapy 
are discussed in Table 1. The maturation of proteomics technologies and 
data integration methodologies made extensive proteomic data analyses 
possible across all major cancer types. This enhanced our understanding 
of tumorigenesis mechanisms and the cancers’ molecular composition at 
the protein level. Such knowledge spurred a more refined cancer clas-
sification in modern medicine. Furthermore, it has accelerated the 
development of prognostic and predictive biomarkers in novel clinical 
trials. These advancements have established potentially actionable 
therapeutic targets. Ultimately, these developments are facilitating the 
progress of individualized precision medicine for cancer patients. The 
consolidation of proteomics into clinical trials and patient care, as well 
as interdisciplinary collaboration, data sharing, and patient engage-
ment, will encourage the virtuous circle of recognizing cancer subtypes 
that respond well or poorly to existing therapies. In this virtuous circle, 
the exploitation of inventive drugs and regimens that target the 
vulnerability and resistance mechanisms of recalcitrant cancer subtypes 
will transform the way we conceive of patients and treatments. How-
ever, translating preclinical findings into clinics remains numerous hard 
nuts to crack, application of proteomics in cancer research is summa-
rized in Table 2. 

In the domain of precision oncology, we are just beginning to 
generate comprehensive, unbiased, and truly multi-omics data[160]. 
Only by producing these disparate histological datasets from the same 
biological samples can we develop the necessary analytical and anno-
tation instruments to assist us in interpreting these complex datasets and 
leverage the extraction of biologically and clinically relevant informa-
tion. Initiatives to capture a more comprehensive study cohort of more 
extensive histological data are spreading. In addition to being a 
cumbersome and expensive process, multi-omics data counted on the 
availability of appropriate tissue specimens and biopsy material to 
satisfy the efficient analysis of the tissue genome, transcriptome, epi-
genome, proteome, and metabolome. With the harvest of multi-omics 
tactics, we have abundant reasons to believe in the bright future of 
precision oncology. 
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Fig. 3. Mutil-Omics for precision oncology. Genomics investigates gene structure and function, transcriptomics analyzes transcriptional processes, proteomics 
focuses on protein structure, function, and interactions, and metabolomics concentrates on metabolites and metabolic reactions. The clinicians obtain the different 
levels of histological information from the histology technology and integrate them like a "jigsaw puzzle" to acquire multi-omics data from which they can develop 
precise treatment plans for oncology patients. 

Table 1 
Cancer proteomics techniques application features.  

Techniques Basic principles Readout Data types Advantages Limitations 

Mass 
spectrometry 
(MS) 

Proteins are enzymatically digested to form 
peptide fragments, followed by peptide 
ionization, and MS detections. 

Fragmented 
peptide 
sequences 
and spectrum 
counting 

Mass charge 
ratio and 
abundance of 
ions 

⋅Most commonly employed in 
proteomic studies; 
⋅Non-hypothesis driven 
process for exploratory studies 
e.g. early phase of biomarker 
discovery. 

⋅Low throughput; 
⋅Relatively complex workflow 
⋅limitations to analyze protein 
PTMs. 

Aptamer-based 
detection 

Short single-strand DNA or RNA folded into 
specific tertiary structures to be the aptamer 
and attached to a biotin bead of a specific 
protein, which is released and bound to 
another biotin bead after ultraviolet 
cleavage, eluted and recovered for 
quantification, and hybridized to a custom 
DNA microarray. 

DNA microarray Nucleotide 
sequence 
signaling 

⋅High-plexity; 
⋅Higher affinity and specificity 
than antibodies; 
⋅Used for marking with 
therapeutic effect 
characteristic of elongated 
shelf life and sensitivity to 
antidotes. 

⋅Limit on protein PTMs detection; 
⋅DNA microarray readout 
dependence; 
⋅Limited availability of aptamers 
requires high-quality 
development. 

Proximity 
extension 
assay (PEA) 

Each paired antibody with a unique DNA tag 
binds to the target protein of the sample 
followed by hybridization, generating a 
double strand that is digitally recognized, 
amplified, and detected by qPCR or NGS. 

qPCR or NGS Nucleotide 
sequence 
signaling 

⋅Very little sample required 
with large dynamic ranges. 

⋅Q-PCR/NGS readout dependence. 

Forward-phase 
protein arrays 

Antibodies are printed on solid phase 
substrates first capturing targeted proteins in 
samples and the signal intensity is measured 
by scanning devices. 

Colorimetric 
assays/ 
fluorescence 

Signal intensity ⋅Widely adopted approach 
with flexible experimental 
design and PTM profiling. 

⋅Limit on inter-assay 
reproducibility, quantification, 
scalability, variation, sample 
labeling and costs of antibody 
arrays. 

Reverse phase 
protein arrays 
(RPPA) 

Samples are immobilized onto solid 
substrates first in the form of microarrays, 
and then proteins in the samples are detected 
by signal intensity with specific antibodies. 

Colorimetric 
assays/ 
fluorescence 

Signal intensity ⋅Large-scale parallel analysis 
for samples; 
⋅Suitable for protein PTMs. 

⋅Sophisticated experimental 
workflow.  
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Table 2 
Application of proteomics in cancer research.  

Cancer type Methods Application Ref. 

Brain cancer LC-MS/MS 
Phosphopeptide 
Enrichment 
Consensus 
clustering 

Refinement of cancer 
subtypes: (1) Cold- 
medullo; (2) Cold-mixed; 
(3) Neuronal; (4) 
Epithelial; (5) Hot. 

[139] 

Breast cancer LC-MS/MS 
RPPA 
PCA 

Refinement of cancer 
subtypes: CC1 is 
associated with luminal 
B, CC4 is associated with 
e triple-negative subtype, 
and CC2 and CC3 are 
associated with luminal 
A; CC2 is a novel luminal 
A breast cancer subtype 
with both triple-negative 
and ER+ signature that 
representing a group of 
more aggressive tumors. 

[118] 

LC-MS/MS 
Unsupervised 
hierarchical 
clustering 

Refinement of cancer 
subtypes: (1) Basal-like; 
(2) Luminal A; (3) 
Luminal B; (4) HER2; (5) 
Normal-like. 
Finding candidate 
immune target: lnc- 
AKAP14-1:3, lnc- 
CXorf36-3:1. 

[121] 

LC-MS/MS 
NMF 

Refinement of cancer 
subtypes: (1) NMF LumA- 
I; (2) NMF LumB-I; (3) 
NMF Basal-I; (4) NMF 
HER2-I. 

[122] 

Clear cell renal cell 
carcinoma 

ESI-LC-MS/MS 
Hierarchical 
clustering 
PCA 

Refinement of cancer 
subtypes: (1) ccRCC1: 
Upregulated adaptive 
immunity, N- 
glycosylation 
modification, OXPHOS 
and fatty acid 
metabolism-related 
proteins associated with 
high-grade and advanced 
tumors; (2) ccRCC2: 
Tumors overexpress 
proteins associated with 
natural immunity and 
platelet degranulation; 
(3) ccRCC3: Upregulated 
glycolysis, mTOR 
signaling, hypoxia- 
related proteins. 

[124] 

Colorectal cancer RPPA Detection biomarker for 
early detection: plasma 
C9 

[56] 

PEA Detection Potential 
prognostic biomarkers: 
operating characteristic 
(ROC) curve of 
Carcinoembryonic 
antigen (CEA), 
Transferrin Receptor-1 
(TFRC), Macrophage 
migration inhibitory 
factor (MIF), Osteopontin 
(OPN/SPP1) and cancer 
antigen 242 (CA242). 

[40] 

LC-MS/MS 
Phosphopeptide 
Enrichment Using 
IMAC 

Rb phosphorylation as a 
driver and therapeutic 
target in colon cancer. 

[161] 

LC-MS/MS 
Consensus 
clustering 

Refinement of cancer 
subtypes: (1) CC1 is 
characterized by 
increased RNA 

[131]  

Table 2 (continued ) 

Cancer type Methods Application Ref. 

processing and DNA 
mismatch repair (MMR); 
(2) CC2: the proteins 
upregulated in CC2 are 
enriched in extracellular 
matrix-receptor 
integration pathways and 
immune-related 
pathways. (3) CC3 is 
enriched in upregulated 
DNA replication and 
metabolic pathways. 
Differentiation of the 
primary tumors from 
metastatic CRC by six 
phosphoproteomic 
subtypes: metastatic CRC 
was represented by SC1, 
SC3, and SC5, whilst non- 
metastatic CRC was 
represented by SC2, SC4, 
and SC6. 

Endometrial cancer MS Inferring a putative 
oncogenic factor: STRN4. 

[147] 

LC-MS/MS Insights into mechanisms 
of immune evasion. 

[162] 

Gastric cancer LC-MS/MS 
Consensus 
clustering 
PCA 

Classification of diffuse- 
type gastric cancer: (1) 
PX1 exhibits 
dysregulation in the cell 
cycle; (2) PX2 to PX1 
features an EMT process; 
(3) PX3 is enriched in 
immune response 
proteins, has the worst 
survival, and is 
insensitive to 
chemotherapy. 

[119] 

LC-MS/MS 
Consensus 
clustering 
Orthogonal NMF 

Refinement of cancer 
subtypes: (1) represents 
cell proliferation 
processes; (2) represents 
immune response 
processes; (3) represents 
metabolism-related 
processes; (4) represents 
invasion-related 
processes. 

[135] 

Head-and-neck cancer MS 
Hierarchical 
clustering 

Inferring a proteomic 
signature for classifying 
squamous cell 
carcinomas as either lung 
or head-and-neck 
carcinomas. 

[25] 

Hepatocellular 
carcinoma 

LC-MS/MS 
Consensus 
clustering 
PCA, NMF 

Refinement of cancer 
subtypes: (1) metabolism 
subgroup (S-Mb); (2) 
microenvironment 
dysregulated subgroup 
(S-Me); (3) proliferation 
subgroup (S-Pf). 
Identification and 
validation of prognostic 
biomarkers: 
immunostaining of 
PYCR2 and ADH1A was 
significantly associated 
with patient survival. 

[163] 

Lungadenocarcinoma LC-MS/MS 
Phosphopeptide 
Enrichment 
PCA, NMF 

Phosphoproteomics 
identifies candidate ALK- 
fusion diagnostic markers 
and targets; 
Candidate drug targets: 
PTPN11(EGFR), SOS1 
(KRAS), STK11. 

[164] 

(continued on next page) 
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