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ABSTRACT: With advances in machine learning (ML) techniques, the quantitative structure−activity relationship (QSAR)
approach is becoming popular for evaluating chemicals. However, the QSAR approach requires that the chemical structure of the
target compound is known and that it should be convertible to molecular descriptors. These requirements lead to limitations in
predicting the properties and toxicities of chemicals distributed in the environment as in the PubChem database; the structural
information on only 14% of compounds is available. This study proposes a new ML-based QSAR approach that can predict the
properties and toxicities of compounds using analytical descriptors of mass spectrum and retention index obtained via gas
chromatography−mass spectrometry without requiring exact structural information. The model was developed based on the
XGBoost ML method. The root-mean-square errors (RMSEs) for log Ko‑w, log (molecular weight), melting point, boiling point, log
(vapor pressure), log (water solubility), log (LD50) (rat, oral), and log (LD50) (mouse, oral) are 0.97, 0.052, 51, 23, 0.74, 1.1, 0.74,
and 0.6, respectively. The model performed well on a chemical standard mixture measurement, with similar results to those of model
validation. It also performed well on a measurement of contaminated oil with spectral deconvolution. These results indicate that the
model is suitable for investigating unknown-structured chemicals detected in measurements. Any online user can execute the model
through a web application named Detective-QSAR (http://www.mixture-platform.net/Detective_QSAR_Med_Open/). The
analytical descriptor-based approach is expected to create new opportunities for the evaluation of unknown chemicals around us.

Chemicals greatly aid our daily lives; however, we are not
acutely aware of which ones surround us. Chemical

Abstracts Service has more than 250 million chemical species
registered in its database.1 The publicly accessible database,
PubChem, provides information on over 111 million unique
compounds.2 Of these data, over 16 million chemical structures,
which correspond to approximately 14% of the PubChem
compounds, are provided with a link to the PATENTSCOPE
patent database. Furthermore, approximately 32,000 com-
pounds are linked to physical and physicochemical properties,
and 11,000 are linked to toxicological information, including
acute toxicity; these values account for only 0.3% and 0.1% of all
PubChem compounds, respectively. The situation is similar or
more dismal for other famous large databases such as
ChemSpider and ChEMBL.3,4 The proportion is considerably
smaller for the GDB-17 database, which contains 166.4 billion in
silico chemical structures of up to 17 atoms of C, N, O, S, and
halogens.5 This situation indicates that we can access

information on the properties, hazards, and risks only for a
small fraction of the chemicals.
The quantitative structure−activity relationship (QSAR)

approach is popular for evaluating chemicals.6 QSAR is based
on the similarity-property principle (SPP), wherein the chemical
structure is strongly related to chemical activity, which includes
pharmacological activity and toxicity to organisms. Thus,
information on molecular features, such as chemical functional
groups as substructures, properties that represent the structure,
mathematical descriptors known as fingerprints,7 and other
chemical descriptors from calculators including DRAGON
(alvaDesc),8 RDKit,9 and OpenBabel,10 is used as explanatory
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variables for predicting the properties or biological effects,
including the toxicity of the target compound. When the focus is
on properties, this is referred to as the quantitative structure−
property relationship (QSPR).
Recent advances in ML techniques allow QSAR to handle an

expanded number of descriptors calculated from the chemical
structure, resulting in a wider application range and enhanced
predictive performance. The ML-based QSAR called istkNN,
which employs k-nearest neighbors (kNN), demonstrated
excellent performance with a mathematical descriptor of a
structural key that represents a chemical structure with a binary
code. This approach resulted in a root-mean-square error
(RMSE) of 0.55 and an R2 of 0.63 for the external data of the
logarithm of the median lethal dose (LD50) on a rat
administered orally (mmol/kg).11,12 In another case, aiQSAR
employed multiple methods, including an ML-based one that
used a number of chemical descriptors calculated by DRAGON
based on the target chemical structure. This approach resulted in
an RMSE of 0.54 and an R2 of 0.65 for the external data of the log
LD50 (rat, oral).11,13 These methods outperform traditional
QSAR; for example, a univariant model that used in vitro
cytotoxicity as a surrogate for log LD50 (rat, oral) achieved an R

2

of 0.40 even for the training data set.14

QSAR approaches, which includeML-basedmethods, require
the structure of the target compound to be available and
convertible to any type of molecular descriptor. However,
PubChem only provides structural information on 14% of its
compounds, and the structures of the rest are undefined; thus,
QSAR may face limitations in predicting the properties and
toxicities of chemicals in the environment. For example, a study
that explored environmental pollutants in 50 river water samples
using a nontarget analytical technique of two-dimensional gas
chromatography (GC × GC) interfaced with high-resolution
time-of-flight mass spectrometry (MS) found 87,000 raw
chromatographic peaks corresponding to single or multiple
chemicals. However, only 0.2% of the total peaks were identified
by a spectral database search with high reliability.15 Similarly,
averages of 9550 and 9610 chromatographic peaks were found in
the effluents of wastewater treatment plants using the positive
and negative ion modes of liquid chromatography interfaced
with high-resolution mass spectrometry (LC-HRMS), respec-
tively. Only 1.7% and 0.6% of the peaks were identified and
assigned based on measurement data of chemical standards in

the positive and negative ion modes, respectively.16 Determi-
nation of the chemical structures for a vast number of peaks in
measurements remains a challenge.
As indicated above, structure identification remains challeng-

ing for most chemicals in our surroundings detected with
instrumental measurements, even using state-of-the-art instru-
ments. Thus, approaches for predicting the properties and
toxicities of unknown-structured chemicals detected in actual
samples are required for hazard and risk assessment. However,
QSAR requires the chemical structure as a first step, and there is
currently a lack of ability to meet this requirement.
If measurement data such as those from MS are directly used

for the prediction without the process of structure identification,
it may be possible to expand the range of chemicals involved in
hazard and risk assessments, even if exact information regarding
the structure is not available. The mass spectrum obtained with
electron impact ionization (EI), which is used for gas
chromatography (GC) interfaced with MS, comprises instru-
mental signals of the fragment ions of a compound. Several
studies have aimed to predict the GC−EI−MS mass spectrum
from the chemical structure using deep neural networks
(DNNs)17 and vice versa.18 The results of these studies suggest
that the EI spectrum is strongly correlated with the chemical
structure.
Several homologues of certain compounds show the same

mass spectral pattern in GC−MS (e.g., alkyl phthalates), even
though their structures are different. In such cases, information
on retention time differences in the GC is useful for
distinguishing these homologues. Thus, the GC−MS output
may contain sufficient information to infer chemical structures.
This indicates that the instrumental output, i.e., analytical
descriptor, has considerable potential to predict the properties
and toxicities of chemicals.
The idea of an analytical descriptor has been partially

introduced in some QSAR research fields. For example,
QSAR-like approaches in genomics have used biological
properties of gene expression profiles obtained by high-
throughput screening as gene-based descriptors.19,20 Exper-
imentally determined properties, such as elemental composi-
tion, zeta potential, size distribution, and shape, are used to
reveal quantitative nanostructure−activity relationships, re-
ferred to as nano-QSAR.21,22 The characterization of material
surfaces that interact with biological film formation was

Figure 1. Overview of direct prediction from analytical descriptors.
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investigated using cell imaging techniques, such as time-of-flight
secondary ion mass spectrometry (ToF-SIMS) and a QSAR-like
approach.23−25 These studies have shown that high-content data
obtained via ToF-SIMS have strong potential to elucidate the
surface functions of materials against biofilm formation through
self-organizing maps and partial least-squares regression.
However, the above-described studies with the idea of

analytical descriptor were performed to reinforce the prediction
performance of traditional QSAR models by combining them
with other types of chemical descriptors. Such chemical
descriptors eventually require the chemical structure to identify
new or potentially useful chemical descriptors for predicting the
target properties/toxicities or to investigate undefined phenom-
ena by exploringmeaningful correlations between analytical data
and biological activity. QSAR methods that do not require an
exact chemical structure and are fully based on analytical
descriptors are currently scarce. However, they have strong
potential for empowering research in various domains of
chemistry, including chemical risk and safety.
This study proposes a new QSAR approach that predicts the

properties and toxicities of compounds based solely on the
analytical descriptors obtained by GC−MS using a combination
of ML techniques. The predictive performance of the developed
approach was evaluated, and metrics to capture the applicability
domain (AD) of the method were implemented in a free web
application called Detective-QSAR. This approach will be useful
for evaluating various unknown-structured chemicals that exist
in our surroundings and to prioritize them for detailed
assessment.

■ METHODS

An overview of the study is illustrated in Figure 1. This study
predicted physicochemical properties and toxicities of com-
pounds directly from the mass spectrum and retention index
(RI) of GC−MS, equipped with EI unless specified otherwise. It
does not require information on the exact chemical structure of
interest. This requirement is mandatory for traditional and ML-
based QSAR approaches that use chemical descriptors or
mathematical descriptors, such as MACCS keys, PubChem
fingerprints, and CDK-standard fingerprints obtained from
chemical structures.
Data Set and Preparation. A data set of chemicals

containing GC−MS mass spectra and RIs as analytical
descriptors, properties, and toxicities as objective variables was
prepared for modeling. The mass spectra and RIs were obtained
from NIST17,26 MassBank,27,28 Fiehn laboratory,29

RIKEN,30,31 and in-house data. The RIs used in this study
were obtained with semistandard nonpolar GC columns, such as
DB-5, under ramped temperature conditions; if unavailable, RIs
with standard nonpolar GC columns, such as DB-1, were used.
There were only a fewminor percentage differences between the
RI values, unlike the differences in the polar GC columns. The
property lists of log Ko‑w, boiling point, melting point, vapor
pressure, and water solubility were obtained from ChemID-
plus32 and Comptox33,34 for over 110,000 candidate compounds
that were GC amenable. The LD50 (rat, oral) and LD50 (mouse,
oral) values were obtained from ChemIDplus. The molecular
weights of the chemicals were obtained using OPERA.35 The
data set of chemicals with GC−MS spectra and RI contained the
molecular weight (g/mol), melting point (°C), boiling point
(°C), log Ko‑w (unitless), vapor pressure (Pa), water solubility
(mmol/L), LD50 (rat, oral) (mmol/kg), and LD50 (mouse, oral)

(mmol/kg) of 12810, 3836, 3385, 2674, 1299, 1383, 2080, and
1630 compounds, respectively (summarized in Table S-1).
The data on each objective list were split randomly into

training, validation, and test data with a ratio of 0.8:0.1:0.1. The
m/z range of the mass spectrum in the data set was 1−6420. The
entire range of the mass spectrum was used for the modeling.
Each m/z value was normalized such that the highest intensity
was 1 so that data from different sources could be combined.
The vector resulting from concatenation of the RI value and
corresponding m/z values of the mass spectrum was used as
input to the proposed model. The vector is converted to the
format used for sparse model during the model execution.
In addition to the data set of the predictive and objective

variables for modeling, molecular features of the chemicals in the
data set were prepared to represent the chemical space of the
chemicals used for modeling and to investigate the model
performance. The well-known molecular features of Abraham
parameters (E, S, A, B, L, and V) used for linear free energy
relationship (LFER) or linear solvation energy relationship
(LSER) in pharmacology and environmental chemistry were
calculated by Absolv in the ACD/Laboratories software with the
simplified molecular input line entry system (SMILES) as
input.36−38 The number of mass spectral bins, which represents
the number of centroided bars of the mass spectrum for each
compound, was set based on the original mass spectral data. The
number of elemental species constituting each molecule was
obtained by converting its molecular formula.

Modeling andModel Comparison. Several regression and
supervised ML techniques that suit the objective of the study,
such as lasso,39 ridge regression,40 elastic net (Enet),41

DNN,42,43 random forest (RF),44,45 and eXtreme Gradient
Boosting (XGBoost),46 were applied using the statistical
programming software R.47 Methods from Keras42 and
TensorFlow43 were used for the DNN, and methods from
caret48 were used for the others. Lasso,39 ridge regression,40 and
Enet41 are linear regression methods that use regularization
terms to avoid overfitting. RF is an ensemble-learning method
based on decision trees.44,45 A DNN comprises an unbounded
number of layers that are unbounded in width with non-
polynomial activation functions, which permits practical
application and optimized implementation.42,49 Further, a
DNN requires model construction and parameter finetuning
to achieve better predictive performance. The model con-
struction and parameter finetuning are described in the
Supporting Information (Section S-1).
XGBoost was developed by Chen and Guestrin.46 Both RF

and XGBoost are ensemble-learning methods that use a decision
tree as the base learner. RF adapts bagging as the ensemble
technique to improve predictive performance and control
overfitting by averaging several decision trees generated in
parallel on several subsamples of the data set. Alternatively,
XGBoost adapts the boosting ensemble technique to improve
the model based on a sequential learning process involving
iterative calculation to update and adjust the parameters based
on outliers in the previous model. It is based on the same idea as
that employed for gradient boosting; the second-order method
originates from Friedman et al.50 In addition to the second-order
method, XGBoost has been improved for regularized objectives.
In brief, XGBoosta tree ensemble modeluses K additive

functions to predict the output
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where l represents a differentiable convex loss function, and the
second term Ω penalizes the complexity of the model, which
helps smooth the final learned weights to avoid overfitting.
A second-order approximation is used to optimize the

objective using the following equation at the t-th iteration
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represent the first- and second-order gradient statistics of the
loss function, respectively. Two additional techniques, shrinkage
and column subsampling, were introduced in XGBoost to
further prevent overfitting. The shrinkage scales the newly added
weights by a factor η after each boosting step; this reduces the
influence of each tree and leaves space for future trees to
improve the model. Column (feature) subsampling considers
only a random subset of descriptors when building a given tree;
this technique also accelerates the computation. In addition,
XGBoost uses a sparsity-aware split-finding approach to
efficiently train the model on sparse data, such as the mass
spectral data used in this study. This method requires parameter
finetuning to achieve higher predictive performance. The gbtree
function was selected as the booster, and a regressionmodel with
a squared loss was applied as the learning objective. For
parameter tuning, to avoid model overfitting, the parameters eta
(learning rate) = 0.02, alpha (L1 regularization) = 1, lambda (L2
regularization) = 1, and minimum child weight = 1 were
determined via a parameter grid search. The depth of the tree
was chosen as 7 based on grid search optimization.
Model Validation and Evaluation. The developed

prediction model based on XGBoost was validated with the
validation data and further evaluated with the test data based on
the RMSE,R2, andQ2 values on the predicted andmeasured data
for each target list
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where n and n′ represent the numbers of training and external
data, respectively.

The ranges of all collected measurement data on all possible
important molecular features of over 48,000 compounds out of
the 110,000 candidates were compared with those of the data
used for the modeling to check the chemical space of the data
handled by the model. The total numbers of data on the
properties and toxicities were 6341, 4635, 4416, 1467, 3535,
3559, and 2990 out of the 48,000 compounds for melting point,
boiling point, log Ko‑w, vapor pressure, water solubility, LD50
(rat, oral), and LD50 (mouse, oral), respectively (summarized in
Table S-1). The performance of the model was evaluated using
the actual measurement of a chemical standard mixture and
sample of contaminated car engine oil running over 10,000 km.
Details of the oil sample collection are presented elsewhere.51

The chemical lists for the evaluation are provided as Supporting
Information. Prediction of the objective lists was performed
online via Detective-QSAR (http://www.mixture-platform.net/
Detective_QSAR_Med_Open/) using an input CSV file that
includes the analytical descriptors of m/z values and RI of a
target compound. Both the nominal mass and accurate mass
spectra are available for the prediction. The mass spectrum is
automatically normalized, and an intensity threshold truncates
intensities of 0.5% against the highest intensity on the target
spectrum in Detective-QSAR.

Calculation of Applicability Domain. The applicability
domain (AD) of amodel inQSAR ismeasured by an indicator to
determine whether a chemical of interest is covered by the
model.52−54 The similarity level between a target vector and
model training data was applied as an indicator to determine
whether the target is within the AD. The cosine distance
between the vectors of input and training spectra combined with
RI was used as the similarity index (SI)

( ) ( )SI u
u

( )h
o

h h
h
o

h h
o

h
2 2ν

ν= ∑ ×
∑ | | × ∑ | |

(7)

where u represents an o-dimensional vector of RI and normalized
m/z intensity for the target compound, and v represents a
compound in the training data set.
The mean of SIs between the input andmmost similar spectra

in the training data was calculated as SI.t, which helped evaluate
whether the model was suitable for predicting an objective list of
interest in the input spectrum

SI t SI
mj

m
j· = ∑

(8)

where m represents the number of candidates and was set to 5.
A higher SI.t indicates that compounds expressed by input

descriptors are included in the training data (the input is
included in the AD of model). The RMSE for the validation data
that exceed the specified SI threshold value (RMSE only for data
within the AD) can be calculated using Detective-QSAR. Users
can achieve a higher prediction accuracy for a target input that
presents a higher SI.t (e.g., >0.7) by referring to the “RMSE with
the SI threshold” calculated and provided by Detective-QSAR.
The processing flow of the prediction by the software is
illustrated in Figure S-1.

■ RESULTS AND DISCUSSION
Chemical Space of Data for Modeling. Clarity regarding

the chemical space of the data (i.e., model coverage) is
important for modeling the properties and toxicities of various
chemicals.55 The data used in this study were curated from
reliable sources considering duplication and outliers following
the curation approach described in a previous study.56 The range
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of the molecular features of the training data alongside that of all
available data on log Ko‑w to capture the chemical space for the
model is illustrated in Figure 2. The training data covered a wide
range of molecular features, which were consistent with all
available data over 48,000 GC amenable compounds in terms of
the Abraham parameters (E, S, B, L, and V). The training data
for parameter A were slightly skewed toward nonzero data. This
means that there could have been slightly less low-acidity
molecules regarding hydrogen bonds in the training data than in
all data. The number of data on molecular weight in the training
data set was slightly lower for compounds with low molecular
weights. This indicates that the model developed with the
training data performed well for compounds with low molecular
weights but not for compounds with high molecular weights.
Training data on the number of mass spectral bins that were
possibly correlated with themolecular weight were concentrated
around the lower side. Although the number of all available data
was still not sufficient for the objective list of log Ko‑w in the data-
driven approach, the training data were chosen uniformly from
all available data according to the data distributions.
Distributions of other objective lists are shown in Figures S-
2−S-8. Overall, severely biased data were not used for the

modeling, and the wide ranges of chemical spaces within the GC
amenable chemicals were covered by the training data.

Method Comparison for the Best Predictive Models.
Figure S-9 shows the performance of models based on DNN,
ridge regression, Enet, lasso, RF, and XGBoost. The
distributions of absolute differences between the predicted
andmeasured values on the test data set are shown as violin plots
with their RMSEs. The RF and XGBoost-based models showed
high accuracy for prediction by analytical descriptors of m/z
values with RI as the input. The other methods fluctuated in
performance between the test and validation data sets, as shown
in Figure S-10. RF and XGBoost are ensemble-learning models
for bagging and boosting, respectively, based on the decision
tree model. Each spectral bin (or RI) variable is evaluated in the
treemodel, and its coefficient weight is assigned to the respective
node of the tree. Thesemodels were superior to linear regression
models with certain regularization(s), such as lasso, ridge
regression, and Enet. The relatively poor quality by the DNN
was not expected because generally DNN has high potential for
superior prediction by iteratively calculating the coefficient
weights of spectral bins through a fully connected multilayer at
each depth. Other attempts at DNN optimization, including the

Figure 2. Chemical space of training data on log Ko‑w with all available data.

Figure 3. Predictive performances of models for physicochemical properties and toxicities based on test data. The blue lines indicate direct
proportions. The red lines represent the linear regression lines.
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application of various types of activation functions, regulariza-
tion terms, and convolutional neural network approaches, did
not provide high performance. DNNs are not always superior to
other methods in predictive performance, as shown in previous
studies.57,58 DNNs are susceptive of hyperparameters, archi-
tecture, and optimizers. It is difficult to achieve competitive
performance with other methods in certain cases. Meanwhile,
one study demonstrated comparative performance between
DNNandXGBoost in terms of predictive accuracy.59 Therefore,
the application of a more suitable algorithm to connect each
layer and/or the usage of more training data may enhance the
neural network’s performance. In this study, XGBoost, which
showed the highest prediction accuracy, was applied and further
evaluated.
Performance of theDevelopedModel.The performance

of the XGBoost-based model was evaluated using the test data
for the objective lists, as shown in Figure 3. The predictive
performance was very close to that with the validation data, as
shown in Figure S-11. Therefore, it is considered that themodels
were not biased by the validation process and were optimized
based solely on the training data. The boiling and melting points
were modeled using an antilog scale because the data range was
not wider and normally distributed. These predictive accuracies
were high considering RMSEs of 24 and 51. The other objective
lists were modeled on a log scale because of the log-normal
distribution of the data that span wide ranges. The partitioning
property of Ko‑w is known to be the log-transformed value of log
Ko‑w; therefore, the value of log Ko‑w was considered without
reconversion in this study. Good relationships in terms of y = x
between the predicted and measured values were obtained for
log (molecular weight), log (vapor pressure), and log Ko‑w,
followed by log (water solubility).
The developed model predicted the objective lists with a

similar level of accuracy to other QSAR models that require
molecular descriptors as inputs. Using the model T.E.S.T.,
which applies the consensus method of several methods
including hierarchical clustering with a genetic algorithm-
based technique, multilinear regressions, and nearest neighbor
method with 797 molecular descriptors as input variables, the
RMSEs of the melting point, boiling point, log (vapor pressure),
log (water solubility), and log (LD50) (rat, oral) were 43.7, 20.5,
0.82, 0.87, and 0.60, respectively.60,61 The RMSEs of the melting
point, boiling point, log Ko‑w, log (vapor pressure), and log
(water solubility) obtained using the OPERA model, which
applies the kNN algorithm with 9−16 molecular descriptors as
input variables, were 52.2, 22.1, 0.78, 1.00, and 0.86,
respectively.35 There were differences in the coverage of the
chemical space for each of the proposed model, which handles
GC amenable chemicals, and these two above models, which
handle wider ranges of compounds. Although such a difference
exists, the predictive accuracies are comparable, except for log
(water solubility), which was slightly inferior for the proposed
model. The advantage of the proposed model is that it does not
require an exact chemical structure to obtain molecular
descriptors but instead requires measurement data. Detective-
QSAR (Ver. Pred) is available (http://www.mixture-platform.
net/Detective_QSAR_Pred_Open/) to emulate the predic-
tions of T.E.S.T. and OPERA with the Detective-QSAR system.
Although the RMSEs of log (LD50) for rats and mice in the

proposed model were as low as 0.70 and 0.73, respectively, the
slopes of the linear regressions of the plots predicted against
measured values were not adequate (0.37 and 0.32,
respectively). Although the training data were chosen to be as

comprehensive as possible, the ranges of values for log (LD50)
were 4−5 orders of magnitude. These ranges were narrower
than those of other objective lists, such as log Ko‑w, log (vapor
pressure), and log (water solubility), whose ranges were 10−15
orders of magnitude. Therefore, although the values of log
(LD50) were predictable with an RMSE of approximately 0.7
when using this model to assess the toxicity of unknown
compounds spread in AD, further refinement to capture the
relationship between structural information and toxic mecha-
nisms is necessary. Applicability domain judged by SI.t of the
model is discussed in Section S-2.

Descriptor Importance in Model Prediction. The
relative importance of variables for prediction results was
calculated as the score of descriptor importance (or feature
importance).62,63 The variable was provided with a relative value
among the descriptors and showed a strong influence on the
prediction results when the score of a certain variable was high,
irrespective of the direction of influence. The results of the
descriptor importance of the model inputs for all objective lists
are shown in Figure S-16. The importance values were calculated
for all descriptors (m/z values with RI) so that the importance
value of the highestm/z value became 1, making the importance
result visible as a mass spectrum. Clear trends were not captured
from the patterns ofm/z importance because severalm/z values
simultaneously affected the results in positive and negative
directions.
Contrary to the trend of m/z values, differences in RI

importance among objective lists were clearly observed. The
boiling points followed by vapor pressure showed high scores of
460 and 300, respectively. The boiling point and vapor pressure
showed a direct relationship with the GC retention times (i.e.,
RI). The RI importance values of the molecular weight and
melting point were 36 and 19, respectively. Other objective lists
showed a relatively low influence from RI; however, they were
higher than all the m/z values.
Similarly, the effect of RI on the model was observed from the

model performance results. The performance of the model that
excluded RI from explanatory variables deteriorated withRMSEs
of 0.060, 63, 45, 1.1, 1.5, 0.72, and 0.80 for molecular weight,
melting point, boiling point, log Ko‑w, vapor pressure, LD50 (rat,
oral), and LD50 (mouse, oral), respectively. Owing to the
requirement of RI data in addition to m/z values, 74, 40, 27, 39,
11, 28, 42, and 46% of data entries were removed from the
training data set of the RI-excluding model, respectively. Only
the RI-excluding model for water solubility did not deteriorate
(RMSE decreased from 1.5 to 1.2). The RI-including model for
water solubility was affected by the decrease in training samples
(28%) because of the RI data requirement, which outweighed
the benefit of RI information to the model performance. In
addition, RI, which represents the extent of partitioning between
the GC column phase and gas phase for the chemical of interest,
was not simply correlated with water solubility, in contrast to
vapor pressure. Comparison with the proposed RI-including
model with a model based only on RI is described in the
following section.

Practical Application of Detective-QSAR and Implica-
tions. The method developed through Detective-QSAR was
applied to actual measurements. Prior to the application, it was a
concern that raw measured data contain very little noise
throughout the m/z range; the noise severely affected the
prediction results for all the objective lists. The threshold cut of
the intensity for the target input improved the noise issue, as
indicated in Table S-2. A threshold cut of 0.5% intensity for the
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normalized mass spectrum had a positive effect on all the lists
except for melting point and LD50. The negative effects on the
melting point and LD50 were negligible. The varying effects of
models are considered to be the results of a combination of noise
conditions in the input and model descriptor importance which
is different among the models. The noise conditions vary case-
wise, and it may affect predictions of melting point and LD50 in
some cases. Therefore, the process of the threshold cut with
0.5% intensity on the input was implemented for all the
objectives in Detective-QSAR, as described in the Methods
section.
Detective-QSAR was applied to 31 structure-identified

chromatographic peaks in the chemical standard mixture and
14 peaks detected in the contaminated oil sample. Figure S-17
shows the results of all the objective lists on these peaks. Several
properties with the chemical lists are provided in Tables S-3 and
S-4. Detective-QSAR performed well on the peaks of the
chemical standard mixture as similarly with the result of model
validation. Comparison of predictive performance on structur-
ally homologous compounds (nitrobenzenes, phthalate, PAHs)
and nonhomologous compounds within the standard mixture is
shown in Table S-5. Although deteriorated performance on log
(LD50) (rat, oral) was observed for nitrobenzenes, the results did
not show clear trends on other objective lists (Table S-5). As
shown in Figure S-17, it also performed well on the peaks in
contaminated oil after spectral deconvolution.64,66 The
deconvolution improved spectral similarity with the reference
spectrum (Figure S-18), resulting in improved predictive
performance compared with the cases on the raw spectrum
(Figure S-19). Without the deconvolution procedure, the model
underperformed on peaks in contaminated oil compared with
the results of model validation, especially for log Ko‑w, boiling
point, and log (water solubility). This was because these
chromatographic peaks without deconvolution were influenced
by signals of coeluted compounds and/or sample matrices. In
addition to the instrumental noise discussed above, interference
by coelution should be considered in the model application on
the measurement of a raw spectrum. To obtain the spectrum
stem from a sole compound convoluted in the coeluted peak,
spectral deconvolution techniques are helpful.64−67 Once
spectral deconvolution was performed for the detected peaks
in the contaminated oil, the prediction results were improved
(Figure S-19), and eventually, the results were comparative with
those of the model validation. Performance of Detective-QSAR
was comparable to that of a GC × GC property estimation
model51,68 that uses only RI on the estimation of log Ko‑w or
superior to that on log (water solubility) as shown in Figure S-
20. The applicability domain of the GC×GCmodel is currently
limited to nonpolar compounds, but Detective-QSAR is not
limited to them.
Further validation for various actual cases with different types

of compounds is warranted for detailed model characterization
and enhancing the model performance, and the results
demonstrated the possibility of applying the method based on
analytical descriptors for predictions. The approach will be
useful for the hazard and risk assessment of unknowns found in
measurements. In most cases of measurements of complex
mixtures, such as environmental, food, beverage, waste material,
biological, and manufactured product samples, GC−MS peaks
of chemicals overlap with each other. As shown in this study, the
developed method is applicable even to actual measured peaks
comprising multiple chemicals with the help of spectral
deconvolution techniques. To enhance the number of

compounds in the mixture sample to be evaluated using the
analytical descriptor-based method, further functionality in the
deconvolution technique, such as judgment/estimation of
spectral purity for unknowns in coeluted peak, is expected.
The model has considerable potential for predicting properties
and toxicities of unknown-structured compounds found in
measurements as long as the target signal is not taken from
mixtures (pure component) and is judged by SI.t to be within
the model AD. The predicted values of all objective lists with SI.t
can be calculated for approximately 10 min for 1000 spectra in
the web application.
The objective lists considered throughout the study are only a

fraction of what is required for the detailed assessment of
chemicals. A further expansion of the lists, such as
bioaccumulation factor, degradation rate, mutagenicity, ecotox-
icity, cytotoxicity, and others, is expected in the future. In
addition, the analytical descriptor-based approach has the
potential to expand to other analytical methodologies that
provide structure-specific signals, including GC interfaced with
multistage mass spectrometry (MSn), LC-MSn, and LC
interfaced with a diode array detector.

■ CONCLUSIONS

This study proposed a new QSAR approach that predicts the
properties and toxicities of compounds based solely on the
analytical descriptors obtained by GC−MS using a combination
of ML techniques. The model based on XGBoost was developed
to predict log Ko‑w, log (molecular weight), melting point,
boiling point, log (vapor pressure), log (water solubility), log
(LD50) (rat, oral), and log (LD50) (mouse, oral). It performed
well on a chemical standard mixture and contaminated oil with
spectral deconvolution. This approach compensates for the
limitation of traditional QSAR, i.e., the requirement of a
chemical structure. Further, it will be useful to prioritize
chemicals without structural information for detailed environ-
mental hazard and risk assessment, safety checks of food and
beverages, product and waste management, medical inves-
tigation, and further exploration in new fields. The analytical
descriptor-based QSAR approach developed in this study will
provide insights for evaluating unknown chemicals around us.

■ DATA AND SOFTWARE AVAILABILITY

Detective-QSAR is freely available at http://www.mixture-
platform.net/Detective_QSAR_Med_Open/ (Ver. Med) and
http://www.mixture-platform.net/Detective_QSAR_Pred_
Open/ (Ver. Pred).
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performance for intensity threshold cut of mass spectrum
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