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Abstract: Fukutin encoded by FKTN is a ribitol 5-phosphate transferase involved in glycosylation
of α-dystroglycan. It is known that mutations in FKTN affect the glycosylation of α-dystroglycan,
leading to a dystroglycanopathy. Dystroglycanopathies are a group of syndromes with a broad
clinical spectrum including dilated cardiomyopathy and muscular dystrophy. In this study, we
reported the case of a patient with muscular dystrophy, early onset dilated cardiomyopathy, and
elevated creatine kinase levels who was a carrier of the compound heterozygous variants p.Ser299Arg
and p.Asn442Ser in FKTN. Our work showed that compound heterozygous mutations in FKTN lead
to a loss of fully glycosylated α-dystroglycan and result in cardiomyopathy and end-stage heart
failure at a young age.
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1. Introduction

Dystroglycanopathies are a group of syndromes with a broad clinical spectrum [1,2].
α-dystroglycan is a highly glycosylated protein that binds to the extracellular part of β-
dystroglycan as well as to components of the extracellular matrix, such as laminin, agrin,
and perlecan [3]. The protein–protein interaction with laminin is compromised by defects
in glycosylation of α-dystroglycan [2]. As a complex series of steps is needed for the
mature glycosylation pattern of α-dystroglycan [4,5], mutations within more than 17 genes
may lead to dystroglycanopathies [1,6]. The gene FKTN encodes fukutin, a 461-amino
acid protein with a predicted molecular weight of 53.7 kDa that has features typical of
many glycosyltransferases [7,8]. Fukutin belongs to a family of enzymes involved in
the modification of cell surface molecules such as glycoproteins and glycolipids [9]. No
glycosyltransferase activity has been reported for fukutin. However, mutations in FKTN
were shown to affect the glycosylation of α-dystroglycan, leading to a dystroglycanopa-
thy [2,10]. Fukutin is a type II membrane protein localized in the Golgi apparatus [11]. It is
a ribitol 5-phosphate transferase that uses cytidine diphosphate (CDP)-ribitol to generate
together with the fukutin-related protein a ribitol 5-phospate tandem structure that is
essential for the functions of α-dystroglycan [12]. As fukutin is expressed in many tissues
including heart, brain, skeletal, muscle, and pancreas, the disease phenotypes caused by
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FKTN-mutations vary from dilated cardiomyopathy (DCM) and/or muscular dystrophy
(MD)/dystroglycanopathy to severe congenital MD with brain malformation, intellectual
disability, and abnormal eye structure [7,13,14]. According to the Online Mendelian Inheri-
tance in Man database (https://www.ncbi.nlm.nih.gov/omim, accessed on 3 May 2022),
the phenotypes cardiomyopathy, dilated, 1X (Phenotype MIM-number (PMIM) 611615),
and the muscular dystrophy-dystroglycanopathies type A4 (congenital with brain and eye
anomalies), type B4 (congenital without mental retardation), and type C4 (limb-girdle)
(MDDGA4 (PMIM 253800), MDDGB4 (PMIM 613152), MDDGC4 (PMIM 611588)) are as-
sociated with FKTN mutations. Genetic variants in FKTN lead to a recessive inheritance
of the disease since both alleles have to be affected for the onset of the clinical phenotype.
The genetic etiology might be clinically misinterpreted as a non-familial and thus as an
acquired disease, since both parents will be clinically unaffected. The severity of disease
seems to be dependent on the type of mutation (nonsense, frame shift, or missense) [13–15].
In most cases, a nonsense mutation is combined with a missense mutation, commonly
leading to a severe clinical phenotype. In cases of homozygous or compound heterozygous
missense mutations, a milder phenotype with limb-girdle muscular dystrophy (LGMD)
and/or DCM without intellectual disability is observed [16,17]. A common feature of all
FKTN-mutation carriers is elevated creatine kinase (CK) plasma levels [18,19].

In this study, we reported the case of a male patient diagnosed with muscular dystro-
phy, DCM (heart transplanted at the age of 19 years), and elevated CK levels, who is the
carrier of two FKTN missense variants. One missense variant was identified in each of the
healthy parents, suggesting a recessive inheritance. The same combination of FKTN vari-
ants (NM_006731) c.895A>C (p.Ser299Arg) and c.1325A>G (p.Asn442Ser) were identified in
a German patient before [20]. The patient was diagnosed with LGMD, mild dysphagia, and
respiratory distress, but no cardiac involvement was reported in this patient [20]. In our
case, we demonstrated a predominant cardiac involvement in the compound heterozygous
mutation carrier and showed an aberrant α-dystroglycan glycosylation in the explanted
myocardium of the patient.

2. Results
2.1. Compound Heterozygous FKTN-Genotype Presumably Led to Cardiomyopathy in a
Young Patient

We identified the compound heterozygous FKTN-genotypes c.895A>C p.Ser299Arg
and c.1325A>G p.Asn442Ser in a German patient with muscular dystrophy, cardiomyopa-
thy, and elevated CK levels (III.3, Figure 1).

All variants identified in the patient with a minor allele frequency (MAF < 0.0005)
according to GnomAD [20] are shown in Table S1. This FKTN-genotype was recently
identified in another German patient with muscular dystrophy [21]. In the GnomAD
database [20], the variant p.Ser299Arg (rs367662190) has an allele frequency of 0.000007.
The variant p.Asn442Ser (rs1429464723) has an allele frequency of 0.00002 in GnomAD [20]
(version 3.1.2, 17 March 2022). The parents of the index patient (II.3 and II.4 in Figure 1)
were carriers of each of the missense variants and clinically unaffected. Due to the genotype
of the parents, it could be concluded that the index patient is a compound heterozygous
carrier of FKTN p.Ser299Arg and p.Asn442Ser and that the two mutations are not localized
on the same allele. The patient’s brother had no signs of cardiomyopathy and was not
available for genotyping. There was no history of cardiomyopathy in the patient’s family
(Figure 1a).

2.2. Neuromuscular Disease and Elevated CK Values in a Young Patient with
Dilated Cardiomyopathy

Anamnestically, the patient (III.3 in Figure 1a) was diagnosed with neuromuscular dis-
ease and elevated CK values at 6 years old. Using an MRI scan, the patient was diagnosed
with a slightly increased left ventricular (LV) diameter (52 mm) and a reduced LV ejection
fraction (52%) at 13 years old. At the age of 15 years, the analysis of a skeletal muscle
biopsy revealed muscle-fiber size variability, atrophic muscle fibers, necrosis, and fibrolipo-
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matosis, which are consistent with myodystrophy. Western blot and immunofluorescence
analyses revealed reduced α-dystroglycan, dystrophin, and sarcoglycan expressions (data
not shown). At 17 years old, a left ventricular assist device (VAD) and a dual chamber im-
plantable cardioverter-defibrillator (ICD) were implanted. Echocardiographic examination
before VAD-implantation showed intracavitary thrombotic material in the LV (Figure 2a),
markedly impaired LV average strain (Figure 2b) and an enlarged LV with a reduced
ejection fraction of 20.7% (Figure 2c). At 18 years old, the patient had an embolic middle
cerebral artery infarction inter alia with global aphasia, apraxia, neglect, and right-sided
facial nerve paralysis. He was heart transplanted at 19 years old. After heart transplantation
(HTx), the CK values were still increased up to 3270 U/µL (norm values 0–171 U/µL).
Seven years after HTx, the CK values were still >1000 U/µL. At 26 years old, the patient
showed thoracolumbar scoliosis and muscular hypothrophy of the legs and drop foot. He
had no other physical limitations. A histopathologic analysis of the heart at the time of
explantation showed a focal and partially perivascular fibrosis (Figure 2d,e (LV) + (RV)). Of
note, the majority of cardiomyocytes revealed a regular structure, and only a few cardiomy-
ocytes were degenerated. A mild lymphocyte- and macrophage-associated inflammation
was present in the LV and RV. The molecular pathological examination revealed the pres-
ence of parvovirus B19 (PVB19) DNA in the myocardium of the index patient (3000 viral
copies/µg isolated nucleic acid at the time point of VAD implantation and 230 viral copies
at the time of heart transplantation), likely explaining the mild immune cell infiltration.

Figure 1. Cont.
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Figure 1. Pedigree and genotyping analysis. (a) Shown is the pedigree of the patient with the
compound heterozygous FKTN variants. Circles represent females, and squares represent males.
Affected individuals are shown as black-filled symbols. The index patient is marked with an arrow.
† = deceased. The age of the patient at the time of ventricular assist device implantation (VAD),
implantable cardioverter defibrillator implantation (ICD), or heart transplantation (HTx) is indicated
(y = years). (b) Integrated genome view of parts of FKTN showing the variants identified in the index
patient (III.3). The percentage of reads corresponding to the base identified at the relevant positions
(c.895 and c.1325) is given (green = A, blue = C, orange = G). Below the reads, the genomic DNA
sequence (gDNA) and the sequence of the translated protein (protein) are shown. (c) Electrophero-
grams obtained by Sanger sequencing of the FKTN-regions with the particular variants. The index
(III.3) patient carries both FKTN c.895A>C (p.S299R, *) and the c.1325A>G (p.N442S, +) variants (*/+
in A). The patient’s parents (II.3 and II.4) were heterozygous for one of the mutations (−/+ or */−
in A).

Figure 2. Cont.
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Figure 2. Echocardiographic data of the index patient under clinical deterioration before VAD therapy
(a–c) and histochemical analysis of the explanted heart (d,e). (a) Four-chamber view showing the
dilated left ventricle (LV) with intracavitary thrombotic material (red arrows). (b) Deformation
analysis of global longitudinal strain values using 2D speckle tracking imaging with markedly
impaired left ventricular average strain of–7.8%. (c) 3D-echocardiography of a LV full-volume dataset
using Tomtec LV-Analysis 3 for volumetric assessment. The LV is enlarged more than twice the
normal size (end-diastolic volume = 294.6 mL and end-diastolic volume index = 181.0 mL/m2) with
a reduced ejection fraction of 20.7%. (d,e) Masson’s trichrome staining of myocardial tissue obtained
from the explanted heart. Pronounced interstitial fibrosis is observed in the left (d) and the right
(e) ventricles. Scale bars = 200 µm.

2.3. FKTN Mutations Led to Aberrant α-Dystroglycan Pattern in Human Explanted Myocardium

As it is known that FKTN mutations lead to aberrant α-dystroglycan glycosylation,
we analyzed the α-dystroglycan pattern in the patient’s explanted LV tissue by West-
ern blot and immunofluorescence analyses and compared it with control myocardium
(Figures 3 and 4).

Western blot analysis (Figure 3) revealed absence of the α-dystroglycan signal in the
patient’s tissue. The lack of signal was not due to reduced total protein content, since
the signal for GAPDH was comparable in all samples. The apparent molecular mass of
α-dystroglycan in the heart was expected to be 140 kDa [22]. Our Western blot analysis
showed an α-dystroglycan signal between 133 and 172 kDa, with a mean at 158 kDa in the
age-matched controls (NF, HTx, and VAD-Tx).
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Immunfluorescence analysis of the human myocardium revealed a pronounced α-
dystroglycan-labelling around the cells, presumably corresponding to the basal lamina
(Figure 4). The α-dystroglycan distribution in the LV sections was comparable between
samples obtained from patients with DCM and rejected donor hearts (NF). In the LV
tissue of the patient carrying the mutations in FKTN (III.3), only weak and diffuse signals
were observed.

Figure 3. Western blot detection of α-dystroglycan (α-DG) and glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) in left ventricular tissue. Tissue samples from the index patient at the time
of VAD implantation (III.3, 1) or at the time of VAD explantation (III.3, 2) were used. Five donor
hearts (NF), five samples obtained from cardiomyopathy patients at heart transplantation (HTx), and
five samples received after VAD explantation from cardiomyopathy patients (VAD-Tx) were used as
controls. According to the literature, α-DG was expected to be 140 kDa and GAPDH was expected to
be 37 kDa. GAPDH was observed as expected in all samples. An appropriate signal for α-DG was
observed in all controls (NF, HTx, and VAD-Tx) but not in the myocardial tissue of the index patient
(III.3). Fuzzy bands in the α-DG part of the Western blot were caused by differential glycosylation
of α-dystroglycan.

Figure 4. Immunofluorescence analysis of α-DG in the left ventricle. Left ventricular cryosections
were labelled using an anti-α-DG primary antibody (clone VIA4-1) and an Alexa Fluor® 488 con-
jugated goat anti-mouse secondary antibody (green). Nuclei were stained with DAPI (blue). Scale
bars = 20 µm. DCM = samples from patients with dilated cardiomyopathy, NF = samples from
rejected donor hearts, and III.3 = index patient (compare Figure 1). Samples from NF and DCM
hearts showed a pronounced fluorescence signal around the cells. In III.3, only a weak and diffuse
fluorescence signal was observed.
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2.4. Molecular Modelling Showed Aberrant Interactions for the p.Ser299Arg-FKTN-Mutant

Structures for wildtype and mutant fukutin were calculated with ColabFold [23].
Structures with the highest per-residue confidence metric (predicted Local Distance Dif-
ference Test, pLDDT with 100 = most confident) were chosen (wildtype: pLDDT = 92.19,
p.Ser299Arg: pLDDT = 92.17, and p.Asn442Ser: pLDDT = 91.69) and aligned pairwise
(Figure 5). In the p.Ser299Arg mutant, an additional polar contact for residue 299 was
observed, compared with the wildtype. In the p.Asn442Ser mutant, no changes of the polar
contacts for residue 442 were observed between the mutant and wildtype. No major struc-
ture changes were detected in the alignment between the wildtype and mutant proteins.

Figure 5. Molecular modelling of the FKTN variants p.Ser299Arg (left panel) and p.Asn442Ser (right
panel), with structures calculated using ColabFold [23]. The influence of the variants on the molecular
structure was analyzed using PyMOL Molecular Graphics System (version 2.5.2, Schrodinger LLC,
New York, NY, USA). The protein backbone is shown in green for the wildtype and in cyan for
the respective mutant. No major structure change was observed in the alignment between the
wildtype and mutant proteins, as evidenced by the protein backbone overlay. The polar contacts
were calculated using PyMOL and are shown as grey or red dashed lines for the wildtype or mutant
proteins, respectively. The serine at position 299 (left panel, p.Ser299, grey) has polar contacts to
p.Ser298 (purple), p.Cys302 (blue), and p.Leu303 (yellow). In the p.Ser299Arg mutant (left panel,
red), an additional polar contact to Tyr418 (magenta) was observed. The asparagine and serine at
position 442 (right panel, grey: p.Asn442, red: p.Ser442) had polar contacts to p.Ala421 (orange) and
p.Leu393 (yellow).

3. Discussion

The dystrophin-glycoprotein complex is a structure that is responsible for the linkage
of the intracellular cytoskeleton to the extracellular basement membrane [24]. Within this,
complex intracellular dystrophin is linked by dystroglycan to the extracellular matrix [3].
α-dystroglycan is a highly glycosylated protein, and its specific O-mannosyl glycan serves
as the binding site for laminin and other extracellular matrix proteins [25–27]. A glycosy-
lation deficiency can dissolve the Dystrophin Glycoprotein Complex (DGC)-extracellular
matrix connection, resulting in a MD [22]. Many of the affected patients might develop
cardiomyopathies with dilated ventricles and myocardial dysfunction [28]. Mutations
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in FKTN-encoding fukutin, a Golgi-based ribitol phosphate transferase [12], might cause
α-dystroglycanopathy in combination with cardiomyopathy [19].

In our study, we showed that compound heterozygous mutations in FKTN led to
cardiomyopathy, resulting in early end-stage heart failure with persisting elevated CK
levels, even after HTx. Although the same combination of FKTN variants was identified in
a 32-year-old female patient with LGMD before [21], no cardiac involvement was reported
in this patient. α-dystroglycanopathies have a wide spectrum of clinical symptoms [29].
In this study, we showed that even the same combination of mutations in FKTN might be
associated with varying phenotypes as the patient described in our study, in contrast with
the patient described by Smogavec et al. [21] developed an early onset cardiomyopathy
and, in spite of presenting with elevated CK levels, showed no physical limitations due to
myopathy. It is known that fukutin acts as a ribitol phosphate transferase, necessary for
adding the first ribitol phosphate in a tandem of ribitol phosphates that serve as the basis
for the subsequent glucuronic acid-xylose repeats which bind to laminin and are recognized
by the IIH6 antibody [30]. As Western blot analysis using the IIH6 antibody generated
no signal in the tissue of the patient with the compound heterozygous FKTN variants in
comparison to the control samples, it can be concluded that, in the patient’s tissue, no
α-dystroglycan with glucuronic acid-xylose repeats were detected, and consequently no
functional fukutin was available to produce the basis for these repeats. This strengthens
the assumption that the ribitol-phosphate modification is indispensable for the functional
maturation of α-dystroglycan.

It has been shown that hypoglycosylation of α-dystroglycan is revealed by loss of
VIA4-1 antibody immunoreactivity, and mutations in congenital muscular dystrophies-
causing glycosyltransferases lead to the hypoglycosylation and reduced laminin-binding
activity [2,31–33]. We also observed an altered VIA4-1 signal in the myocardial cryosections
of the index patient, in contrast with control samples. The signal in the patient’s sample
was reduced and showed only a diffuse pattern, whereas in the control samples, the signal
was localized in structures presumably corresponding to the cell membrane. This means
that, in the index patient, the α-dystroglycan was either not localized at the membrane or
that it was hypoglycosylated, since the used antibody does not recognize hypoglycosylated
α-dystroglycan.

Application of three-dimensional molecular modelling with calculated fukutin struc-
tures [23] revealed a change in polar contacts for the p.Ser299Arg mutant (Figure 5). How-
ever, since the major structure of the mutants showed a high degree of alignment with the
wildtype protein, it still remains unclear which effects the observed change will have on
the enzyme activity or localization of fukutin.

Using high throughput sequencing, many novel gene variants can be identified. Nev-
ertheless, most of these variants have to be classified as variants of unknown significance, as
long as experimental evidence regarding their functional impact or cosegregation analysis
is lacking in the majority of cases. Particularly in the case of recessive mutations, when a
family history of disease is missing, it is difficult to predict if a homozygous or compound
heterozygous variant combination is causative/pathogenic. The application of functional
studies allows a direct estimation of the functional impact of a variant. Although both
FKTN variants identified in the index patient are known from the literature, they could
be classified only as variants of unknown significance using ACMG criteria (p.Ser299Arg:
PM2, PP3, p.Asn442Ser: PM2, PP3) [34] since no functional data were currently available.
Since our Western blot (Figure 3) and immunofluorescence analyses (Figure 4) revealed a
damaging effect on α-dystroglycan, we used this as an additional ACMG criterion (PS3) and
reclassified the variants p.Ser299Arg and p.Asn442Ser in combination as likely pathogenic.
The correct identification of (likely) pathogenic variants is essential for genetic counselling
of the patients and for the development of potential therapeutic approaches in the future.

Currently, no specific treatments for dystroglycanopathies are available. Neverthe-
less, since 2010, treatment strategies based on the molecular pathological mechanism are
proposed [35]. These include adeno-associated viral vector gene replacement [36–38],
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gene-editing approaches using Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-Cas9 gene editing combined with homology-directed repair [39], application of
steroids [40,41], or administration of antisense nucleotides [42]. Interestingly, ribitol supple-
mentation therapy has been shown to result in restoration of α-dysroglycan glycosylation
and shows therapeutic effects in muscular dystrophy in Fkrp-mutant mice [43]. In 2021, a
clinical trial (NCT04800874) has started testing ribitol (BBP-418) for muscular dystrophy,
limb-girdle, type 2I (LGMD2I) patients (https://www.ncbi.nlm.nih.gov/omim, accessed
on 10 June 2022). As FKRP encodes fukutin-related protein, which is the second ribitol-
phosphate transferase involved in the modification of α-dystroglycan besides fukutin, a
ribitol supplementation might also be discussed in patients with FKTN mutations if residual
enzyme activity is present in the mutant fukutin. All potential therapeutic approaches
show that the development of a treatment strategy for dystroglycaopythies first needs the
identification of the causative gene, highlighting the relevance of our study.

Consequently, our work showed that compound heterozygous mutations in FKTN
lead to a loss of fully glycosylated α-dystroglycan and result in cardiomyopathy and
end-stage heart failure at a young age.

4. Materials and Methods
4.1. Clinical Examination of the Patients

The patient underwent comprehensive clinical examinations at the Heart and Dia-
betes Centre NRW (Bad Oeynhausen, Germany), including 12-lead electrocardiogram,
echocardiography, and magnetic resonance imaging (MRI) examination.

4.2. Genetics

Molecular genetics was performed after oral and written informed consent. The
local ethics committee approved the study protocol (Reg.-No. 21/2013). Genomic DNA
was isolated from white blood cells using standard techniques (High Pure PCR Template
Preparation Kit®, Roche Diagnostics GmbH, Mannheim, Germany). Panel sequencing
(174 genes) was applied for variant screening in the index patient using the TruSight™
Cardio gene panel (Illumina, San Diego, CA, USA) as previously described [44]. For variant
annotation, the software VariantStudio™ version 3.0 (Illumina, San Diego, CA, USA) was
used. Only variants with a MAF (GnomAD [20]) <0.0005 that passed the filtering criteria
were considered. Evidence criteria for mutation classification and sequencing were applied
as previously published [45,46]. Variants of interest were verified by Sanger sequencing
(BigDye® Terminator version 1.1 Cycle Sequencing Kit, ABI PRISM® 3100 genetic analyzer,
Applied Biosystems, Foster City, CA, USA). Family members were checked for the FKTN
variants found in the index patient by Sanger sequencing. The variants were classified
according to the ACMG guidelines [34]. The MAFs of the variants (PM2), published
data [21], and bioinformatic prediction tools (PP3) were considered for variant classification.

4.3. Myocardial Tissue

Myocardial tissue samples from the left ventricle were obtained from the proband’s
explanted heart or during VAD implantation. After removal from the patient, the samples
were immediately snap-frozen in liquid nitrogen and stored at−80 ◦C. As controls, samples
from eight cardiomyopathy patients obtained at HTx (HTx1-5, DCM1-3), five post-VAD-
implantation samples (VAD-Tx1-5), and eight non-failing donor hearts rejected for technical
reasons (NF1-8) were used. The local ethics committee approved the study protocol (Reg.-
No. 13/2009 and 21/2013). In addition, corresponding heart tissue probes were fixed in 4%
formaldehyde and investigated by routine histology and immunohistology for visualizing
immune cells [47]. For the detection of interstitial fibrosis, Masson’s trichrome staining
was used.

https://www.ncbi.nlm.nih.gov/omim


Int. J. Mol. Sci. 2022, 23, 6685 10 of 13

4.4. Protein Extraction and Western Blot

Proteins were extracted from the human myocardial tissue using RIPA buffer (150 mM
NaCl, 1 mM EDTA, 50 mM Tris-HCl, 1% (v/v) Nonidet P40 Substitute (Merck, Darmstadt,
Germany), 0.25% (w/v) sodium deoxycholate, 1 mM NaF, 1 mM Na3VO4, proteinase
inhibitor cocktail P2714 (Sigma-Aldrich, St. Louis, MO, USA), pH 7.4) as described previ-
ously [48]. We mixed 20–50 mg myocardial tissue with RIPA buffer (10 µL buffer/1 mg
tissue) and homogenized for 60 s with the Ultra-Turrax homogenizer. Samples were incu-
bated for 2 h on ice under constant agitation. After 10 min of centrifugation at 21,000× g and
4 ◦C, the supernatants were removed. The supernatants were stored at −80 ◦C for further
analyses, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent
Western blotting on polyvinylidene fluoride (PVDF) membranes. After protein transfer,
the membranes were blocked for 30 min with 5% (w/v) skimmed milk powder in TTBS
(20 mM Tris, 0.1 M NaCl, 0.05 % Tween20, pH 7.5). For α-dystroglycan detection in Western
blotting, a monoclonal anti-α-dystroglycan antibody (clone IIH6C4, Merck, Darmstadt,
Germany) was used as primary antibody at a dilution of 1:1000 in TTBS. The incubation
with this antibody was performed for 1 h at room temperature (RT) and subsequently at
4 ◦C overnight. As loading control, an anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) antibody (ab8245, Abcam, Cambridge, UK) was used at a dilution of 1:10,000.
As secondary antibody, anti-mouse HRP-linked antibody (554002, BD Biosciences, Franklin
Lakes, NJ, USA) was used. For Western blot imaging and calculation of the apparent
molecular masses, the FluorChem FC2 Imaging System (Cell Biosciences, Santa Clara, CA,
USA) was used.

4.5. Immunofluorescence Analysis

Frozen cardiac tissue was sliced into 5 µm sections using a cryomicrotome (Leica,
Wetzlar, Germany). After thawing, slides were fixed with a cooled 1:1 solution of ethanol
and acetic acid. After washing with phosphate buffered saline (PBS), the slices were blocked
with 8% (w/v) bovine serum albumin (BSA) in PBS for 30 min at RT. Blocked sections were
incubated with anti-α-dystroglycan antibody (clone VIA4-1, Merck, Darmstadt, Germany)
at a 1:100 dilution in PBS overnight at 4 ◦C. After washing in PBS, the slices were incu-
bated with goat anti-mouse Alexa Fluor® 488 conjugate antibody (ThermoFisher Scientific,
Waltham, MA, USA) at a concentration of 1:100 in PBS for 1 h at RT. Afterward, the slices
were washed and incubated with 1µg/mL 4′,6-Diamidine-2′-phenylindole dihydrochloride
(DAPI)-solution (Carl Roth, Karlsruhe, Germany) in BSA/PBS for 5 min at RT. The sections
were washed with distilled water and embedded using Mowiol 4-88 (Carl Roth, Karlsruhe,
Germany). Image acquisition was performed using the TCS SP8 confocal microscope (Leica,
Wetzlar, Germany).

4.6. Molecular Modelling

Structures for the wildtype and mutant fukutin were calculated using ColabFold [23]
on the default settings. Structures were refined with Amber-Relax. For the wildtype and
mutants, the structure with the highest pLDDT was chosen. The structures were aligned,
and polar contacts were calculated for the wild type and mutant residues to other atoms
in the object with PyMOL Molecular Graphics System 2.5.2 (Schrodinger, LLC, New York,
NY, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
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