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Abstract
Tachycardia is a strong though non-specific marker of cardiovascular stress that proceeds hemodynamic instability. We 
designed a predictive model of tachycardia using multi-granular intensive care unit (ICU) data by creating a risk score and 
dynamic trajectory. A subset of clinical and numerical signals were extracted from the Multiparameter Intelligent Monitor-
ing in Intensive Care II database. A tachycardia episode was defined as heart rate ≥ 130/min lasting for ≥ 5 min, with ≥ 10% 
density. Regularized logistic regression (LR) and random forest (RF) classifiers were trained to create a risk score for upcom-
ing tachycardia. Three different risk score models were compared for tachycardia and control (non-tachycardia) groups. Risk 
trajectory was generated from time windows moving away at 1 min increments from the tachycardia episode. Trajectories 
were computed over 3 hours leading up to the episode for three different models. From 2809 subjects, 787 tachycardia epi-
sodes and 707 control periods were identified. Patients with tachycardia had increased vasopressor support, longer ICU stay, 
and increased ICU mortality than controls. In model evaluation, RF was slightly superior to LR, which accuracy ranged from 
0.847 to 0.782, with area under the curve from 0.921 to 0.842. Risk trajectory analysis showed average risks for tachycardia 
group evolved to 0.78 prior to the tachycardia episodes, while control group risks remained < 0.3. Among the three models, 
the internal control model demonstrated evolving trajectory approximately 75 min before tachycardia episode. Clinically 
relevant tachycardia episodes can be predicted from vital sign time series using machine learning algorithms.
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1  Introduction

In modern ICU environments, tachycardia is one of the 
most common and earliest vital sign responses in criti-
cally-ill patients to impending cardiorespiratory instability 
(CRI), [1] as it parallels increased sympathetic nervous 

system activity. Tachycardia also reflects the normal physi-
ologic response of the body’s effort to maintain cardiac 
output and thereby meeting metabolic demand of vital 
organs when delivery is compromised as a consequence 
of a variety of pathological processes such as decreased 
stroke volume (e.g. hypovolemia, cardiac pump dysfunc-
tion, pulmonary embolism), decreased oxygen carrying 
capacity (e.g. hypoxia, anemia), or decreased arterial tone 
(e.g. vasoplegia, sepsis). Tachycardia is an independent 
risk factor linked to worse outcomes for several different 
chronic conditions including heart failure [2, 3] and coro-
nary artery disease [4–6]. Tachycardia may independently 
contribute to worse outcome in acutely decompensated 
states, not only of cardiac origin (e.g. post-myocardial 
infarction [7], cardiogenic shock [8–10]), but also in 
shock of other etiologies with obstructive (e.g. pulmonary 
embolus [11, 12]) or distributive physiology (e.g. sepsis 
[13–15]). In addition, tachycardia correlates with worse 
post-operative outcome, as reflected in the Modified Early 
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Warning System (MEWS) score, where tachycardia cor-
relates with mortality [16]. Thus, early detection and/or 
prediction of impending tachycardia, although in itself a 
non-specific indicator of stressed physiology, could lead 
to earlier detection, and potentially earlier interventions to 
rescue patients with impending CRI.

A major challenge in predicting CRI from complex physi-
ologic time series data is the ability to transform those data 
into a reliable risk model. Recently, data-driven classifica-
tion methods with parsimonious use of multi-granular fea-
tures show promise in understanding embedded patterns 
from complex vital sign trends preceding overt CRI [17]. 
Our group has previously shown the utility of a composite 
early warning signature vital sign index in the early predic-
tion of CRI in step-down patients, wherein upcoming CRI 
events were predicted with an accuracy of 80% at 9.7 min 
prior to overt instability [18]. We have also shown variations 
among risk trajectories leading up to CRI [19]. Accordingly, 
we hypothesized that tachycardia, as a surrogate early insta-
bility marker, could be reliably predicted in ICU patients 
using featurized vital sign trends, and that there exists a 
finite variety of risk trajectories among patients leading up 
to tachycardia.

2 � Methods

2.1 � Source data

The study used the Multiparameter Intelligent Monitoring 
in Intensive Care II (MIMIC-2, version 26) database; a free, 
publicly-available comprehensive multi-granular database 
constructed from all intensive care visits at a tertiary care 
hospital in Boston, MA from 2001 to 2007 [20]. MIMIC-2 
includes data from 25,328 ICU visits, segregated across 
three domains. The clinical database includes demographic 
data, lab and medication data, and image as well as text data 
such as physician’s records and nursing notes. It is thus an 
abridged version of the electronic-health record. The numer-
ical database includes a collection of frequently sampled 
(1/60 Hz or 1 Hz) vital signs data, including heart rate, blood 
pressure, respiratory rate, temperature, and oxygen satura-
tion from pulse oximetry. The waveform domain, not used 
in the current study, includes waveforms (125–250 Hz) from 
electrocardiogram (EKG) monitors, blood pressure moni-
tored from the arterial line, or changes in breathing and oxy-
gen saturation directly recorded by photoplethysmography in 
a subset of subjects. To utilize the multi-granular character 
of the dataset, only subjects with overlapping data across all 
three domains (clinical, numerical, and waveform) were con-
sidered. We did not specify the type of ICU for our analysis, 
but restricted the subject age to be greater than 18 years old.

2.2 � Operational definition of tachycardia episodes

Traditionally, physiologic tachycardia has been defined as 
a heart rate (HR) greater than 100 beats/min [21]. Tachy-
cardia correlates with worse prognosis, in both acutely 
decompensated [16] and chronically compensated states 
[22]. Using MEWS, one study associated HR > 129/min in 
post-operative patients with significantly increased mortality 
[16]. Similarly, the Royal College of Physician suggested 
the National Early Warning Score (NEWS) to assess acute 
illness in pre-hospital and hospital settings. In the NEWS 
schema, a HR of 130/min indicated greatest risk and man-
dated a ‘step change’ in acute care management protocol 
[23]. We further validated the use of this threshold of 130/
min in our study population as described below.

We then proceeded to define tachycardia episodes as 
depicted in Fig. 1a. Using the numerical HR data (1/60 Hz 
or 1 Hz), periods of > 30 min without instances of HR > 130/
min separated potential episodes (Fig. 1b). Potential epi-
sodes were further processed to retain only periods of time 
lasting at least 5 min and where at least 10% (duty cycle of 
≥ 10%) of measurements were ≥ 130/min (Fig. 1c).

2.3 � Clinical relevance of target tachycardia 
episodes

To support the clinical relevance of this operational defini-
tion of tachycardia episode as a legitimate target for pre-
diction, we evaluated use of norepinephrine, incidence of 
hypotension, transfusion of red blood cells, length of ICU 
stay, and all-cause mortality at thresholds of tachycardia of 
110/min, 120/min, and 130/min, and compared outcome to 
a control group never experiencing tachycardia (HR < 110/
min) during their ICU stay.

2.4 � Heterogeneity of tachycardia episodes

There are distinct mechanisms of tachycardia: sinus 
tachycardia, atrial fibrillation, ventricular fibrillation, 
and several others. To support our decision to group all 
episodes of tachycardia as a single target for prediction, 
we wished to demonstrate that different mechanisms were 
associated with uniformly poorer outcomes compared to 
the non-tachycardic subjects. We identified subjects with 
atrial fibrillation or ventricular tachycardia if they received 
metoprolol, amiodarone, diltiazem, xylocaine and digoxin 
within 3 h of onset of tachycardia as a separate group. We 
compared the aforementioned outcomes from this group to 
subjects with tachycardia not receiving these drugs in the 
3 h window, and to non-tachycardic subjects.
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2.5 � Tachycardia case and control groups

Subjects who fulfilled study entry criteria but never exhib-
ited tachycardia during their ICU stay comprised the control 
subjects. For each control subject, we randomly selected a 
30-min time window during their ICU stay to construct a 
set of control windows. For each subject with at least one 
episode of tachycardia, we selected a 30-min time window 
immediately prior to onset of every tachycardia episode to 
construct a set of case windows with 1:1 patient matching. 
We developed three different models using the following 
choices of cases and control windows (Fig. 2). The first mod-
eling group (Group 1) used all case periods and a random 
subset of control periods so as to produce an approximate 
1:1 match between cases and controls. In group 2, we only 

considered the first tachycardia episode from each case sub-
ject, and the same control windows as Group 1 are used. In 
Group 3, case windows were identical to Group 2, but con-
trol windows were selected from the same subjects as cases, 
from a 3 h period well in advance of developing tachycardia 
(internal controls). Models developed in Groups 1 and 2 
tested whether the first episode of tachycardia was easier 
to predict than any episode of tachycardia, while Group 3 
tested whether subjects who develop tachycardia display dis-
cernible trends in risk scores, irrespective of absolute risk.

2.6 � Model learning and risk trajectories

We computed a set of features to characterize 30-min win-
dows of vital sign times series data. For cases, the data 

Fig. 1   Operational definition 
of target tachycardia episode. 
a. A pseudocode for selecting 
target tachycardia episode by 
operational definition. b Sche-
matic illustration of tachycardia 
episodes by rate, length, and 
interval. The time between 
events less than 30 min were 
combined to form an episode. c 
An illustration for the concept 
of density (‘duty cycle’) with 
two examples of heart rate time 
series. Red dotted lines indicate 
the threshold for tachycardia for 
each episode, with shaded area 
on the bottom graph shows the 
time period satisfying the opera-
tional definition of a tachycardia 
episode. Note while upper graph 
showed much larger number of 
episodes, lower graph revealed a 
single, but much dense episode 
of continued tachycardia. The 
subject in the bottom panel 
eventually expired in the ICU
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Fig. 1   (continued)

Fig. 2   The three models for tachycardia episodes with corresponding control groups
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window was immediately prior to the tachycardia episodes. 
For controls, features were computed from a random 30-min 
window of data. We then produced a tachycardia risk score 
using regularized lasso logistic regression (LR) and random 
forest (RF) [24–28]. The risk score was set to range from 0 
(lowest risk) to 1 (highest risk) and can be interpreted as the 
probability of tachycardia in the next minute, given the last 
30 min of data. Both algorithms were trained using a 10-fold 
cross validation method to mitigate overfitting [29]. In detail, 
for each prediction model, groups were divided into 10 equal 
size subgroups. Nine out of ten subgroups were used to train 
the model. The remaining subgroup was used for testing. 
The procedure is repeated ten times using a different test-
ing subgroup each time. Results were pooled across the test 
subgroups to express the performance of the model (Fig. 3). 
Receiver operating characteristic (ROC) curves was used as 
performance metric.

Then, risk trajectories were developed for the three mod-
eling groups. To generate a subject’s instantaneous risk 
score, we computed the model’s predicted risk the preced-
ing 30 min of data. Risk scores were updated every minute 
to create a risk score trajectory covering the entire dura-
tion of the data stream in each subject, except for the first 
30 min. We also wished to understand the ability of some 
predictors to forecast tachycardia with longer lead times. 
We thus constructed “lagged” models, where the lag is the 
number of minutes between the time window and the onset 
of tachycardia (For example, a lag-30 model used data from 
a window between − 60 min and − 30 min to the episode). 
For Group 3, we used a concept called ‘lift score’. A sub-
group of case subjects with at least 3 h of data without a 
tachycardia episode prior to the first episode was selected. 
An average, patient-specific, risk score was computed over 
this entire 3-h data segment. Then the minute-by-minute risk 
score from 3-h prior to tachycardia episode for each patient 
was divided over the average baseline risk score for each 
patient to calculate the lift score.

Data were pre-processed using Python version 3.4 
(Python Software Foundation, Wilmington, DE) and of the 

data was done using Matlab version r2016b (MathWorks, 
Natick, MA) was used. Machine learning work was per-
formed using the scikit-learn Python library and custom-
ized software [30].

3 � Results

3.1 � Clinical relevance of tachycardia episodes

Tachycardia thresholds of HR ≥ 110/min (n = 428), 120/
min (n = 328) and 130/min (n = 235) were associated 
with increasing incidence of norepinephrine use of 33.4% 
(143/428), 36.8 (121/328) and 38.3% (90/235) respectively. 
Although this trend was not significant across tachycar-
dia groups, all were higher than norepinephrine use in the 
non-tachycardia group (n = 2376) defines as HR < 110/min 
(22.1%). In particular HR > 130/min was significantly dif-
ferent than HR < 110/min (p = 0.009) in their use of norepi-
nephrine. Subjects with HR ≥ 110/min had an ICU length of 
stay of 5.73 days whereas those with HR ≥ 120/min had an 
average stay of 6.12 days, showing no statistical significance 
compared to non-tachycardic control group (5.85 days). 
However, subjects with HR ≥ 130/min group (7.94 days) 
showed statistically longer length of stay compared to the 
non-tachycardia group. There was a trend between degree of 
tachycardia and ICU mortality, which did not reach statisti-
cal significance (Fig. 4a).

The incidence of red blood cell transfusion was not dif-
ferent between the tachycardia case and control groups 
(Fig. 4b) (50.6% vs. 49.4%, p = 0.724). In addition, rela-
tionships with other direct CRI target variables were inves-
tigated. Among the tachycardia group, we found hypotension 
followed the first tachycardia episodes in 49% subjects (115 
out of 235) within next 24 h. Whereas hypotension with-
out tachycardia episodes developed in only 7% of subjects 
(174 out of 2572). We identified 22 instances of intravenous 
medication administration within 3 h of the onset of a tachy-
cardia episode (22/787, 2.8%) in 8 subjects (8/235, 3.4%). 

Fig. 3   Ten-fold cross validation 
method for training and test 
models
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As summarized in Fig. 4c, when compared with tachycardia 
subjects as well as non-tachycardia subjects, those received 
intravenous antiarrhythmic medications within 3 h after the 
onset of tachycardia episodes (‘medication group’) showed 
increased use of norepinephrine (4 out of 8 subjects, 50%) 

and longer ICU stay (9.32 vs. 7.94 days). All-cause ICU 
mortality, however, showed no statistically significant differ-
ence (1 out of 8, 12.5%) compared with tachycardia subjects 
in general (16.1%). Both subjects in the medication group 
and subjects with tachycardia, but who did not belong to 

Fig. 4   Clinical relevance of target rate for tachycardia episode. a 
Selection of rate thresholds for target tachycardia episode. With using 
heart rate (HR) 110/min, 120/min, and 130/min cut-off, different 
adverse clinical outcome variables including the use of norepineph-
rine (%), ICU length of stay (days), and ICU mortality (%). Non-tach-
ycardia comprises control group which had no tachycardia episode 
during ICU stay (n = 2376). b. Clinical adverse outcomes for tachy-
cardia subjects who met operational definition ‘Tachycardia’ indicates 
subjects met operational definition of tachycardia during the ICU 

stay (n = 235). ‘Non-tachycardia analyzed’ subjects are control group 
without tachycardia episode (rate threshold of HR < 130) during the 
ICU stay (n = 2572). ‘All mimic2 without tachycardia’ stands for the 
rest of MIMIC2 patient (n = 39397). When appropriate, mean and the 
standard error (SEM) was produced with error bars. c Comparison of 
clinically important abrupt onset of non-sinus tachycardia episodes 
with other overall tachycardia episodes as well as non-tachycardia 
MIMIC 2 dataset
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the medication group, has highly significantly different rate 
of norepinephrine use (p < 0.001) and ICU length of stay 
(p = 0.003).

3.2 � Selection of tachycardia episodes and control 
group

A total of 2809 subjects were found to have data identifier 
across all three (clinical, numerical, and waveform) data-
bases, from which 787 episodes of tachycardia episodes 
were identified in 240 subjects. A randomly selected set of 
240 non-tachycardic subjects generated 707 control windows 
devoid of artifacts. The median length of target tachycardia 
episode was found to be 1407 s (23.45 min) with standard 
deviation of 16968 s (4.71 h). The average density (duty 
cycle) of target tachycardia episode was 35%, and its stand-
ard deviation was 27% (minimum 10.01%, maximum 100%). 
Various clinical characteristics for tachycardia and control 
groups are summarized on Table 1. Tachycardia group tends 
to be older in age at admission to ICU (72 vs. 65.7, p = 0.02) 
and clinically associated with higher mortality with Elix-
hauser criteria (11.34 vs. 9.43, p < 0.01). The ICU length of 
stay was also longer in tachycardia group (7.9 vs. 5.6 days, 
p = 0.02).

3.3 � Featurization, model development, 
and assessment

A total of 42 vital sign features were generated and provided 
as candidate predictors to the ML algorithms (Table 2). 
Main features included approximate entropy, autocorrela-
tion, and fast Fourier transform sum of squared amplitudes, 
along with a variety of statistical features such as mean 

and standard deviation. Approximate entropy provides the 
unpredictability of fluctuations in a given time series. How-
ever, this would be dependent upon the patterns of length 
and inherent similarity. Autocorrelation measures the cor-
relation between a signal and time-lagged instances of the 
signals, therefore quantifying memory in the system. Rapid 
decreases in autocorrelation with increasing time lags indi-
cates short memory in the system. In using the discrete Fou-
rier transform, we used cubic-spline interpolation of heart 
rate and respiratory rate data for missing data as long as 
at least 20% of the data were available. The final feature 
used was the sum of spectral amplitudes, where frequencies 
ranged from 0 to 1/120 Hz.

RF performed slightly better than LR regression at lag-0 
windows (at the time of tachycardia episode). Cross-val-
idation accuracy of RF ranged from 0.847 (lag 0 min) to 
0.782 (lag 30 min), with area under the ROC curve (AUC) 
ranging from 0.921 to 0.842 (Fig. 5). The average risk scores 
within the preceding 30 min for control episodes were < 0.3 
(< 30% risk of future tachycardia), while the average risk 
score for case group increased from 0.6 to 0.78 immedi-
ately prior to the tachycardia episode. Feature utilization 
was measured with different prediction horizons of 0, 10, 
20, and 30 min before the tachycardia episodes. The top 15 
features as shown in Table 3 revealed a mixed set of vital 
sign representations. While a heavy presence of heart rate-
related features was observed to predict future tachycardia, 
other vital sign features related to respiratory rate and arte-
rial oxygen saturation emerged as the horizon was pushed 
further ahead of the target episodes.

3.4 � Risk score trajectories

In comparing the average values of risk for each minute 
within the evolving trajectory, we first looked at every single 
episode of tachycardia (n = 787) matched with the corre-
sponding period in controls (Group 1; n = 707). The number 
of case and control periods were different because the selec-
tion of all tachycardia episodes (n = 787) from the case sub-
jects (n = 240) were performed, with the same methodology 
applied to extract all possible stable non-tachycardia periods 
(n = 707) from the same number of control subjects. The 
minute-by minute group averages of the risk score trajecto-
ries for the tachycardia and control groups revealed a clear 
difference in evolution from the beginning of the observation 
time (3 h prior to the episode), which continued to diverge 
with time moving forward. When only the first episodes of 
tachycardia (n = 240) were matched with control periods 
(Group 2; n = 240), the graph exhibited wider confidence 
intervals because of smaller sample size. Trajectories were 
closer to each other compared to the first group especially 
at the initial period of observation time, and moved fur-
ther away from the onset of the first episode of tachycardia. 

Table 1   Demographic characteristics for tachycardia and control 
group subjects

Variables Tachycardia group Control group p-values

Age (years) 72 ± 31.8 65.7 ± 27.3 0.02
Gender (male) 52.5% 59.5% 0.58
Body Mass Index 28.6 ± 8.6 29.1 ± 8.8 0.57
First SOFA score 6.4 ± 4.6 5.8 ± 4.3 0.16
Maximum SOFA 

score
7.7 ± 4.8 6.9 ± 4.2 0.38

Elixhauser score 11.34 ± 7.66 9.43 ± 7.89 < 0.01
First ICU types
 Cardiac 95 (39.6%) 106 (44.2%) 0.31
 Cardiothoracic 105 (43.8%) 98 (40.8%) 0.58
 Medical 16 (6.7%) 18 (7.5%) 0.72
 Others 23 (9.6%) 18 (7.5%) 0.51

ICU length of stay 
(days)

7.9 ± 9.9 5.9 ± 9.26 0.02

ICU mortality (%) 15.8 12.9 0.43
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Lastly, when the control periods were selected from the 
same case subjects, the evolving score trajectories (Group 
3; n = 235) showed a majority of area overlapping between 
the case and internal control periods. The difference in size 
between Group 2 (n = 240) and Group 3 (n = 235) occurred 
because not all the subjects had at least 3 h of stable baseline 
periods prior to the pre-tachycardia periods to be able to 
calculate a baseline risk. The discrimination of the baseline 
period and pre-tachycardia periods were not possible ini-
tially, but the divergence occurred at approximately 75 min 

prior to onset of tachycardia (the first episode of tachycardia) 
(Fig. 6).

4 � Discussion

Using featurized high-density vital sign data, we devel-
oped a risk score for predicting tachycardia episodes, 
which was strongly associated with clinically relevant 
adverse downstream outcomes. The risk score was 

Table 2   List of predictors for tachycardia episode

Abpdias diastolic arterial blood pressure; abpmean mean arterial pressure; abpsys systolic arterial blood pressure; acs autocorrelation; aes 
approximate entropy; fft fast Fourier transformation; hr heart rate; min minutes; reg regression coefficient; rr respiratory rate; sd standard devia-
tion; ses sample entropy; spo2 oxygen saturation

Feature abbreviation Feature name Remarks

mean_abpdias
mean_abpmean
mean_abpsys
mean_hr
mean_rr
mean_spo2

Mean values for vital signs

sd_hr
sd_rr
sd_spo2

Standard deviations for vital signs

reg_ abpdias
reg _abpmean
reg _abpsys
reg _hr
reg _rr
reg _spo2

Coefficient of first-order regression Degree of association between the two predictor variables

fft_hr
fft_rr
fft_spo2

Fast Fourier transformation Converts a signal from its original domain to a representa-
tion in the frequency domain

acs_hr
acs_rr
acs_spo2

Autocorrelation Measures the degree of similarity between a given time 
series and its lagged version over continuous time periods

aes_hr
aes_rr
aes_spo2
ses_hr
ses_rr
ses_spo2

Approximate entropy
Sample entropy

Reflects the likelihood that similar patterns of observation 
will not be followed by additional similar observations

density_hr
density _rr
density _spo2

Density of the records The amount of data points available during the given time 
interval

last_5min_mean_hr
last_5min_mean_rr
last_5min_mean_spo2

Mean value in the last 5 min Considering the rapidly deteriorating conditions during last 
5 or 10 min prior to the instability, short-term means and 
coefficients were separately assessed and applied

last_5min_reg_hr
last_5min_reg_rr
last_5min_reg_spo2

Coefficients of the first-order regression in the last 5 min

last_10min_mean_hr
last_10min_mean_rr
last_10min_mean_spo2

Mean value in the last 10 min

last_10min_reg_hr
last_10min_reg_rr
last_10min_reg_spo2

Coefficients of the first-order regression in the last 10 min
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generated by a RF algorithm using 30-min rolling win-
dows of featurized data. We used three different modeling 
groups approaches, and found that: (1) as a whole, risks 
scores of subjects developing tachycardia were consist-
ently higher than subjects who never developed tachycar-
dia, (2) the first episode of tachycardia is easiest to predict 
and, (3) patient’s relative risk of developing a tachycardia 
episode increase as early as 75 min prior to the episode, 
irrespective of baseline risk.

Episodic tachycardia is multifactorial in its origin and 
many such episodes may not be related to CRI, although 
significant and/or persistent tachycardia could herald 
upcoming organ insufficiency [1, 16, 23], which requires 
immediate medical response [31]. Timely recognition 
of these early signals of CRI is critical, as even a short 
period of organ hypoperfusion during controlled clini-
cal setting can lead to serious adverse outcome including 
mortality [32]. In line with those prior findings, we found 

Fig. 5   Comparison of the performance of the algorithm. Random 
Forest (RF, left plot) and Logistic Regression (LR, right plot) with 
L1 regularization term were tested with using 10-fold cross-validation 

method. RF slightly outperformed LR with L1 regularization, with 
overall higher accuracy and larger area under the curve (AUC)

Table 3   Top 15 features for each time period used for different prediction horizons (minutes)

Abpmean mean arterial pressure; aes approximate entropy; fft fast Fourier transformation; hr heart rate; min minutes; reg regression coefficient; 
rr respiratory rate; sd standard deviation; ses sample entropy; spo2 oxygen saturation

Size of prediction horizon (minutes) 0 10 20 30

Features aes_hr
fft_hr
last_10min_mean_hr
last_10min_reg_hr
last_5min_mean_hr

fft_hr
fft_rr
last_10min_mean_hr
last_5min_mean_rr
mean_hr

aes_hr
fft_hr
fft_rr
last_10min_mean_hr
last_10min_reg_hr

aes_hr
fft_hr
last_10min_mean_hr
last_10min_mean_rr
last_5min_mean_hr

last_5min_reg_hr
mean_hr
mean_rr
sd_hr
ses_hr

mean_rr
sd_hr
ses_hr
aes_spo2
last_5min_mean_hr

last_5min_mean_hr
last_5min_mean_rr
mean_hr
sd_hr
ses_hr

last_5min_mean_rr
mean_hr
sd_hr
ses_hr
ses_spo2

reg_hr
last_10min_mean_rr
fft_rr
last_10min_reg_spo2
last_5min_mean_rr

aes_hr
mean_abpmean
sd_spo2
last_10min_mean_rr
reg_hr

mean_abpmean
reg_hr
mean_rr
last_5min_reg_hr
last_10min_mean_rr

mean_rr
fft_rr
reg_rr
last_10min_reg_hr
last_5min_reg_hr
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tachycardia subjects who met our operational definition 
had increased rate of adverse intra-ICU outcomes includ-
ing vasopressor use, longer ICU stay and increased in-hos-
pital mortality. In addition, the actual number of episodes 
acutely treated for abrupt non-sinus tachycardia was rela-
tively small. This could imply many non-urgently treated 
tachycardia episodes could still be related to important 
prognostic factors, which the algorithm was able to pre-
dict. This supports our decision to group all tachycardia 
as a single modeling target, given our intention to pre-
dict overall adverse disease progression, and not specific 
mechanisms of tachycardia.

Our feature set was designed to incorporate various 
advanced physiologic time series characteristics including 
sample and approximation entropy [33], autocorrelation 
[34], fast Fourier transform [35], density of records, and 
other regression coefficients, along with traditional statistical 
representations of numerical vital signs. These multivariate 
vital sign features were created to infer intricate physiologic 
crosstalk among cardiovascular and respiratory systems, 
such potential clinical scenarios include respiratory failure 
where enhanced cardiovascular activity compensating for 
hypoxia, or sepsis where respiratory drive increases for the 
metabolic derangement. Our results showed the utility of 
features related to respiratory rate and oxygen saturation 

Fig. 6   Risk score trajectories for the three models of tachycardia 
group and control group comparison. a Evolving risks for any tachy-
cardia episode in the future. Number of cases = 787, number of con-
trols = 707. b Evolving risks for the first tachycardia episode in the 

future. Number of cases = 240, number of controls = 240. c Life score 
to detect the risk within the same subject prior to the first episode. 
Number of cases = 235
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were increased when the prediction horizon was expanded 
(Table 3), indicating a combined use of different vital sign 
features could be an important strategy for earlier prediction 
of tachycardia. This is of special interest, as the features 
other than the heart rate itself were strongly predictive of 
upcoming tachycardic episodes.

The performance of RF was slightly superior to LR with 
L1 regularization, and this is in concordance with our pre-
vious and other studies with retrospective and prospective 
databases [36–38]. RF is different from other ensemble mod-
els due to the introduction of randomness to both observa-
tion and its features, robust in datasets with unbalance or 
missing values and collinearity [25]. This strength fitted well 
with MIMIC2 data where signals were often missing due to 
bedside mechanical issues (disconnect from monitor, sensor 
malfunction), daily patient care (transfer for diagnostic test-
ing, in-bed movement, out-of-bed physical therapy), and loss 
during pre-processing of the acquired data [39].

Building a risk score trajectory has a practical advan-
tage in quantifying the time-dependent dynamic change in 
predicting tachycardia from seemingly stable subjects. In 
addition to predicting all tachycardia episodes (Group 1), 
we sought to demonstrate whether more clinically relevant 
scenario could be introduced. Thus, prediction of the first 
tachycardia episode (Group 2) was attempted, as the subse-
quent signals of tachycardia could share common etiologies 
with the first episode and only intensify the gravity of the 
upcoming CRI. The third control (Group 3) was designed to 
reflect real-life scenarios, as the initial observational period 
of non-tachycardia preceded the beginning of tachycardia 
episode within the same individual. This approach, however, 
further decreased the sample size because not every patient 
had enough observational period ahead of the tachycardia 
episode to be collected. The resultant lift score trajectory 
demonstrated divergence of risks at around 75 min prior 
to the tachycardia onset, as shown in Fig. 6c. Based on this 
prediction, clinicians could potentially have enough time to 
prepare for upcoming serious tachycardia with preemptive 
diagnostic and therapeutic approaches to prevent adverse 
outcomes on an etiology-specific basis. This type of short-
term dynamic risk prediction cannot be performed by using 
traditional risk score systems such as MEWS or NEWS. 
Still, one should exercise caution not to interpret our predic-
tive graphs only by its large separation from control groups, 
because a large variance could potentially exist at an individ-
ual level trajectory. Therefore, both the absolute value of the 
risk score and its evolving risk score need to be considered 
to correctly quantify the risk. Further risk score clustering 
analysis might help eluding the phenotypic characteristics of 
individuals developing tachycardia and eventual CRI.

Our study has several limitations. The dataset was not 
fully utilized to demonstrate the best possible classification 
performance. The data granularity we used was 1/60 Hz 

(once a minute), as the matching high-density waveform 
data could not be effectively featurized due to technical 
obstacles such as timestamp mismatching and data sparsity. 
Using an updated version of MIMIC (MIMIC-III) [40], this 
could possibly be overcome in future extensions of our work. 
MIMIC-2 was generated more than 10 years ago, making the 
data less reflective of current clinical practice. For exam-
ple, the preferred vasopressor for shock has been changed 
in 2009, which might have affected the outcome of some 
of the subjects. An observational time window of 30-min 
was arbitrarily generated. Employing a longer time window 
would allow accrual of a proportionally larger amount of 
data with possibly a prediction model that can predict tachy-
cardia with a longer lead time. A much shorter time win-
dow would likely have generated models with higher ROC 
values, but short lead time. Since we planned to create a 
parsimonious model that could have practical usage in daily 
patient care, balancing between obtaining larger amount of 
data to increase lead time and high discrimination at the cost 
short lead time was an important factor. The modeling work 
could also benefit from a more exhaustive list of features, 
and the use of features engineered using existing physiologi-
cal knowledge. This is particularly relevant if sampling fre-
quency is increased to 1 Hz or above. For example, the pre-
dictive value of entropy-based and spectral features would 
be expected to increase with higher granularity. We note that 
fast Fourier transforms are highly correlated with the mean 
value of the variable being featurized, in view of the fact 
that the computation of total power did not exclude the first 
component of the transformed variable.

More direct targets such as hypotension, hypoxia, or 
individual organ failure markers could also be investigated 
to create a true unifying ‘instability prediction algorithm’. 
Although ‘significant decompensation associated with 
shock’ should eventually be defined with clinical correla-
tion, our findings suggest that predicting tachycardia could 
increase clinical awareness of a higher risk of future hypo-
tension and subsequently other forms of CRI. Additional 
work is required to refine the specificity of tachycardia 
predictions and their implications towards development of 
CRI. Although we presumed these dynamic measures pre-
dict tachycardia better than current early warning metrics, 
we did not directly compare our model’s performance to 
conventional scoring systems. One reason for that is, there 
is no practical predictive model for tachycardia in current 
practice to compare with. Still, others have shown that such 
static scoring systems are primarily useful for group data 
and more generalized longer-term predictions. Lastly, we 
have not assessed the model performance by using external 
validation cohort in this study, as one of the objectives of 
this study was providing a roadmap from model develop-
ment to internal validation. We plan to utilize MIMIC III or 
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other datasets as a potential source for external validation set 
in future studies with the full use of waveform data.

5 � Conclusions

Tachycardia, a surrogate marker for CRI, can be predicted 
with using supervised machine learning algorithms from an 
intermittent numeric vital sign dataset, and evolving risk 
of episode could be projected with risk score trajectories. 
Future research should include identifying and predicting 
more direct target for CRI, characterization of risk score 
trajectories towards CRI, and prospective studies to measure 
clinical outcome changes after the implementation of a risk 
score triggered treatment approach.
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