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Breast cancer remains a significant burden with 1 in 8 women affected and metastasis
posing a significant challenge for patient survival. Disease progression involves remodeling
of the extracellular matrix (ECM). In breast cancer, tissue stiffness increases owing to an
increase in collagen production by recruited cancer-associated fibroblasts (CAFs). These
stromal modifications are notable during primary tumor growth and have a dualistic action
by creating a hard capsule to prevent penetration of anti-cancer therapies and forming a
favorable environment for tumor progression. Remodeling of the tumor microenvironment
immediately presented to cells can include changes in protein composition, concentration
and structural arrangement and provides the first mechanical stimuli in the metastatic
cascade. Not surprisingly, metastatic cancer cells possess the ability to mechanically
adapt, and their adaptability ensures not only survival but successful invasion within altered
environments. In the past decade, the importance of the microenvironment and its
regulatory role in diseases have gained traction and this is evident in the shift from
plastic culture to the development of novel biomaterials that mimic in vivo tissue.With these
advances, elucidations can be made into how ECM remodeling and more specifically,
altered cell-ECM adhesions, regulate tumor growth and cancer cell plasticity. Such
enabling tools in mechanobiology will identify fundamental mechanisms in cancer
progression that eventually help develop preventative and therapeutic treatment from a
clinical perspective. This review will focus on current platforms engineered to mimic the
micro and nano-properties of the tumor microenvironment and subsequent understanding
of mechanically regulated pathways in cancer.

Keywords: extracellular matrix, mechanobiology, invasion, hydrogel, stiffness, adhesion

1 INTRODUCTION

As cancer, particularly metastasis, remains a leading cause of death globally (WHO, 2021), there is a
call to action for researchers to develop novel approaches to enable new treatments. While the
biochemical and genetic drivers of metastasis have been extensively studied, (Chatterjee et al., 2018;
De Francesco et al., 2018; Siegel et al., 2018), there is a growing appreciation for the regulatory roles
that biophysical cues play in tumor progression and the onset of metastasis. Changes to mechanical
inputs such as stiffness (Sherman-Baust et al., 2003; Paszek andWeaver, 2004; Lu et al., 2011; Gierach
et al., 2012) and ligand presentation (Allinen et al., 2004; Larsen et al., 2006; Oskarsson, 2013) are
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transduced to the cell nucleus via a process coined
mechanotransduction. The microenvironment is composed of
micro-and nanoscale features which undergo extensive
remodeling during tumor development (Leiss et al., 2008;
Wang et al., 2017). While these aberrant mechanical stimuli
are acknowledged in tumor progression, the contribution and
specific mechanism for this is still largely unknown.
Understanding how mechanical stimuli regulate cancer cell
fate largely relies on enabling biomimetic and tuneable
materials that precisely recapitulate specific properties of the
tumor microenvironment (TME) and more specifically the
ECM. In this review, we discuss the functional consequences
that alterations of the ECM, at the nano- andmicro-scale, have on
cancer cell growth and invasion and the platforms allowing the
study of this complex disease.

2 WHAT IS THE TUMOR
MICROENVIRONMENT (TME)

TME refers to the cellular (fibroblasts, immune cells,
endothelial cells, and adipocytes, etc) and non-cellular
(proteins that make up the ECM) components that form
the microenvironment of a tumour. In this review, we
focus on the non-cellular component, the ECM, present in
all tissues and providing the physical scaffolding and
biomechanical cues required for tissue morphogenesis,

differentiation and homeostasis. The ECM consists of a
multitude of proteins (e.g. collagen, laminin, and
fibronectin) and glycosaminoglycans/proteoglycan (e.g.
hyaluronic acid, heparin). Utilising certain cell membrane
receptors (e.g., mainly integrins) cells can adhere to specific
ligands expressed on the ECM. In this way, cells and the
microenvironment maintain a dynamic dialogue, whereby
healthy tissues remain in a state of homeostasis. This
crosstalk is disrupted in tumorigenesis, where extensive
remodification to the TME results in altered cell behaviour
(Lu et al., 2011). The ECM is remodelled by ECM modifying
factors (MMP and LOX) which alter cross-linking of the
matrix or by paracrine signalling to cancer-associated
fibroblasts (CAFs) resulting in increased deposition of
ECM proteins (Özdemir et al., 2014; Rhim et al., 2014;
Sahai et al., 2020; Lee and Chaudhuri, 2021). Changes in
ECM composition by prolonged cross-linking/degradation
will present altered mechanical properties (e.g., stiffness),
cell-ECM ligand specificity (e.g., fibronectin dominant to
collagen dominant), and altered spacing between ligands
(e.g., nano-spacing of GFOGER, peptide in collagen that
binds integrins α1β1 and α2β1) (Figure 1). As physical
properties of the ECM influence cell behaviour via
mechanotransduction and these properties are altered in
cancer, acknowledging the cancer ECM and its regulatory
role in controlling cell behaviour are critical for
understanding cancer progression. (Young et al., 2016).

FIGURE 1 | Tumor extracellular matrix in nano- and micro-scale. Properties of tumor ECM include microscale stiffness and ligand chemistry changes as well as
nanoscale ligand spacing changes. The intelligent design of biomaterials allows recapitulation of these properties into tuneable devices for the study of cancer
phenotypes. Hydrogels utilise cross-linking technology which investigators can control spatially across one gel by altering UV penetration. There is a multitude of
biomaterials each utilising different backbones and employing different ligands for cells to adhere to (i.e. collagen = GFOGER and GelMA = RGD). Novel
advancements in nanotechnology have enabled the production of a platform whereby the nano-spacing of ligands can be altered according to the micelle-nano-array of
gold-nanoparticles that have attached peptides.
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2.1 ECM Stiffness Activates
Mechanotransduction Pathways to
Regulate Cancer Fate
Changes to tissue stiffness following tumor development is one of
the most well-established characteristics of the TME and this
knowledge is exploited during cancer screening (e.g., palpation)
(Khaled et al., 2004). Tumor stiffening is a downstream effect of
increased deposition of ECM proteins (such as collagen) by the
recruitment and activation of CAFs (Tlsty and Coussens, 2006).
Collagen is increasingly more crosslinked by lysyl oxidase (LOX)
which is implicated with increasing tension between cytoskeletal
components and integrins and mediating cell-matrix focal
adhesions (FA) (Choquet et al., 1997; Cox et al., 2013).
Establishing a mechanical connection between cell and ECM,
via FA, will result in the activation of various signalling cascades
and the generation of intracellular force through actin-myosin.
This process, coined mechanotransduction, begins at the cell-
ECM interface whereby specific integrins bind to the ECM
proteins to recruit and form actin stress fibers which maintain
the cytoskeletal tension (Bershadsky et al., 2003). Filamentous
Actin binds to Lamin-A within the nuclear membrane via
adaptor proteins such as Nesprin and SUN (Wang et al.,
2009), translating mechanical input to the nucleus of the cell.
Tension applied to nuclear lamina (Lamin-A is one of the key
building blocks) leads to translocation of mechanosensitive
proteins such as transcriptional coactivator with PDZ-binding
motif (TAZ) and yes-associated protein (YAP). This
mechanotransduction pathway utilises biochemical and
biomechanical signals to alter cancer cell growth, modes of
invasion and eventually govern the fate of cells in the TME.
Increased ECM stiffness enhances YAP and TAZ activity which
evidence suggests can drive tumour-initiating cells (cancer stem
cells (CSCs) to maintain self-renewal and tumor-initiation
capacities of breast cancer cells and induce EMT (Cordenonsi
et al., 2011; Dupont et al., 2011; Maugeri-Saccà et al., 2015).
Alongside integrin-mediated mechanotransduction, increasing
traction force not only regulates Rho-associated protein kinase
(ROCK), a protein largely responsible for actin cytoskeleton
dynamics and regulating breast cancer epithelial cell
differentiation (Wozniak et al., 2003), but also activates
mitogen-activated protein kinase (MAPK), which is
responsible for many diverse cellular programs including cell
proliferation, differentiation, motility and survival (Provenzano
et al., 2009; Cargnello and Roux, 2011). Overall, a stiff ECM
activates mechanotransduction which induces a gene expression
signature in cancer cells that is associated with a greater risk for
invasive breast carcinoma (Habel et al., 2004; Provenzano et al.,
2009).

2.2 TME Stiffness is Dynamic at the
Nanoscale
Previous investigations into the effects of stiffening on cancer
phenotypes arose from the common consensus that tumors are
stiffer than their healthy counterpart. However, the TME, and
more specifically the ECM, has displayed levels of complexity not

previously appreciated. A recent investigation into the nanoscale
stiffness of breast explants revealed non-metastatic tumors with
this characteristic increase in stiffness, but metastatic tumors with
a “softer” more “heterogenous” stiffness profile with 3 distinct
mechanical properties (Plodinec et al., 2012). These nanoscale
measurements translate to clinical measurements, with high
mammographic density associated with a greater risk of
developing breast cancer, whilst low density is linked to an
increased risk of cancer invasion (Ye et al., 2014). An
examination of transgenic mice showed initial stiffening
following tumor growth (spatially heterogeneous) followed by
tissue softening at the onset of tumor dissemination as a result of
ECM digestion (Sameni et al., 2000). These studies highlight the
complexity of the TME and more importantly the dynamic
nature of cancer ECM at the nanoscale.

2.3 Tumour Progression Involves Altered
ECM Composition
2.3.1 Protein Composition Changes and Integrin
Specificity
In diseases where ECM is misregulated, changes to ECM
composition results in changes to the ligand presentation (e.g.,
density (Sherman-Baust et al., 2003; Paszek and Weaver, 2004;
Gierach et al., 2012) chemistry and geometry (Allinen et al., 2004;
Larsen et al., 2006; Oskarsson, 2013)) which mediates integrin
binding. Integrins are a family of transmembrane glycoproteins
receptors consisting of 18 α and 8 β units which form
heterodimers that mediate cell-matrix interactions (Ruoslahti,
1991; Hynes, 1992). As receptors, integrins mediate recognition
of ECM constituents (e.g., cells that express α1β1 and α2β1 bind
to GFOGER), recruiting focal adhesion complexes to establish
traction force generation and actin filament assembly (Massia and
Hubbell, 1991; Arnold et al., 2004). For this reason, integrin-
mediated mechanotransduction has gained traction as a highly
specific process that regulates cytoskeletal tension, intracellular
signalling and gene expression related to proliferation, migration
and survival. In breast cancer, an aberrant ECM can destabilise
integrin-mediated adhesion resulting in enhanced metastatic
potential and drug resistance (Young et al., 2020).

In the majority of cancers, significant accumulation of collagen
has been associated with metastatic recurrence, aggressive
behaviour, and chemoresistance (Lochter and Bissell, 1995;
Ramaswamy et al., 2003; Oskarsson, 2013; Holle et al., 2016;
Ondeck et al., 2019). Integrins α1β1 and α2β1 are known to be
primarily collagen receptors and their expression has shown to
play a role in melanoma cell migration in 3D collagen matrices
(Koistinen and Heino, 2013). Increased expression of these two
heterodimers is noted in melanoma metastatic cells when
compared to cells in the primary tumor (Klein et al., 1991).
Interestingly, studies utilising mammary epithelium and aorta-
derived smooth muscles have shown collagen to activate distinct
signalling pathways and alter cell behaviour independent of
mechanical stimuli (stiffness) (Giancotti and Ruoslahti, 1999;
Engler et al., 2004; Brownfield et al., 2013). Accompanying
increased collagen deposition during a fibrotic response is the
deposition of fibronectin. Fibronectin is a glycoprotein known to
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enhance the growth of breast epithelial cells (McIntosh et al.,
2010), increase breast cancer invasion (via STAT3 and MAPK
pathways) (Balanis et al., 2013) and is upregulated in circulating
tumor cells (Raimondi et al., 2011). Cells adhere to RGD motifs
expressed on fibronectin via the α5β1 receptor and αVβ3 which
have emerged as essential mediators in many human carcinomas
and are largely implicated in tumour proliferation and metastasis,
with αVβ3 identified as a melanoma tumour progression marker
(Hsu et al., 1998; Koistinen and Heino, 2013; Hou et al., 2020).

2.3.2 Glycosaminoglycan Expression During Tumor
Progression
Aside from ECM proteins, glycosaminoglycans (GAGs) have also
proven essential in cancer progression. Hyaluronan is a GAG that
is highly expressed in breast cancer (Karousou et al., 2014).
Hyaluronan can interact with cancer cells via cell surface
receptors CD44 and RHAMM (Toole, 2004). CD44 is a cell
surface adhesion receptor (not an integrin) and is largely
recognized as a cancer stem cell (CSC) marker expressed by
almost every tumour cell (Jaggupilli and Elkord, 2012; Lin and
Ding, 2017; Wang et al., 2018). Employing alternative signaling
cascades then integrin-driven adhesion, CD44 has shown
regulatory roles in the Hippo pathway (Wang et al., 2014) and
interacts with RHAMM and ERK (Hamilton et al., 2007) as well
as Rho-ROCK (Chellaiah et al., 2003; Ohata et al., 2012) to
mediate breast cancer cell motility and enhance stemness of
colon cancer-initiating cells. This offers an alternative
perspective on the regulatory roles of GAGs and less
understood cell-ECM interactions. Overall, these studies
emphasize the specificity of cell-ECM adhesions which
promote sustained altered signaling cascades and govern
particular cell fates.

2.3.3 Altered Nano-Spacing of Ligands in TME
Compositional remodeling due to increased deposition of ECM
proteins, enhanced cross-linking by LOX and localized
degradation by secreted MMP factors, has an implication in
altering the spacing between individual ligands (e.g.
GFOGER). Cells sense the variations in the spacing of ECM
proteins through either single integrin proteins or recruitment of
larger integrin-containing adhesion complexes (Oria et al., 2017).
This spatial sensing has shown to play a role in physiological and
pathological states (Daley et al., 2008). Oria et al., 2017
demonstrated that human breast myoepithelial integrin
clustering and subsequent recruitment of focal adhesion is
inhibited when cell-ECM interactions are separated by more
than a few tens of nanometers. These nanometer-scale
alterations have regulatory roles in cellular migration,
morphology, focal adhesion assembly, cell adhesion and
traction force generation (Arnold et al., 2004; Cavalcanti-
Adam et al., 2006; Cavalcanti-Adam et al., 2007; Selhuber-
Unkel et al., 2010; Oria et al., 2017). Interestingly, breast
cancer cell survival, in response to chemotherapeutic
treatment, is highly dependent on the nanoscale ligand spacing
(Young et al., 2020).

Collagen fibres interact with each other at defined spacing
intervals termed periodicity (Gelse et al., 2003; Young et al.,

2016). This periodicity has shown intervals ranging from 63
to 72 nm and is the interval at which cells interact with the
protein (Wallace et al., 2010; Young et al., 2016). In vitro
studies have shown when periodicity is increased above
73 nm melanocytes and osteoclasts were inhibited in their
ability to cluster integrins (Arnold et al., 2004). Fibronectin,
also implicated in cancer, has shown a regular fibril
arrangement of 42 nm in thick fibres and 84 nm in thin
fibres. The fibrils at 84 nm will be unfolded and at a state
of extension whilst the thick fibres are a result of staggered
fibronectin dimers (Dzamba and Peters, 1991). It is
hypothesized that the latter could be exacerbated in cancer
due to the highly dense protein structures in the TME (Young
et al., 2016). As the spatial organization of the available ligand
binding partner changes, this mediates integrin clustering
affecting force-mediated contractility of the cell and
governing cell fate (Li et al., 2015). To confirm this theory,
cartilage cells were placed on ligands of discreet spacing; the
result was significantly greater cell area on the smaller nano-
spaced ligands, inferring aberrant integrin-clustering on the
larger nano-spacing (Li et al., 2015). In breast cancer cells,
altering the nano-spacing of ligands showed altered cellular
properties including morphology, focal adhesion formation,
migration and chemoprotection (smaller ligand spacing
hinders survival against chemotherapeutic drugs) (Young
et al., 2020).

3 TOOLS FOR RECAPITULATING THE
TUMOR MICROENVIRONMENT

3.1 Stiffness Tunable Hydrogels
The TME offers a complex assortment of biochemical and
biomechanical inputs that dynamically change following
cancer progression and onset of metastasis. To better
understand the functional consequences of ECM mechanics
on cell phenotype, investigators have employed a combination
of 2D and 3D hydrogel-based platforms. Being highly water-
based and tunable, hydrogels offer superior recapitulation of
specific characteristics of the ECM including
stiffness, composition, and ligand spacing (Supplementary
Table S1).

As mentioned previously, one of the most well-established
characteristics of the TME is changes in tissue stiffness which is
largely correlated with the risk of breast cancer development
(Habel et al., 2004; Provenzano et al., 2008). Because of this, the
production of biomaterials was largely centred around hydrogels
whose chemistry would allow easy manipulation of stiffness.
Synthetic gels such as polyacrylamide can produce discrete,
static 2D gels of different stiffnesses and spatial gradients
which offer greater biomimicry of the spatial heterogeneity
seen in vivo (Engler et al., 2006; Insua-Rodríguez and
Oskarsson, 2016; Hadden et al., 2017; Chin et al., 2021).
Seeding metastatic breast cancer cells on uniform stiffness
hydrogels which varied from 2.4–10.6 kPa demonstrated
stiffness-dependent differences in traction forces, strain
energies, and morphologies (Massalha and Weihs, 2017). As
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robust as PA is, the presence of free radicals during
polymerization inhibits cell encapsulation and limits
translatability from a 3D perspective.

Appreciation for the 3D architecture and its regulatory role on
cell phenotype has geared the development of novel 3D-capable
hydrogels. Collagen, being the primary constituent and major
structural component in many tissues is very attractive for cell-
ECM studies. Formed mainly from fibrous protein collagen type
I, fabrication involves manipulating collagen concentration and
raising the solution temperature until gelation occurs. Their soft
mesh-like matrix makes collagen hydrogels ideal for invasion
assays, with the most recent investigation showing collective
cancer cell migration inhibited in the stiffest
microenvironment (2.5 mg/ml) (Raghuraman et al., 2022). The
drawback of this platform includes limited stiffness ranges (up to
~5 kPa) and temporal tuneability, with reduced long-term
stability and high batch-batch variability.

For these reasons, semi-synthetic materials such as gelatin
methacryloyl (GelMA), synthesized from denatured collagen, has
gained significant traction (Bertlein et al., 2017). Containing cross-
linkable methacrylate groups, GelMA, will undergo polymerization
upon the addition of a photoinitiator (Irgacure 2,959) and exposure
to UV light. In this way, investigators gain greater tuneability over
GelMA whilst still maintaining biological relevance (contains RGD).
GelMA can also employ a gradient stiffness model which allows for a
more holistic understanding of mechanically driven cell phenotypes
(Major et al., 2019; Kim et al., 2020).

The use of these hydrogels allows for high throughput
fabrication of readily adaptable and physiologically relevant
environments, making it appealing for the study of ECM for
cancer proliferation and invasion. Other approaches to
mimicking the 3D microenvironment include 3D bioprinting
which is beneficial in creating an exact replication of target tissue
with consideration for cellular components, ECM and 3D spatial
components (for reviews see; (Charbe et al., 2017; Ro et al.,
2022)). Alternatively, the decellularization of tumors also offers a
new Frontier in tissue engineering that maintains not only the
mechanical components of the ECM but also the composition
and structure (for review see; (García-Gareta et al., 2022)).

Stiffness is just one ECM characteristic supplying biophysical
input to the cell. Tumor progression also proceeds extensive
modification to ECM composition (i.e., going from fibronectin-
laminin rich matrix to primarily collagen dominated) which alters
the integrin profile and at the nanoscale alters the spacing at which
cells are interacting with ECM proteins (Sherman-Baust et al., 2003;
Allinen et al., 2004; Paszek and Weaver, 2004; Larsen et al., 2006;
Gierach et al., 2012; Oskarsson, 2013).

3.2 Tools to Control ECM Composition
Polyacrylamide is inert in nature and requires conjugation with
proteins to enable cell attachment. Using a bifunctional cross-linker
sulfo-SANPAH, proteins can be covalently bound to the PAand enable
cell attachment (Caliari and Burdick, 2016). Because of this, PA is an
attractive choice when investigating the effects of specific adhesive
ligands, as cell-ECM interactions can be tightly controlled (Tse and
Engler, 2010). For 3D investigation different biomaterials which utilize
different ligands can be employed. Collagen as mentioned previously

expresses abundant GFOGER which will activate integrins α1β1 and
α2β1. GelMA, adapted from native gelatin, contains RGD binding
motifs (Bertlein et al., 2017)whichwill recruit integrinsα5β1 andαVβ3.
Alginate and polyethylene glycol diacrylate (PEGDA), do not express
native ligands, similar to PA, and offers a “blank canvas” allowing
preferential modification with adhesive ligands within a 3D context
(Caliari and Burdick, 2016).

Hyaluronic acid (HA) as a hydrogel has several important
advantages including its biological relevance and chemical
tunability. HA functional groups can be modified to enable a wide
range of cross-linking chemistries, useful for cellular
mechanotransduction investigations (Fraser et al., 1997). Unlike
collagen and GelMA, HA lacks integrin-mediated cell adhesion but
presents cell surface markers including CD44 which can be beneficial
when studying alternative cell-ECM adhesions and indirect pathways
interacting with integrin-mediated mechanotransduction.

3.3 Tools for Investigating Ligand
Nano-Spacing
Recapitulating and controlling for the nanoscale properties of the
microenvironment remains a great challenge in biomaterials.
Photolithography and optical lithography are the two most
commonly used techniques in nanofabrication (Lohmüller et al.,
2011). However, these two methods rely on light and achieving
structural dimensions below 100 nm is hardly feasible (Lohmüller
et al., 2011). Alternative methods, such as block copolymer micelle
lithography (BCMN), rely on the self-organization of molecules to
generate structural materials and can reach these sub-nanometer
resolutions (Gates et al., 2004). BCMN involves the formation of
spontaneous microphase-separated morphologies from amphiphilic
block copolymers (Lohmüller et al., 2011). The distribution of
nanoparticles due to block copolymer micelle self-assembly can be
manipulated by changing micelle size, the concentration of polymer
solution, the amount of metal precursor and the retraction speed
from the substrate. Once the micro-arrays are established, peptides
can be adhered to the nanoparticles enabling precise control over
ligand spacing. Seeding cancer cells atop this platform has shown to
influence key cellular properties such as morphology, focal adhesion
formation, migration as well as drug sensitivity (Young et al., 2020).

4 CONCLUSION AND FUTURE
PERSPECTIVES

The phenomenon responsible for the successful spread of primary
cancer cells from their tumor microenvironment to secondary sites is
still largely uncharacterized at the molecular level. Universally, the
metastatic cascade employs mechanical challenges in which cancer
cells will morphologically adapt to survive in these altered
environments (Amos and Choi, 2021). Numerous in vivo and
in vitro studies have examined the initial stages of tumor growth
and invasion and begun to outline some of the nano- andmicro-scale
changes occurring in the TME–including changes to ECM stiffness,
ligand chemistry and ligand nanospacing. Micro-scale changes, such
as stiffness and ligand chemistry, have shown greater advancements
in biomaterials than nano-scale properties where the primary obstacle
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has been developing tools in vivo to examine these changes and
establishing platforms in vitro that allow for tuneability at this level.
Overall, intelligent design of synthetic and biological biomaterials
should incorporate these properties so that investigators can focus on
the crucial differences between these properties and appreciate the
role of the ECM and its regulation of cell fate even at the smallest, and
perhaps most crucial, of metrics.
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