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Abstract Lysozyme from lambda bacteriophage (k lyso-

zyme) is an 18 kDa globular protein displaying some of the

structural features common to all lysozymes; in particular,

k lysozyme consists of two structural domains connected by

a helix, and has its catalytic residues located at the interface

between these two domains. An interesting feature of k
lysozyme, when compared to the well-characterised hen

egg-white lysozyme, is its lack of disulfide bridges; this

makes k lysozyme an interesting system for studies of protein

folding. A comparison of the folding properties of k lyso-

zyme and hen lysozyme will provide important insights into

the role that disulfide bonds play in the refolding pathway of

the latter protein. Here we report the 1H, 13C and 15N

backbone resonance assignments for k lysozyme by het-

eronuclear multidimensional NMR spectroscopy. These

assignments provide the starting point for detailed investi-

gation of the refolding pathway using pulse-labelling

hydrogen/deuterium exchange experiments monitored by

NMR.
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Biological context

Lysozymes are widespread in nature and have been used as

model systems to study many aspects of protein structure

and function, including the mechanism of protein folding

and the determinants of protein stability. On the basis of

sequence alignments, several classes of lysozymes have

been defined among which the best known are the c-type

(chicken) and v-type (virus) proteins. Hen egg-white and

T4 lysozymes have been studied in detail as typical rep-

resentatives of the c- and v-type lysozymes, respectively.

Despite their lack of statistically significant sequence

identity (Matthews et al. 1981) and their different mecha-

nisms (Kuroki et al. 1995), the two enzymes display clear

structural similarities and catalyze the same reaction;

therefore, they are presumed to have evolved from a

common ancestor and they constitute a classical example

of divergent evolution (Kuroki et al. 1995; Matthews 1996;

Matthews et al. 1981). Matthews and co-workers have

studied hundreds of T4 lysozyme mutants, providing an

in-depth characterization of the structural and functional

properties of this protein (Matthews 1996). Hen lysozyme,

on the other hand, has been used as a model system in

studies of protein folding using a range of biophysical

techniques (Matagne et al. 2000; Miranker et al. 1993;

Radford et al. 1992). These studies have provided impor-

tant insights about the general mechanism of protein

folding (Dobson et al. 1994; Matagne and Dobson 1998).

Hen lysozyme contains four disulfide bonds and most

refolding experiments have been carried out with these

bonds intact. Indeed, refolding from the fully reduced form

of the protein produces large quantities of aggregated

species (Goldberg et al. 1991; van den Berg et al. 1999).

Therefore, most of the in vitro experiments with hen

lysozyme do not reproduce correctly the process as it
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d’Ingénierie des Protéines, Institut de Chimie B6, Université de
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occurs in vivo, starting from the fully reduced form of the

protein (Gething and Sambrook 1992).

Lysozyme from lambda bacteriophage (k lysozyme) is

composed of 158 amino acid residues (17825 Da). The three-

dimensional structure of k lysozyme, determined by X-ray

crystallography (Evrard et al. 1998; Leung et al. 2001),

contains some of the structural features common to all

lysozymes; in particular, it consists of two structural domains

connected by a helix, and has its catalytic residues located at

the interface between these two domains. However,

sequence alignments indicate only weak local similarities

with v- and c-types lysozymes. In common with other

lysozymes, k lysozyme catalyses the cleavage of the glyco-

sidic bond between the C1 of N-acetyl muramic acid (NAM)

and the C4 of N-acetyl glucosamine (NAG) in the bacterial

peptidoglycan. However, the mechanism is different from

that of the other lysozymes; breakage of the b-1,4 bond

between the C1 of the NAM and the C4 of the NAG results in

transglycosylation and not in hydrolysis, as is usually the

case. Another interesting difference between k and hen

lysozyme is the lack of disulfide bridges in k lysozyme.

Therefore, a comparison of the folding properties of k
lysozyme and the already well-characterized hen lysozyme

will be of significant interest and will provide important

insights into the role that disulfide bonds play in the refolding

pathway of the latter protein. Here we report the 1H, 13C, and
15N backbone resonance assignments for k lysozyme

obtained using heteronuclear multidimensional NMR spec-

troscopy. These serve as the starting point for comparative

studies of the refolding of k and hen lysozyme, using a

combination of techniques including pulse-labelling hydro-

gen/deuterium exchange experiments monitored by NMR.

Methods and experiments

Protein expression and purification

The gene coding for wild-type k lysozyme (the R gene),

kindly provided by Dr. Patrice Soumillion (Université

Catholique de Louvain, Belgium), was cloned in a pET22b

expression vector (containing the ampicillin resistance

gene), for which expression of the recombinant gene is

IPTG inducible. The pET22b plasmid was then trans-

formed into an Escherichia coli BL21 (DE3) expression

strain (Novagen, WI, USA). Both the uniformly 13C/15N

and 15N isotopically enriched protein samples were pre-

pared by growing the bacteria in minimal media, contain-

ing 15NH4Cl, with either 13C6-glucose or unlabeled

glucose. Purification of k lysozyme was achieved using a

DEAE Sepharose column (GE Healthcare), previously

equilibrated with 30 mM phosphate buffer, pH 7.3. The

enzyme was eluted in the column flow-through and the

fractions containing k lysozyme were pooled and loaded on

an SP Sepharose HP column (GE Healthcare), previously

equilibrated with 10 mM HEPES buffer, pH 7 (buffer A).

The column was washed with 300 ml of buffer A, and

proteins were eluted with buffer A and a linear NaCl gra-

dient (0 to 1 M). The lysozyme-containing fractions were

pooled and stored at -20�C in buffer A.

NMR spectroscopy

NMR samples contained *1 mM protein in 95% H2O/5%

D2O at pH 5.45. All NMR spectra were acquired at 293 K

using a home-built 750 MHz spectrometer which is con-

trolled with GE/Omega software and is equipped with a

home-built triple-resonance pulsed-field-gradient probe-

head. Sequential assignments were carried out initially

using 15N-labelled k lysozyme and 3D 15N-edited TOCSY-

HSQC, NOESY-HSQC and HSQC-NOESY-HSQC experi-

ments; analysis of these spectra resulted in nearly complete

assignment of the 1HN and 15N resonances. The sequential

assignments obtained from the 15N-labelled sample were

confirmed with a 3D HNCA experiment and further 13C

and 1H assignments were obtained using 3D HNCO,

(H)CC(CO)NH and HCCH-TOCSY experiments.

Extent of assignments and data deposition

Figure 1a shows the 1H-15N HSQC spectrum of k lyso-

zyme. 1HN and 15N backbone assignments for all residues

except E136 are indicated in Fig. 1a. 15N assignments for

the N-terminal residue, M1, and for the 5 proline residues

have not been obtained. A total of 95% of the 1Ha, 97% of

the 13Ca and 94% of the 13C0 resonances were also assigned;

most of the missing assignments correspond to proline

residues or residues adjacent to prolines. Figure 2 shows the

consensus chemical shift index analysis of Wishart and

Sykes (1994) for k lysozyme; the protein contains both

a-helical and b-sheet secondary structure in solution.

Figure 1b shows the 1H-15N HSQC spectrum of k lyso-

zyme following exchange of the protein from H2O to D2O.

The *65 backbone amide peaks that are observed in this

spectrum correspond to amides that are protected from

hydrogen/deuterium exchange as a result of stable hydrogen

bonds or significant burial from solvent. The observation of a

large number of protected amides, distributed throughout the

structure of k lysozyme, will serve as the basis for residue-

specific studies of the folding pathway of k lysozyme using

pulse-labelling hydrogen/deuterium exchange methods.

The chemical shift assignments for k lysozyme have

been deposited in the BioMagResBank (http://www.bmrb.

wisc.edu) under the accession number 16664.
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Fig. 1 750 MHz 1H-15N HSQC

spectra of 15N-labelled k
lysozyme at pH 5.45, 293K.

a Spectrum collected for k
lysozyme in 95% H2O/5% D2O.

Peak assignments for backbone

amides are indicated.

b Spectrum collected for

k lysozyme in 99.9% D2O. The

observed peaks correspond to

amides that are protected from

exchange due to stable

hydrogen bonds or significant

burial from solvent

Fig. 2 Consensus chemical shift index (Wishart and Sykes 1994) for

k lysozyme derived from the 1Ha, 13Ca, 13 C0 and a subset of 13Cb

chemical shifts. Regions identified to have a-helical and b-strand

secondary structure are indicated
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