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Abstract

Despite possessing the capacity for selective attention, we often fail to notice the obvious.

We investigated participants’ (n = 39) failures to detect salient changes in a change blind-

ness experiment. Surprisingly, change detection success varied by over two-fold across

participants. These variations could not be readily explained by differences in scan paths or

fixated visual features. Yet, two simple gaze metrics–mean duration of fixations and the vari-

ance of saccade amplitudes–systematically predicted change detection success. We

explored the mechanistic underpinnings of these results with a neurally-constrained model

based on the Bayesian framework of sequential probability ratio testing, with a posterior

odds-ratio rule for shifting gaze. The model’s gaze strategies and success rates closely

mimicked human data. Moreover, the model outperformed a state-of-the-art deep neural

network (DeepGaze II) with predicting human gaze patterns in this change blindness task.

Our mechanistic model reveals putative rational observer search strategies for change

detection during change blindness, with critical real-world implications.

Author summary

Our brain has the remarkable capacity to pay attention, selectively, to important objects in

the world around us. Yet, sometimes, we fail spectacularly to notice even the most salient

events. We tested this phenomenon in the laboratory with a change-blindness experiment,

by having participants freely scan and detect changes across discontinuous image pairs.

Participants varied widely in their ability to detect these changes. Surprisingly, two low-

level gaze metrics—fixation durations and saccade amplitudes—strongly predicted suc-

cess in this task. We present a novel, computational model of eye movements, incorporat-

ing neural constraints on stimulus encoding, that links these gaze metrics with change

detection success. Our model is relevant for a mechanistic understanding of human gaze

strategies in dynamic visual environments.
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Introduction

We live in a rapidly changing world. For adaptive survival, our brains must possess the ability to

identify relevant, changing aspects of our environment and distinguish them from irrelevant, static

ones. For example, when driving down a busy road it is critical to identify changing aspects of the

visual scene, such as vehicles shifting lanes or pedestrians crossing the street. Our ability to identify

such critical changes is facilitated by visual attention–an essential cognitive capacity that selects the

most relevant information in the environment, at each moment in time, to guide behavior [1].

Yet, our capacity for attention possesses key limitations. One such limitation is revealed by

the phenomenon of “change blindness”, in which observers fail to detect obvious changes in a

sequence of visual images with intervening discontinuities [2,3]. Previous literature suggests

that observers’ lapses with detecting changes occur if the changes fail to draw attention; for

example if the change is presented concurrently with distracting events, such as an intervening

blank or transient noise patches. Change blindness, therefore, provides a useful framework for

studying visual attention mechanisms and its lapses [4]. Such lapses have important real-world

implications: observers’ success in change blindness tasks has been linked to their driving

experience levels [5,6] and safe driving skills [7].

In the laboratory, change blindness is tested, typically, by presenting an alternating

sequence of (a pair of) images that differ in one important detail (Fig 1A, “flicker” paradigm)

[2,3]. Participants are instructed to scan the images, with overt eye movements, to locate and

identify the changing object or feature. While many previous studies have investigated the phe-

nomenon of change blindness itself [8–10], very few studies have directly identified gaze-

related factors that determine observers’ success in change blindness tasks [4]. In this study,

we tested 39 participants in a change blindness experiment with 20 image pairs (Fig 1A). Sur-

prisingly, participants differed widely (by over 2-fold) in their success with detecting changes.

To understand the reason for these striking differences in performance, first, we analyzed

participants’ eye movement data, acquired at high spatial- and temporal- resolution, as they

scanned each pair of images. We discovered that two key gaze metrics–mean fixation duration

and the variance in the amplitude of saccades–were consistently predictive of participants’ suc-

cess. Next, we developed a model of overt visual search based on the Bayesian framework of

sequential probability ratio testing [11–14] (SPRT), in which subjects decided the next, most

probable location for making a saccade based on a posterior odds ratio test. In our SPRT

model, we also incorporated biological constraints on stimulus encoding and transformation,

based on well-known properties of the visual processing pathway [15,16] (e.g. bounded firing

rates, Poisson variance, foveal magnification, and saliency computation).

Our neurally-constrained model mimicked key aspects of human gaze strategies in the

change blindness task: model success rates were strongly correlated with human success rates,

across the cohort of images tested. In addition, the model exhibited systematic variation in

change detection success with fixation duration and saccade amplitude, in a manner closely

resembling human data. Finally, the model outperformed a state-of-the-art deep neural net-

work (DeepGaze II [17]) in predicting probabilistic patterns in human saccades in this change

blindness task. We propose our model as a benchmark for mechanistic simulations of visual

search, and for modeling human observer strategies during change detection tasks.

Results

Fixation and saccade metrics predict change detection success

39 participants performed a change blindness task (Fig 1A). Each experimental session con-

sisted of a sequence of trials with a different pair of images tested on each trial. Images
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presented included cluttered, indoor or outdoor scenes (see Data Availability link). To ensure

uniformity of gaze origin across participants, each trial began when subjects fixated continu-

ously on a central cross for 3 seconds. This was followed by the presentation of the change

blindness image pair: alternating frames of two images, separated by intervening blank frames

(250 ms each, Fig 1A). Of the image pairs tested, 20 were “change” image pairs, in that these

differed from each other in one of three key respects (S1 Table): (i) size of an object changing;

(ii) color of an object changing or (iii) change involving the appearance (or disappearance) of

Fig 1. Gaze metrics predict success in a change blindness experiment. A. Schematic of a change blindness experiment trial, comprising a sequence of alternating

images (A, A’), displayed for 250 ms each, with intervening blank frames (B) also displayed for 250 ms (“flicker” paradigm), repeated for 60 s. Red circle: Location of

change (not actually shown in the experiment). All 20 change image pairs tested are available in Data Availability link. B. Distribution of success rates of n = 39

participants in the change blindness experiment. Red and blue bars: good performers (top 30th percentile; n = 9) and poor performers (bottom 30th percentile; n = 12),

respectively. Inverted triangles: Cut-off values of success rates for classifying good (red) versus poor (blue) performers. C. Classification accuracy, quantified with area-

under-the-curve (AUC), for classifying trials as hits versus misses (left horizontal line) and performers as good versus poor (right horizontal line), obtained with a

support vector machine classifier. Violin plots: Null distributions of classification accuracies based on a permutation test (��� p<0.001). Error bars: Clopper-Pearson

binomial confidence intervals. D. Feature selection measures for identifying the most informative features that distinguish good from poor performers. From top to

bottom: Fisher score, Information gain, Change in area-under-the-curve (AUC) and bag of decision trees (for details, see Feature Selection Metrics in the Materials and

Methods). Brighter colors indicate more informative features. Solid red outline: most informative feature in the fixation feature subgroup (left); dashed red outline: most

informative feature in the saccade feature subgroup (right). FD—fixation duration, SA—saccade amplitude, SD—saccade duration, SPS—saccade peak speed. μ and σ2

denote mean and variance of the respective parameter. E. Distribution of mean fixation duration (μFD, in milliseconds) across 19 change images for good performers (x-

axis) versus poor performers (y-axis); one change image pair, successfully detected by all performers, was not included in these analyses (see text). Each data point

denotes average value of μFD, across each category of performers, for each image tested. Dashed diagonal line: line of equality. p-value corresponds to significant

difference in mean fixation duration between good and poor performers. F. Same as in E, but comparing variance of saccade amplitudes (in squared degrees of visual

angle) for good versus poor performers. Other conventions are the same as in panel E.

https://doi.org/10.1371/journal.pcbi.1009322.g001
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an object. The remaining (either 6 or 7 pairs; Materials and Methods) were “catch” image

pairs, which comprised an identical pair of images; data from these “catch” trials were not ana-

lyzed for this study (Materials and Methods; complete change image set in Data Availability

link). Change- and catch- image pairs were interleaved and tested in the same pseudorandom

order across subjects. Subjects were permitted to freely scan the images to detect the change,

for up to a maximum of 60 seconds per image pair. They indicated having detected the change

by foveating at the location of change for at least 3 seconds. A response was marked as a “hit” if

the subject was able to successfully detect the change within 60 seconds, and was marked as a

“miss” otherwise.

We observed that participants varied widely in their success with detecting changes: success

rates varied over two-fold–from 45% to 90%–across participants (Fig 1B). These differences

may arise from innate differences in individual capacities for change detection as well as other

experimental factors (see Discussion). Nonetheless, we tested if individual-specific gaze strate-

gies when scanning the images could explain these variations in change detection success.

First, we ranked subjects in order of their change detection success rates. Subjects in the top

30th (n = 9) and bottom 30th (n = 12) percentiles were labelled as "good" and "poor" perform-

ers, respectively (Fig 1B). This choice of labeling ensured robust differences in performance

between the two classes: change detection success for good performers varied between 75%

and 90%, whereas that for and poor performers varied between 45% and 61%. Nevertheless,

the results reported subsequently were robust to these cut-offs for selecting good and poor per-

formers (see S1 Fig for results based on performance median split). Next, we selected four gaze

metrics from the eye-tracker: saccade amplitude, fixation duration, saccade duration and sac-

cade peak speed (justification in the Materials and Methods) and computed the mean and the

variance of these four metrics for each subject and trial. These eight quantities were employed

as features in a classifier based on support vector machines (SVM) to distinguish good from

poor performers (Materials and Methods). One image pair (#20), for which all participants

correctly detected the change, was excluded for these analyses (Figs 1–3).

Classification accuracy (area-under-the-curve/AUC) for distinguishing good from poor

performers was 79.9% and significantly above chance (Fig 1C, p<0.001, permutation test,

Materials and Methods). We repeated these same analyses, but this time classifying each trial

as a hit or miss. Classification accuracy was 77.7% and, again, significantly above chance (Fig

1C, p<0.001). Taken together, these results indicate that fixation- and saccade- related gaze

metrics contained sufficient information to accurately classify change detection success.

Next, we identified gaze metrics that were the most informative for classifying good versus

poor performers. This analysis was done separately for the fixation and saccade metric subsets:

these were strongly correlated within each subset and uncorrelated across subsets (S2A Fig).

For each metric, we performed feature selection with four approaches–Fisher score [18], AUC

change [19] and Information Gain [20] and bag of decision trees (OOB error) [21]. A higher

value of each selection measure reflects a greater importance of the corresponding gaze metric

for classifying between good and poor performers. Among fixation metrics, mean fixation

duration was assigned higher importance based on three out of the four feature selection mea-

sures (Fig 1D, solid red outline). Among the saccade metrics, variance of saccade amplitudes

was assigned highest importance, based on all four feature selection measures (Fig 1D, dashed

red outline). We confirmed these results post hoc: mean fixation duration was significantly

higher for good performers, across images (Fig 1E; p = 0.0015, Wilcoxon signed rank test),

whereas variance of saccade amplitude was significantly higher for poor performers (Fig 1F;

p<0.001, Wilcoxon signed rank test).

We considered the possibility that the differences in fixation duration and saccade ampli-

tude variance between good and poor performers could arise from differences in multiple,

PLOS COMPUTATIONAL BIOLOGY Modeling gaze strategies in a change blindness task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009322 August 24, 2021 4 / 34

https://doi.org/10.1371/journal.pcbi.1009322


distinct modes of these, respective distributions. Nonetheless, statistical tests provided no sig-

nificant evidence for multimodality in either fixation duration or saccade amplitude distribu-

tions for either class of performers (S2B Fig) (Hartigan’s dip test for unimodality; fixation

duration: p>0.05, in 8/9 good performers with median p = 0.74, and in 8/12 poor performers

with median p = 0.31; saccade amplitudes: p>0.05, in 9/9 good performers with median

p = 0.99 and in 10/12 poor performers with median p = 0.99).

In sum, these results indicate that two key gaze metrics–mean fixation duration and vari-

ance of saccade amplitude–were strong and sufficient predictors of change detection success

in a change blindness experiment.

Next, we tested if more complex features of eye movements–such as scan paths, fixation

maps or fixated object features–differed systematically between good and poor performers.

Scan path data is challenging to compare across individuals because scan paths can vary in

terms of both the number and sequence of image locations samples. We compared scan paths

across participants by encoding them into a “string” sequences (Materials and Methods).

Briefly, fixation points for each image were clustered, with data pooled across subjects, and

individual subjects’ scan paths were encoded as strings based on the sequence of clusters vis-

ited across successive fixations (Fig 2A and 2B). We then quantified the deviation between

scan paths for each pair of subjects using the edit distance [22]. Median scan path edit dis-

tances were not significantly different between good and poor performer pairs (Fig 2C,

p = 0.14, Wilcoxon signed rank test). We also tested if the median inter-category edit distance

between the good and poor performer categories would be higher than the median intra-cate-

gory edit distance among the individual (good or poor) performer categories (Fig 2D). These

edit distances were also not significantly different (p>0.1, one-tailed signed rank test).

Second, we asked if fixation “maps”–two-dimensional density maps of the distribution of

fixations [23]–were different across good and poor performers. For each image, we correlated

fixation maps across every pair of participants (Materials and Methods). Again, we observed

no significant differences between fixation map correlations between good- and poor- per-

former pairs (Fig 2E, p = 0.29, Wilcoxon signed rank test), nor significant differences between

intra-category (good vs. good and poor vs. poor) fixation map correlations and inter-category

(good vs. poor) correlations (Fig 2F, p>0.1, one-tailed signed rank test).

Third, we asked if overall statistics of saccades were different across good and poor per-

formers. For this, we computed the probabilities of saccades between specific fixation clusters

(“domains”), ordered by the most to least fixated locations on each image (Materials and

Methods). The saccade probability matrix, estimated by pooling scan paths across each cate-

gory of participants, is shown in Fig 3A (average across n = 19 image pairs). Visual inspection

of the saccade probability matrices revealed no apparent differences between the good and

poor performers (difference in S3A Fig). In addition, we tested if we could classify between

good and poor performers based on individual subjects’ saccade probability matrices. Classifi-

cation accuracy with an SVM based on saccade probability matrix features (~56.67%, Fig 3B)

was not significantly different from chance (p>0.1, permutation test).

Fourth, we tested whether good and poor performers differed in terms of fixated image fea-

tures, as estimated with principal components analysis (Fig 3C, Materials and Methods). These

fixated features typically comprised horizontal or vertical edges at various spatial frequencies,

and were virtually identical between good and poor performers (Fig 3D, first six principal fea-

tures for each class). We observed significant correlations across components of identical rank

between good and poor performers (median r = 0.22, p<0.001, across top n = 150 components

that explained ~80% of the variance). Similar correlations were obtained with fixated features

obtained with the saliency map [24] (median r = 0.20, p<0.001, S3B Fig).
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Fifth, we tested whether good and poor performers differed systematically in the spatial dis-

tributions of fixations relative to the change location, before change was detected. For this, we

computed the frequency of fixations and the total fixation duration, based on the distance of

fixation relative to the center of the change location (binned in concentric circular windows of

increasing radii, in steps of 50 pixels, Materials and Methods). We observed no systematic dif-

ferences in the distributions of either total fixation duration, or frequency of fixations, relative

to the change location between good and poor performers (S4 Fig; p = 0.99 for fixation dura-

tion, p = 0.97 for fixation frequency, Kolmogorov-Smirnov test). In other words, the spatial

distribution of fixations, relative to the change location, was similar between good and poor

performers.

Finally, we tested whether good and poor performers differed in the time to first fixation on

the region of change, or the time to detect changes (on successful trials). Again, we observed

no significant differences in the distributions of either time to first fixation, or time to detect

changes, between good and poor performers (Fig 2G and 2H; p = 0.08 for time to first fixation

Fig 2. Scan paths and fixation maps do not distinguish good from poor performers. A. (Left) Representative image used in the change blindness experiment (Image

#6 in Data Availability link). (Right) Clustering of the fixation points based on the peak of the fitted BIC (n = 13) profile. Fixation points in different clusters are plotted in

different colors. Black fixations occurred in fixation sparse regions that were not included in the clustering. Black arrows show a representative scan path–a sequence of

fixation points. The character “string” representation of this scan path is denoted on the right side of the image. B. Variation in the Bayesian Information Criterion (BIC;

y-axis) with clustering fixation points into different numbers of clusters (x-axis; Materials and Methods). Circles: Data points. Gray curve: Bi-exponential fit. C.

Distribution of edit distances among good performers (x-axis) versus edit distances among poor performers (y-axis). Each data point denotes median edit distance for

each image tested (n = 19). Other conventions are the same as in Fig 1E. D. Distribution of intra-category edit distance (y-axis), among the good or among the poor

performers, versus the inter-category edit distance (x-axis), across good and poor performers. Red and blue data: intra-category edit distance for good and poor

performers respectively. Each data point denotes the median for each image tested (n = 19). Other conventions are the same as in panel C. E. Same as panel C, but

comparing Pearson correlations of fixation maps among good (x-axis) and poor performers (y-axis). Other conventions are the same as in panel C. F. Same as in panel D,

but comparing intra- versus inter-category Pearson correlations of fixation maps. Other conventions are the same as in panel D. G. Distribution of time to first fixation

within the region of change (in seconds) for good performers (x-axis) versus poor performers (y-axis). Other conventions are the same as in panel C. H. Same as in E, but

comparing time to detect change (in seconds) for good versus poor performers. Other conventions are the same as in panel G.

https://doi.org/10.1371/journal.pcbi.1009322.g002
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in change region, p = 0.28 for time to detect change, signrank test). Taken together with the

previous analysis, these results indicate that poor performers fixated as often and as close to

areas near the change, but simply failed to detect these changes successfully.

Overall, these analyses indicate that relatively simple gaze metrics like fixation durations

and saccade amplitudes predicted successful change detection. More complex metrics like

scan paths, fixated image features or the spatial distribution of fixations, were not useful indi-

cators of change detection success. In other words, “low-level” gaze metrics, rather than “high-

level” scanning strategies, determined participants’ success with change detection.

A neurally-constrained model of eye movements for change detection

We developed a neurally-constrained model of change detection to explain these empirical

trends in the data. Briefly, our model employs the Bayesian framework of Sequential Probabil-

ity Ratio Testing (SPRT) framework [14,15] to simulate rational observer strategies when per-

forming the change blindness task. We incorporated key neural constraints, based on known

properties of stimulus encoding in the visual processing pathway, into the model. For ease of

understanding we summarize key steps in our model’s saccade generation pipeline (Fig 4A

and 4B), first; a detailed description is provided thereafter.

In the model, distinct neural populations, with (noisy) Poisson firing statistics, encode the

saliency of the foveally-magnified image at each region. During fixation, following each alter-

nation (Fig 1A, either A followed by A’, or vice versa) the model computes a posterior odds

Fig 3. Saccade probabilities and fixated features are similar across good and poor performers. A. Average saccade probability matrices for the good performers

(top; red outline) and poor performers (bottom; blue outline). These correspond to probabilities of making a saccade between different “domains” (1–4), each

corresponding to a (non-contiguous) collection of image regions, ordered by frequency of fixations: most fixated regions (domain 1) to least fixated regions (domain

4). Cell (I, j) (row, column) of each matrix indicates the probability of saccades from domain j to domain i. B. Classification accuracy for classifying good versus poor

performers based on the saccade probability matrix features, using a support vector machine classifier. Other conventions are as in Fig 1D. Error bars: s.e.m. C.

Identifying low-level fixated features across good and poor performers. 112x112 image patches were extracted, centered around each fixation, for each participant; each

point in the 112x112 dimensional space represents one such image patch. Principal component analysis (PCA) was performed to identify low-level spatial features

explaining maximum variance among the fixated image patches, separately for good and poor performers. D. Top 6 principal components, ranked by proportion of

variance explained, corresponding to spatial features explaining greatest variance explained across fixations, for good performers (left panels) and poor performers

(right panels). These spatial features were highly correlated across good and poor performers (median r = 0.20, p<0.001, across n = 150 components).

https://doi.org/10.1371/journal.pcbi.1009322.g003
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ratio for change versus no change at each region and at each instant of time (Eq 1), and accu-

mulates this ratio as “evidence” (Eq 2, Results). If the accumulated evidence exceeds a prede-

termined (positive) threshold for change detection at the location of fixation, the model is

deemed to have detected the change. If, the accumulated evidence dips below a predetermined

(negative) threshold for “no change” at the fixated location, the observer terminates the cur-

rent fixation. The next fixation location is chosen based on a stochastic (softmax) decision rule

(Eq 3), with the probability of saccade to a region being proportional to the accumulated evi-

dence at that region. Note that both images—odd and even—must be included in these com-

putations to generate each saccade. The model continues scanning over the images in the

sequence until either the change is detected or until the trial duration has elapsed (as in our

experiment), whichever occurs earlier.

Neural representation of the image pair. At the onset of each fixation, the image was

magnified foveally based on the center of fixation [25], with the Cartesian Variable Resolution

(CVR) transform [26] (Materials and Methods; S5 Fig). Next, a saliency map was computed

with the frequency-tuned salient region detection method [24] for each image of each pair.

Fig 4. A Bayesian model of gaze strategies for change detection. A. Schematic showing a typical fixation across the pair of images (A, A’) and an intervening blank. B.

Detailed steps for modeling change detection (see text for details). (Clockwise from top left) At each fixation, a Cartesian variable resolution (CVR) transform is applied

to mimic foveal magnification, followed by a saliency map computation to determine firing rates at each location. Instantaneous evidence for change versus no change

(log-likelihood ratio, log L(t)) is computed across all regions of the image. An inverse CVR transform is applied to project the evidence back into the original image space,

where noisy evidence is accumulated, (sequential probability ratio test, drift-diffusion model). The next fixation point is chosen using a softmax function applied over the

accumulated evidence (Et). To model human saccadic biases, a distribution of saccade amplitudes and turn angles is imposed on the evidence values prior to selecting the

next fixation location (polar plot inset). C. A representative gaze scan path following model simulation (cyan arrows). Colored squares: specific points of fixation (see

panel D). Grid: Fine divisions over which the image was sub-divided to facilitate evidence computation. Green (1), blue (2) and red (3) squares denote first (beginning of

simulation), intermediate (during simulation) and last (change detection) fixation points, respectively. D. Evidence accumulated as a function of time for the same three

representative regions as in panel D; each color and number denotes evidence at the corresponding square in panel C. When the model fixated on the green or blue

squares (in panel C), the accumulated evidence did not cross the threshold for change detection. As a result, the model continued to scan the image. When the model

fixated on the red square (in the change region), the accumulated evidence crossed threshold (horizontal, dashed gray line) and the change was detected.

https://doi.org/10.1371/journal.pcbi.1009322.g004
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Saliency computation was performed on the foveally-magnified image, rather than on the orig-

inal image, to mimic the sequence of these two computations in the visual pathway; we denote

these foveally-transformed saliency values as S and S’, for each image (A) and its altered ver-

sion (A’), respectively.

Each image was partitioned into a uniform 72x54 grid of equally-sized regions. We index

each region in each image pair as A1, A2 . . ., AN and A’1, A’2. . ., A’N, respectively (N = 3888).

Distinct, non-overlapping, neural populations encoded the saliency value (Si, Si’) in each

region of each image. While in the brain, neural receptive fields typically overlap, we did not

model this overlap here, for reasons of computational efficiency (Materials and Methods). The

firing rates for each neural population were generated from independent Poisson processes.

The average firing rate for each region λi was modeled as a linear function of the average

saliency of image patch falling within that region as: liðSiÞ ¼ lmin þ ðlmax � lminÞhSki ik, where

Ski is the saliency value of the kth pixel in region Ai, and the angle brackets denote an average

across all pixels in that region. In other words, when the change between images A and A’
occurred in region i, the difference in firing rates between λi and λ’i was proportional to the

difference in saliency values across the change.

We modeled each change detection trial (total duration T, Table 1), as comprising of a large

number of time bins of equal duration (Δt, Table 1). At every time bin, the number of spikes

from each neural population was drawn a Poisson distribution whose mean was determined

by the average saliency of all pixels within the region. At the end of each fixation, the model

either indicated its detection of change, thereby terminating the simulation, or shifted gaze to

a new location. The precise criteria for signaling change versus shifting gaze are described

next.

For ease of description, we depict a typical fixation in Fig 4A. The first image of the pair

(say, A) persists m time-bins from the onset of the current fixation. Next, a blank epoch occurs

from m+1 to p time-bins. Following this, the second image of the pair (A’) appears for an inter-

val from p+1 to n time bins, until the end of fixation. We denote the number of spikes pro-

duced by neural population i at time t by wit . X
i and Yi represent the total number of spikes

produced by neural population i when fixating at the first and second images respectively, dur-

ing the current fixation. Thus, Xi ¼ Sm
t¼1
ðwitÞ; Y

i ¼ Sn
t¼pþ1
ðwitÞ. We denote the number of

spikes in the blank period as Bi ¼ Sp
t¼mþ1

wit ¼ 0: For simplicity, we assume that no spikes

Table 1. Model parameters and their default values.

Parameters Symbol Value Description

Time bin Δt 25 ms Unit of time for the model

Image duration τ 10Δt Duration for which each image or blank is shown

Trial duration – 60 s Total duration of trial

Temperature T 0.01 Modulates stochasticity of next saccade

Decay factor γ 0.004 Decay of the evidence with time (inversely related)

Decay scale β 4.0 grid units Spatial range of evidence decay

Noise scale W U(-5, 5) Models noise in evidence accumulation

Prior odds ratio P 0.1 Prior odds of change to no change

Change threshold Fc 100 Threshold to determine change

“No change” threshold Fn -20 Threshold to determine “no change”.

Threshold decay z 0 Decay rate of no-change threshold

Foveal magnification factor FMF 0.05 Magnification of the fixated region on the fovea according to the CVR transform

Firing rate bounds λmin, λmax 5, 120 spikes/bin Minimum and maximum firing rates

Firing rate prior μf 3 spikes/bin Expected difference in firing rates

https://doi.org/10.1371/journal.pcbi.1009322.t001
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occurred during the blank period (Bi = 0), although this is not a strict requirement, as the key

model computations rely on relative rather than absolute firing rates. In sum, the observer

must perform change detection with a noisy neural representation derived from saliency map

of the foveally-magnified image.

Modeling change detection with an SPRT rule. The observer faces two key challenges

with change detection in this change blindness task. First, were the images not interrupted by

a blank, a simple pixel-wise difference of firing rates over successive time epochs would suffice

to localize the change. For example, computing |hXii−hYii| (where |x| denotes the absolute

value of x, and angle brackets denote average over many time bins), and testing if this differ-

ence is greater than zero at any region i, suffices to identify the location of change. On the

other hand, such an operation does not suffice when images are interleaved with a blank, as

in change blindness tasks. For example, a pixel-wise subtraction of each image from the blank

(|hXii−hBii| or |hYii−hBii|) yields large values at all locations of the image. Therefore, when

images are interrupted by a blank, information about the first image must be maintained

across the blank interval and compared with second image following the blank, for detecting

the change. Second, even if no blank occurred between the images, a pixel-wise differencing

operation would not suffice, due to the stochasticity of the neural representation: a non-zero

difference in the number of spikes from a particular region, i (|Xi−Yi|) is not direct evidence of

change at that location. In other words, the observer’s strategy for this change blindness task

must take into account both the occurrence of the blank between the two images, as well as

the, stochasticity in the Poisson neural representation of the image, for successfully detecting

changes.

To address both of these challenges, we adopt an SPRT-based search rule. First, we compute

the difference in the number of spikes between the first and second image at each region Ai in

the image. We denote the random variable indicating this difference by Zi = Xi−Yi, and its

value at end of time bin t as z. We then compute a likelihood ratio for change (C) versus no

change (N), as:

Li t; zð Þ ¼
pðZiðtÞ ¼ zjCÞ
pðZiðtÞ ¼ zjNÞ

ð1Þ

Specifically, the observer tests if the observed value of Zi was more likely to arise from two

generating processes (Change, C), or could from a single, underlying generating process (No

Change, N). This computation is performed at each time step following the onset of the second

image (t>p) of each pair. Details of computing this likelihood ratio for Poisson processes are

provided in the Materials and Methods; for our model this computation involves an infinite

sum, which we calculate using Bessel functions and efficient analytic approximations [27]. The

functional form of the log-likelihood ratio resembles a piecewise linear function of firing rate

differences (S6A and S6B Fig, see next section), which can be readily achieved by the output of

simple neural circuits [28–30].

Second, the observer integrates the “evidence” for change at location Ai, by accumulating

the logarithm of the likelihood ratio log(Li(t)), along with the log of the prior odds ratio (Pi), as

in the SPRT framework.

EiðtÞ ¼ ð1 � giðtÞÞEiðt � 1Þ þ logðLiðtÞÞ þ logðPiÞ þWiðtÞ ð2Þ

where γi 2[0,1] is a decay parameter for evidence accumulation at location Ai, which simulates

“leaky” evidence accumulation [15,31] with larger values of γi, indicating greater “leak” in evi-

dence accumulation, Pi is the prior odds ratio of change to no change (P(C)/P(N)) at each loca-

tion, Wi(t) represents white noise, sampled from a uniform distribution (Table 1), to mimic
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noisy evidence accumulation [32]. Here we assume that the prior ratio is constant across time

and space, but nonetheless study the effect of varying prior ratios on model performance (next

section). Both of these features–leak and noise in evidence accumulation–are routinely incor-

porated in models of human decision-making [31], and are grounded in experimental obser-

vations in brain regions implicated in decision-making [15]. Evidence accumulation occurs in

the original, physical space of the image, and not in the CVR transformed space (Fig 4B). Note

that this formulation of an SPRT decision involves evaluating and integrating fully the loga-

rithm of the Bayesian posterior odds ratio (product of the prior odds and likelihood ratio, Pi ×
Li(t)).

Evidence accumulation is performed for each region in the image; Ei(t) for each region is

calculated independently of the other regions. If the accumulated evidence Ei(t) crosses a posi-

tive threshold, Fc (Table 1), the observer stops scanning the image and region Ai, at which the

threshold Fc was crossed, is declared the “change region”. If, on the other hand, the accumu-

lated evidence crosses a negative (no-change) threshold Fn (Table 1), the observer terminates

the current fixation and determines the next region to fixate, Ak, based on a softmax probabil-

ity function:

pk ¼ e
Ek
T =SN

i¼1
e
Ei
T ð3Þ

where Ei is the evidence value for region i, N is the number of regions in the image, and T is a

temperature parameter which controls the stochasticity of the saccade (decision) policy (Mate-

rials and Methods; see also next section). For selecting the next point of gaze fixation, we also

matched directional saccadic biases typically observed in human data [33] (Fig 4B, described

in Materials and Methods section on “Comparison of model performance with human data”).

In some simulations we also decayed the no-change threshold (Fn) with different decay rates

(z; Table 1) and studied its effect on model performance. Because we observed virtually no

false alarms (signaling a no-change location as change) in our experimental data (0.06% of all

trials; Materials and Methods) we did not model decay in the change threshold (Fc), which

would have yielded significantly more false alarms.

Note that although we have not explicitly modeled inhibition-of-return (IOR), this feature

emerges naturally from the evidence accumulation rule in the model. Following each fixation,

the accumulated evidence for no-change decays gradually (Eq 2), thereby reducing the proba-

bility that subsequent fixations occur, immediately, at the erstwhile fixated location. This fea-

ture encourages the model to explore the image more thoroughly. We illustrate gaze shifts by

the model in an exemplar change blindness trial (Fig 4C and 4D). The model’s scan path is

indicated by cyan arrows showing a sequence of fixations, ultimately terminating at the change

region. When the model fixated, initially, on regions with no change (Fig 4C, squares with

green/1 or blue/2 outline), transient evidence accumulation occurred either favoring a change

(positive fluctuations) or favoring no change (negative fluctuations) (Fig 4D, green and blue

traces, respectively). In each case, evidence decayed to baseline values rapidly during the blank

epochs, when no new evidence was available, and the accumulated evidence did not cross

threshold. Finally, when the model fixated on the change region (Fig 4C, square with red out-

line/3), evidence for a change continued to accumulate, until a threshold-crossing occurred

(Fig 4D, red trace, threshold: dashed gray line). At this point, the change was deemed to have

been detected, and the simulation was terminated.

Model trends resemble qualitative trends in human experimental data

We tested the effect of key model parameters on change detection performance, to test for

qualitative matches with our experimental findings. We simulated the model and measured
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change detection performance by varying each model parameter in turn (Table 1, default val-

ues), while keeping all other parameters fixed at their default values. For these simulations we

employed the frequency-tuned salient region detection method [24] to generate the saliency

map. The first three simulations (Fig 5A–5C) tested whether the model performed as expected

based on its inherent constraints. The last three simulations (Fig 5D–5F) evaluated whether

emergent trends in the model matched empirical observations regarding gaze metrics in our

study (Fig 1E and 1F). The results reported represent averages over 5–10 repetitions of each

simulation.

First, we tested the effect of varying the relative durations of the image and the blank, while

keeping their overall presentation duration (image+blank) constant. Note that no new evi-

dence accrues during the blanks, whereas decay of accumulated evidence continues. Therefore,

extending the duration of the blanks, relative to the image, should cause a substantial deterio-

ration in the performance of the model. The simulations confirmed this hypothesis:

Fig 5. Effect of model parameters on change detection success. A. Change in model performance (success rates, % correct) with varying the relative interval of the

images and blanks, measured in units of time bins (Δt = 25 ms/time bin; Table 1), while keeping the total image+blank interval constant (at 50 time bins). Positive

values on the x-axis denote larger image intervals, as compared to blanks, and vice versa, for negative values. Blue points: Data; gray curve: sigmoid fit. B. Same as in

panel (A), but with varying the maximum decay factor (γ; Eq 2). Curves: Sigmoid fits. C. Same as in panel (A) but with varying the firing rate prior (μf) for image pairs

with the lowest (blue; bottom 33rd percentile) and highest (red; top 33rd percentile) magnitudes of firing rate changes. Curves: Smoothing spline fits. Colored squares: μf

corresponding to the center of area of the two curves. D. Same as in panel (A), but with varying the mean fixation duration (μFD; measured in time bins, Δt = 25 ms/

time bin). (Inset; lower) Variation of μFD with prior ratio of change to no change (P(C:NC)). (Inset; upper) Same as lower inset but with varying threshold decay rate z

(Table 1). E. Same as in panel (A), but with varying saccade amplitude variance (σ2
SA). (Inset) Variation of σ2

SA with the softmax function temperature parameter (T)

(see text for details). F. Same as in panel (A), but with varying saccade amplitude variance (σ2
SA). (Inset) Variation of σ2

SA with the foveal magnification factor (FMF).

Other conventions in B-F are the same as in panel A. Error bars (all panels): s.e.m.

https://doi.org/10.1371/journal.pcbi.1009322.g005
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performance deteriorated (or improved) systematically with decreasing (or increasing) dura-

tions of the image relative to the blank (Fig 5A).

Second, we tested the effect of varying the magnitude of the decay factor (γ, Table 1).

Decreasing γ prolongs the (iconic) memory for evidence relevant to change detection; γ = 1

represents no memory (immediate decay; no integration) of past evidence, whereas γ = 0 indi-

cates reliable memory (zero decay; perfect integration) of past evidence (refer Eq 2). Model

success rates were at around 80% for γ = 0 and performance degraded systematically with

increasing γ (Fig 5B); in fact, the model was completely unable to detect change for γ values

greater than around 0.2, suggesting the importance of the transient memory of the image

across the blank for successful change detection.

Third, we tested the effect of varying μf, the prior on the magnitude of the difference

between the firing rates (across the image pair) in the change region (Fig 5C). For this, we

divided images into two extreme subsets (highest and lowest 1/3rd), based on a tercile (three-

way) split of firing rate magnitude differences. The performance curve for the highest tercile

(largest firing rate differences in change region) of images was displaced rightward relative to

the performance curve for the lowest tercile (smallest firing rate differences). Specifically, μf
corresponding to the center of area of the performance curves was systematically higher for

the images with higher firing rate differences (Fig 5C, colored squares).

Fourth, we tested the effect of varying mean fixation duration (μFD)–a key parameter identi-

fied in this study as being predictive of success with change detection. The mean fixation dura-

tion is not a parameter of the model. We, therefore, varied the mean fixation duration,

indirectly, by varying the prior odds ratio (P) and the decay rate (z) of the no-change threshold

(Fn). A lower prior odds ratio of change to no-change biases evidence accumulation toward

the no-change threshold, leading to shorter fixations (and vice versa; Fig 5D, lower inset). On

the other hand, a higher decay rate of the no-change threshold leads to a greater probability of

bound crossing of the evidence in the negative direction, again leading to shorter fixations

(and vice versa; Fig 5D; upper inset). In either case, we found that decreasing (increasing) the

mean fixation duration produced systematic deterioration (improvement) in the performance

of the model (Fig 5D). These results recapitulate trends in the human data, indicating that

increased fixation duration may be a key gaze metric indicating change detection success.

Fifth, we tested the effect of varying the saccade amplitude variance (s2
SD)–the other key

parameter we had identified as being predictive of change detection success. Again, because

the variance of the saccade amplitude is not a parameter of the model, we varied this, indi-

rectly, by varying the temperature (T) parameter in the softmax function: a higher temperature

value leads to random sampling from many regions of the image, thereby increasing s2
SD

whereas a low temperature value leads to more deterministic sampling, thereby reducing s2
SD

(Fig 5E, inset). With increasing saccade variance, performance dropped steeply (Fig 5E).

Finally, we also explored the effect of varying the foveal magnification factor (FMF) across a

two-fold range. Saccade amplitude variance decreased robustly as the FMF increases (Fig 5F,

inset) (see Discussion). As with the previous simulation, we observed a systematic decrease in

performance with increasing saccade amplitude variance (Fig 5F), again, recapitulating trends

in the human data.

Taken together, these results show that gaze metrics that were indicative of change detec-

tion success in the change blindness experiment also systematically influenced change detec-

tion performance in the model. Specifically, the two key metrics indicative of change detection

success in humans, namely, fixation duration and variance of saccade amplitude, were also

predictive of change detection success in the model. These effects could be explained by chang-

ing specific, latent parameters in the model (e.g. decay rate of the no-change threshold, prior
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ratios, foveal magnification factors). Our model, therefore, provides putative mechanistic links

between specific gaze metrics and change detection success in the change blindness task.

Model performance mimics human performance quantitatively

In addition to these qualitative trends, we sought to quantify similarities between model and

human performance in this change blindness task. For this analysis, we modeled biases inher-

ent in human saccade data (S7 Fig) by matching key saccade metrics in the model–amplitude

and turn angle of saccades–with human data (Figs 6A and 7A, r = 0.822, p<0.01; see Materials

and Methods section on “Comparison of model performance with human data”). For these

simulations, and subsequent comparisons with a state-of-the-art deep neural network model

(DeepGaze II) [17] we used the saliency map generated by the DeepGaze network rather than

Fig 6. Comparison between human and model performance. A. (Left) Joint distribution of saccade amplitude and

saccade turn angle for human participants (averaged over n = 39 participants). Colorbar: Hotter colors denote higher

proportions. (Right) Same as in the left panel, but for model, averaged over n = 40 simulations. B. Correlation between

change detection success rates for human participants (x-axis) and the model (y-axis). Each point denotes average success

rates for each of the 20 images tested, across n = 39 participants (human) or n = 40 iterations (model). Error bars denote

standard error of the mean across participants (x-axis) or simulations (y-axis). Dashed gray line: line of equality. C.

Average absolute deviation from human performance of the sequential probability ratio test (SPRT) model (Model,

leftmost bar), for a control model in which evidence decayed rapidly (Control 1, γ = 1; second bar from left), for a control

model in which the stopping rule was based on the derivative of the posterior odds ratio (Control 2; third bar from left), or

for a control model which employed a random search strategy (Control 3, T = 104; rightmost bar). p-values denote

significance levels following a paired signed rank test, across n = 20 images (�p< 0.05).

https://doi.org/10.1371/journal.pcbi.1009322.g006
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the frequency-tuned salient region detection algorithm, so as to enable a direct comparison

between our model and DeepGaze.

As a first quantitative comparison, we tested whether image pairs in which human observ-

ers found difficult to detect changes (S2C Fig), were also challenging for the model. For this,

we compared the model’s success rates across images with observers’ success rates in the

change blindness experiment. Remarkably, the model’s success rates, averaged across 40 inde-

pendent runs, correlated significantly with human observers’ average success rates (Fig 6B,

r = 0.476, p = 0.034, robust correlations across n = 20 images).

We compared the Bayesian SPRT search rule, as specified in our model, against three alter-

native control models, each with a different search strategy or stopping rule: (i) a model in

which evidence decayed rapidly, so that the decision to signal change was based on the instan-

taneous posterior odds ratio alone; (ii) a model in which the stopping rule was based on cross-

ing a threshold “rate of change” of the posterior odds ratio, and (iii) a model that employed a

random search strategy (Materials and Methods). For each of these models, the average abso-

lute difference in performance with the human data was significantly higher, compared with

that of the original model (Fig 6C; p<0.05 for 2/3 control models; Wilcoxon signed-rank test).

Moreover, none of the control model’s success rates correlated significantly with human

observers’ success rates (r = 0.09–0.42, p>0.05, for all 3/3 control models; robust correlations).

Finally, we tested whether model gaze patterns would match human gaze patterns beyond

that achieved by state-of-the-art fixation prediction with a deep neural network: DeepGaze II

Fig 7. Comparison between human, model and Deep Gaze II performance. A. Distribution of saccade amplitudes for

human participants (yellow), sequential probability ratio test (SPRT) model (red) and the Deep Gaze II neural network

(blue). B. Top 10 clusters of human fixations, ranked by cumulative fixation duration (rows/columns 1–10). Increasing

indices correspond to progressively lower cumulative fixation duration. C. Saccade probability matrix (left) averaged across

all images and all participants, (middle) for simulations of the sequential probability ratio test (SPRT) model, and (right) for

the Deep Gaze II neural network. D. Distribution, across images, of the correlations (r-values) of saccade probability

matrices between human participants and sequential probability ratio test (SPRT) model (left) and human participants and

Deep Gaze II neural network (right). p-value indicates pairwise differences in these correlations across n = 20 images.

https://doi.org/10.1371/journal.pcbi.1009322.g007
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[17]. First, we quantified human gaze patterns by computing the probability of saccades pair-

wise among the top 10 clusters with the largest number of fixations (e.g. Fig 7B) for each

image. We then compared these human saccade probability matrices (Fig 7C, left) with those

derived from simulating the model (Fig 7C, middle) as well as with those generated by the

DeepGaze network (Fig 7C, right). For the latter, saccades were simulated using the same soft-

max rule as employed in our model (Eq 3) along with inhibition-of-return [34] (Materials and

Methods); in addition, for each image, we identically matched the distribution of fixation

durations between DeepGaze and our model (Materials and Methods).

The model’s saccade probability matrix (Fig 7C, middle) closely resembled the human sac-

cade probability matrix (Fig 7C, left), indicating that model was able to mimic human saccades

patterns closely. On the other hand, the DeepGaze saccade matrix (Fig 7C, right) deviated sig-

nificantly from the human saccade probability matrix. Confirming these trends, we observed

significantly higher correlations between the human saccade probabilities and our model’s sac-

cade probabilities (Fig 7D, left) as compared to those with DeepGaze’s saccade probabilities

(Fig 7D, right) (human-SPRT model: median r = 0.51, human-DeepGaze II: median r = 0.14;

p<0.01 for significant difference in correlation values across n = 20 images, signed rank test).

These results were robust to the underlying saliency map in our SPRT model: replacing Deep-

Gaze’s saliency map with the frequency-tuned salient region detection method yielded nearly

identical results (S8A and S8B Fig).

The chief reason for these differences was readily apparent upon examining the saccade

amplitude distributions across the human data, our SPRT model and DeepGaze: whereas the

human and model distributions contained many short saccades, the DeepGaze distribution

contained primarily long saccades (Fig 7A). Consequently, we repeated the comparison of sac-

cade probabilities limiting ourselves to the range of saccade amplitudes in the DeepGaze

model. Again, we found that our model’s saccade probabilities were better correlated with

human saccade probabilities (S8C and S8D Fig) (human-SPRT model: median r = 0.29,

human-DeepGaze II: median r = 0.10; p<0.001). We propose that these differences occurred

because DeepGaze saccades are generated based on relative saliencies of different regions

across the image, whereas saliency computation, per se, may be insufficient to model human

saccade strategies in change blindness tasks or, in general, in change detection tasks.

In summary, change detection success rates were robustly correlated between human par-

ticipants and the model. Moreover, our model outperformed a state-of-the-art deep neural

network in predicting gaze shifts among the most probable locations of human gaze fixations

in this change blindness task.

Discussion

The phenomenon of change blindness reveals a remarkable property of the brain: despite the

apparent richness of visual perception, the visual system encodes our world sparsely. Stimuli at

locations to which attention is not explicitly directed are not effectively processed [4]. Even

salient changes in the visual world sometimes fail to capture our attention and remain unde-

tected. Visual attention, therefore, plays a critical role in deciding the nature and content of

information that is encoded by the visual system.

In a laboratory change blindness experiment, we observed that participants varied widely in

their ability to detect changes. These differences cannot be directly attributed to participants’

inherent change detection abilities. Nevertheless, a recent study evaluated test-retest reliability

in change blindness tasks, and found that observers’ change detection performance was rela-

tive stable over periods of 1–4 weeks [35]. In our study, participants whose fixations lasted

marginally longer, on average, and whose saccades were less spatially variable, were best able
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to detect changes. Given the intricate link between mechanisms for directing eye-movements

and those governing visual attention [36–38], our results suggest the hypothesis that spatial

attention shifts more slowly in time (higher fixation durations), and less erratically in space

(lower saccade variance), in order to enable participants to detect changes effectively.

To explain our experimental observations mechanistically, we developed, from first princi-

ples, a neurally-constrained model based on the Bayesian framework of sequential probability

ratio testing [15,31]. Such SPRT evidence accumulation models have been widely employed in

modelling human decisions [31], and also appear to have a neurobiological basis [15]. In our

model, we incorporated various neural constraints including foveal magnification, saliency

maps, Poisson statistics in neural firing and human saccade biases. Even with these constraints,

the model was able to faithfully reproduce key trends in the human change detection data,

both qualitatively and quantitatively (Figs 5 and 6). The model’s success rates correlated with

human success rates, and the model reproduced key saccade patterns in human data, outper-

forming competing control models (Figs 6B and 6C, 7C and S8).

On the one hand, our study follows a rich literature on human gaze models, that fall,

loosely, into two classes. The first class of “static” models use information in visual saliency

maps [23,37,39] to predict gaze fixations. These saliency models, however, do not capture

dynamic parameters of human eye fixations, which are important for understanding strategies

underlying visual exploration in search tasks, like change blindness tasks. The second class of

“dynamic” models seek to predict the temporal sequence of gaze shifts [40–43]. Nevertheless,

these approaches were developed for free-viewing paradigms, and comparatively few studies

have focused on gaze sequence prediction during search tasks [44,45]. On the other hand, sev-

eral previous studies have developed algorithms to address the broader problem of “change

point” detection [46–48]. Yet, none of these algorithms are neurally-constrained (e.g. foveal

magnification, Poisson statistics), and none models gaze information or saccades. To the best

of our knowledge, ours is the first neurally-constrained model for gaze strategies in change

blindness tasks, and developing and validating such a model is a central goal of this study.

Specifically, our model outperformed a state-of-the-art deep neural network (DeepGaze II),

in terms of predicting saccade patterns in this change blindness task. Yet, a key difference

must be noted when comparing our model with DeepGaze. Our model relies on a decision

rule based on posterior odds for generating saccades: For this, it must compare evidence for

change versus no change across the two images. In our simulations, in contrast, the DeepGaze

model generates saccades independently on the two images, without comparing them. Based

on these simulations, we found that our model’s gaze patterns provided a closer match to

human data compared to gaze patterns from DeepGaze (Figs 7C and 7D and S8). Because

DeepGaze is a model tailored for predicting free-viewing saccades, this comparison serves

only to show that even a state-of-the-art free-viewing saliency prediction algorithm is not suffi-

cient to accurately predict gaze patterns in the context of a change detection (or change blind-

ness) task. In other words, saccades made with the goal of detecting changes are likely to be

different from saccades made in free-viewing conditions.

Our model exhibited several emergent behaviors that matched previous reports of human

failures in change blindness tasks. First, the model’s success rates improved systematically as

the blank interval was reduced (Fig 5A); this trend mimics previously-reported patterns in

human change blindness tasks, in which shortening the interval of the intervening blank

improves change detection performance [4]. Second, the model’s success rates improved sys-

tematically with reducing the evidence decay rate across the blank (Fig 5B). In other words,

retaining information across the blank was crucial to change detection success. This result

may have intriguing links with neuroscience literature, which has shown that facilitating neu-

ral activity in oculomotor brain regions (e.g. the superior colliculus) during the blank epoch
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counters change blindness [49]. Third, the model’s ability to detect changes improved when its

internal prior (expected firing rate difference) aligns with the actual firing rate difference at the

change region (Fig 5C). These results may explain a results from a previous study [50], which

found that familiarity with the context of the visual stimulus was predictive of change detection

success.

Finally, the model provided mechanistic insights about key trends observed in our own

experiments, specifically, a critical dependence of success rates on mean fixation durations and

the variance of saccade amplitudes (Fig 5D, 5E and 5F). Fixation durations in the model varied

systematically either with altering the prior odds ratio or the decay rate of the no-change

bound. Note that the prior odds ratio corresponds to an individual’s prior belief in the prior

probability of change to no change. The lower this ratio, the higher the degree of belief in no

change, and the sooner the individual seeks to break each fixation. In our model, this was

achieved by having the prior ratio bias evidence accumulation toward the no-change (nega-

tive) bound. Similarly, faster decay of the no-change bound, possibly reflecting a stronger

“urgency” to break fixations, resulted in faster bound crossing and, therefore, shorter fixations.

Regardless of the mechanism, shorter fixation durations resulted in impaired change detection

performance (Fig 5E), providing a putative mechanistic link between fixation durations and

change detection success in the experimental data. In addition, saccade amplitude variance

modulated systematically with changes in the foveal magnification factor (FMF). With higher

foveal magnification the model is, perhaps, able to better distinguish features in regions proxi-

mal to the fixation location, and saccade to them, thereby resulting in overall shorter saccades,

and lower variance. Moreover, the higher foveal magnification, enables analyzing the region of

change with higher resolution, thereby leading to better change detection performance. As a

consequence performance degraded systematically with increased saccade amplitude variance

(Fig 5F), the common underlying cause for each being the change in the foveal magnification

factor. This provides a plausible mechanism for higher variance of saccade amplitudes in

“poor” performers.

We implemented three control models in this study. The first control model—in which evi-

dence decayed rapidly (γ = 1)—mimics the scenario of rapidly decaying short-term memory;

this model signals the change based on threshold crossing of the instantaneous, rather than the

accumulated, posterior odds. In the second control model, we employed an alternative stop-

ping rule: a rapid, large change in the posterior odds ratio sufficed to signal the change. Such a

“temporally local” stopping rule obviates the need for evidence accumulation (short-term

memory) and may be implemented by neural circuits that act as temporal change detectors

(differentiators). The third control model mimicked a random saccade strategy, with a high

temperature parameter (T = 104) of the softmax function. This model establishes baseline

(chance) levels of success, if an observer were to ignore model evidence and saccade randomly

to different locations on each image, and arrive at the change region “by chance”. Each of

these control models fell short of our SPRT model in terms of their match to human

performance.

Nonetheless, our SPRT model can be improved in a few ways. First, saliency maps in our

model were typically computed with low-level features (e.g. Fig 5; the frequency tuned salient

region method). Incorporating more advanced saliency computations (e.g. semantic saliency)

[51] into the saliency map could render the model more biologically realistic. Second, although

our neurally-constrained model provides several biologically plausible mechanisms for

explaining our experimental observations, it does not identify which of these mechanisms is

actually at play in human subjects. To achieve this objective, model parameters may be fit with

maximum likelihood estimation [52] or Bayesian methods for sparse data (e.g. hierarchical

Bayesian modelling)[53]. Yet, in its current form, such fitting is rendered challenging because
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the model is not identifiable: multiple parameters in the model (e.g. prior ratios or decay of the

no-change threshold) produce similar effects on specific gaze parameters (e.g. fixation dura-

tions, Fig 5D). Future extensions to the model, for example, by measuring and modeling more

gaze metrics for constraining the model, may help overcome this challenge. Such model-fitting

will find key applications for identifying latent factors contributing to inter-individual differ-

ences in change detection performance.

Our simulations have interesting parallels with recent literature. With a battery of cognitive

tasks Andermane et al. [35] identified two factors that were critical for predicting change

detection success: “visual stability”–the ability to form stable and robust visual representation–

and “visual ability”–indexing the ability to robustly maintain information in visual short term

memory. Other studies have identified associated psychophysical factors, including attentional

breadth [54] and visual memory [55] as being predictive of change detection success. We pro-

pose that (higher) fixation durations and (lower) variability of saccade amplitudes may both

index a (higher) “visual stability” factor, indexing the ability to form more stable visual repre-

sentations. In contrast, the temporal decay factor (Table 1, γ) and spatial decay scale (Table 1,

β) may correspond to visual memory and attentional breadth, respectively; each could com-

prise key components of the “visual ability” factor, indexing robust maintenance of informa-

tion in short-term memory. Our model provides a mechanistic test-bed to systematically

explore the contribution of each of these factors and their constituent components to change

detection success in change blindness experiments.

A mechanistic understanding of the behavioral and neural processes underlying change

blindness will have important real-world implications: from safe driving [56] to reliably verify-

ing eyewitness testimony [57]. Moreover, emerging evidence suggests that change blindness

(or a lack thereof) may be a diagnostic marker of neurodevelopmental disorders, like autism

[58–60]. Our model characterizes gaze-linked mechanisms of change blindness in healthy

individuals and may enable identifying the mechanistic bases of change detection deficits in

individuals with neurocognitive disorders.

Materials and methods

Ethics statement

Informed written consent was obtained from all participants. The study was approved by the

Institutional Human Ethics Committee (IHEC) at the Indian Institute of Science (IISc),

Bangalore.

Experimental protocol

We collected data from n = 44 participants (20 females; age range 18–55 yrs) with normal or

corrected-to-normal vision and no known impairments of color vision. Of these, data from 4

participants, who were unable to complete the task due to fatigue or physical discomfort, were

excluded. Data from one additional participant was irretrievably lost due to logistical errors.

Thus, we analyzed data from 39 participants (18 females).

Images were displayed on a 19-inch Dell monitor at 1024x768 resolution. Subjects were

seated, with their chin and forehead resting on a chin rest, with eyes positioned roughly 60 cm

from the screen. Each trial began when subjects continually fixated on a central cross for 3 sec-

onds. This was followed by presentation of the change image pair sequence for 60s: each frame

(image and blank) was 250 ms in duration. The trial persisted until the subjects indicated the

change by fixating at the change region for at least 3 seconds continuously (“hit”), or if the

maximum trial duration (60 s) elapsed and the subjects failed to detect the change (“miss”). An

online algorithm tracked, in real-time, the location of the subjects’ gaze and signaled the
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completion of a trial based on whether they were able to fixate stably at the location of change.

Each subject was tested on either 26 or 27 image pairs, of which 20 pairs differed in a key detail

(available in Data Availability link); we call these the “change” image pairs. The remaining

image pairs (7 pairs for 30 subjects and 6 pairs for 9 subjects) contained no changes (“catch”

image pairs); data from these image pairs were not analyzed for this study (except for comput-

ing false alarm rates, see next). To avoid biases in performance, the ratio of “change” to “catch”

trials was not indicated to subjects beforehand, but subjects were made aware of the possibility

of catch trials in the experiment. We employed a custom set of images, rather than a standard-

ized set (e.g.[4]), due to the possibility that some subjects might have been familiar with change

images used in earlier studies.

Overall, the proportion of false-alarms–proportion of fixations with durations longer than

3s in catch trials–was negligible (~0.06%, 17/32248 fixations across 264 catch trials) in this

experiment. To further confirm if the subjects indeed detected the change on hit trials, a post-

session interview was conducted in which each subject was presented with one of each pair of

change images in sequence and asked to indicate the location of perceived change. The post-

session interview indicated that about 5.7% (31/542) of hit trials were not recorded as such; in

these cases, the total trial duration was 60 s indicating that even though the subject fixated on

the change region, the online algorithm failed to register the trial as a hit. In addition, 2.9%

(7/238) of miss trials, in which the subjects were unable to detect the location of change in the

post-session interview, ended before the full trial duration (60 s) had elapsed; in these cases, we

expect that subjects triggered the termination of the trial by accidentally fixating for a pro-

longed duration near the change. We repeated the analyses excluding these 4.8% (38/780) trials

and observed results closely similar to those reported in the text. Finally, eye-tracking data

from 0.64% (5/780) trials were corrupted and, therefore, excluded from all analyses.

Subjects’ gaze was tracked throughout each trial with an iViewX Hi-speed eye-tracker (Sen-

soMotoric Instruments Inc.) with a sampling rate of 500 Hz. The eye-tracker was calibrated

for each subject before the start of the experimental session. Various gaze parameters, includ-

ing saccade amplitude, saccade locations, fixation locations, fixation durations, pupil size, sac-

cade peak speed and saccade average speed, were recorded binocularly on each trial, and

stored for offline analysis. Because human gaze is known to be highly coordinated across both

eyes, only monocular gaze data was used for these analyses. Each session lasted for approxi-

mately 45 minutes, including time for instruction, eyetracker calibration and behavioral

testing.

SVM classification and feature selection based on gaze metrics

We asked if subjects’ gaze strategies would be predictive of their success with detecting

changes. To answer this question, as a first step, we tested if we could classify good versus poor

performers (Fig 1C) based on their gaze metrics alone. As features for the classification analy-

sis, we computed the mean and variance of the following four gaze metrics: saccade amplitude,

fixation duration, saccade duration and saccade peak speed recorded by the eyetracker. We

did not analyze two other gaze metrics acquired from the eyetracker: saccade average speed

and pupil diameter for these analyses. Saccade average speed was highly correlated with sac-

cade peak speed across fixations (r = 0.93, p<0.001), and was a redundant feature. In addition,

while pupil size is a useful measure of arousal [61], it is often difficult to measure reliably,

because slight, physical movements of the eye or head may cause apparent (spurious) changes

in pupil size that can be confounded with real size changes. Before analysis, feature outliers

were removed based on Matlab’s boxplot function, which considers values as outliers if they

are greater than q3 + w × (q3 –q1) or less than q1 –w × (q3 –q1), where q1 and q3 are the 25th

PLOS COMPUTATIONAL BIOLOGY Modeling gaze strategies in a change blindness task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009322 August 24, 2021 20 / 34

https://doi.org/10.1371/journal.pcbi.1009322


and 75th percentiles of the data, respectively, and setting w = 1.5 provides 99.3 percentile cov-

erage for normally distributed data. To avoid biases in estimating gaze metrics for good versus

poor performers this last fixation at the change location (a minimum of 3 seconds of data)

were removed from the eyetracking data for all “hit” trials before further analyses.

Following outlier removal, these eight measures were employed as features in a classifier

based on support vector machines (SVM) to classify good from poor performers (fitcsvm func-

tion in Matlab). The SVM employed a polynomial kernel, and other hyperparameters were set

using hyperparameter optimization (OptimizeHyperParameters option in Matlab). Features

from each image were included as independent data points in feature space. Classifier perfor-

mance was assessed with 5-fold cross validation, and quantified with the area-under-the-curve

(AUC [62]). For these analyses, we included gaze data from all but one image (Image #20, see

Data Availability link), in which every subject detected the change correctly. Significance levels

(p-values) of classification accuracies were assessed with permutation testing by randomly

shuffling the labels of good and poor performers across subjects 100 times and estimating a

null distribution of classification accuracies; significance values correspond to the proportion

of classification accuracies in the null distribution that were greater than the actual classifica-

tion accuracy values. A similar procedure was used for SVM classification of trials into hits

and misses except that, in this case, class labels were based on whether the trial was a hit or a

miss, and permutation testing was performed by shuffling hit or miss labels across trials.

Because we employed summary statistics (e.g. mean, variance) of the gaze metrics in these fea-

ture selection analysis, we tested for unimodality of the logarithm of the respective gaze metric

distributions with Hartigan’s dip test for unimodality [63].

Next, we sought to identify gaze metrics that best distinguished good from poor performers.

For this we employed four standard metrics—Fisher score [18], AUC change [19] and Infor-

mation Gain [20] and bag of decision trees [21]–which quantify the relative importance of

each feature for distinguishing the two groups of subjects (Fig 1D). A detailed description of

these metrics is provided next.

Feature selection metrics

(i) Fisher score computes the “quality” of features based on their extent of overlap across clas-

ses. In a two-class scenario, Fisher Score for the jth feature is defined as,

F jð Þ ¼
ð�xðþÞj � �xjÞ
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where, �xj is the average value of the jth feature. Similarly �xðþÞj and �xð� Þj are the average of jth fea-

ture for the positive and negative category respectively. Here �xðþÞi;j and �xð� Þi;j denote the jth feature

of ith sample-index for each category, with n(+) and n(-) being the number of positive and neg-

ative instances respectively. A more discriminative feature has a higher Fisher score.

(ii) AUC change describes the change in area-under-the-curve (AUC) with removing each

feature in turn. The AUC (A) is the area under the ROC curve, plotted by varying the discrimi-

nation threshold and plotting the True Positive Rate (TPR) as a function of the False Positive

Rate (FPR).

A ¼
R 1

x¼0
TPRðFPR� 1ðxÞÞdx ð5Þ

A more discriminative feature’s absence produces a higher deterioration in classification

accuracy.
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(iii) Information gain is a classifier-independent measure of the change in entropy upon

partitioning the data based on each feature. A more discriminative feature has a higher infor-

mation gain. Given binary class labels Y for a feature X, the entropy of Y (E(Y)) is defined as,

EðYÞ ¼ � pþlogðpþÞ � p� logðp� Þ ð6Þ

where, p+ is the fraction of positive class labels and p− is the fraction of negative class labels.

The Information Gain given Y for a feature X is given by,

IG X;Yð Þ ¼ E Yð Þ � min
i

nX>divðiÞEðYX>divðiÞÞ þ nX<divðiÞEðYX<divðiÞÞ

nX>divðiÞ þ nX<divðiÞ
ð7Þ

div ið Þ ¼
XsortedðiÞ þ Xsortedðiþ 1Þ

2

where, nX>div(i) and nX<div(i) is the number of entries of X greater than and less than div(i),
YX>div(i) and YX<div(i) are the entries of Y for which the corresponding entries of X are greater

than and less than div(i) respectively and Xsorted(i) indicates a feature vector with its values

sorted in ascending order. A more discriminative feature has a higher Information Gain.

(iv) Out-of-bag error based on a bag of decision trees is an approach for feature selection

using bootstrap aggregation on an ensemble of decision trees. Rather than using a single deci-

sion tree this approach avoids overfitting by growing an ensemble of trees on independent

bootstrap distributions drawn from the data. The most important features are selected by out-

of-bag estimates of feature importance in the bagged decision trees (OOB error). We used the

Treebagger function, as implemented in Matlab, with saccade and fixation features as inputs to

the model, which classified if the data belonged to a good or poor performer. The number of

trees was set to 6, with all other hyperparameters set to their default values.

Analysis of scan paths and fixated spatial features

We compared scan paths and low-level fixated (spatial) features across good and poor per-

formers. To simplify comparing scan paths across participants, we adopted the following

approach: we encoded each scan path into a finite length string. As a first step, fixation maps

were generated to observe where the subjects fixated the most. Very few fixations occurred in

object-sparse regions (e.g. sky), or had uniform color or texture, like the walls of a building

(Fig 2A). In contrast, many more fixations around crowded regions with more intricate details.

For each image, fixation points of all subjects were clustered, and each cluster was assigned a

character label. The entire scan path, comprising a sequence of fixations, was then encoded as

a string of cluster labels.

Before clustering fixation points, we sought to minimize the contributions of regions with

very low fixation density. To quantify this we adopted the following approach: Let xi be a fixa-

tion point and let Dr
xi

denote the average Euclidean distance of xi from the set of other fixation

points which are at a radius r from it. Let ðDr
xi
Þ
� 1

denote the inverse of Dr
xi

. Now, we distributed

all the fixation points uniformly on the image; let U denote this set. We find the point yi in U
that was closest (in Euclidean distance) to xi, and compute ðDr

yi
Þ
� 1
; as before. Then, the fixation

density at the fixation point xi was defined as rðxiÞ ¼ ðDr
xi
Þ
� 1
=ðDr

yi
Þ
� 1

. Thus, all points with

density less than 1 indicate regions which were sampled with less density than that corre-

sponding to a uniform sampling strategy. These fixation points with very low fixation density
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were grouped into a single cluster since these occurred in regions that were explored relatively

rarely. For these analyses r was set to 40 pixels, although the results were robust to variations of

this parameter. The remaining fixation points were clustered using k-means clustering

algorithm.

The main challenges in working with the k-means algorithm are with: (i) deciding the num-

ber of clusters (k) and ii) deciding initial cluster centers. To overcome these, we utilized the

Bayesian Information Criterion (BIC) employed in the context of x-means clustering [64]: this

allowed us to determine the optimum k. For each k ranging from 1 to 50, a BIC score was com-

puted. Following smoothing, k corresponding to the highest BIC score was selected as the opti-

mum cluster count. Once the number of clusters was fixed, the initial cluster centers were

fixed using an iterative approach: For each iteration, initial cluster centers were selected using

the k-means++ algorithm [65] and the values which gave the highest BIC score were selected

as the initial cluster centers. Using the k and initial centers identified with these approaches,

the fixation points were clustered for each image (Fig 2A, right). Once these clusters were iden-

tified for each image, we employed four approaches for the analysis of scan-paths and fixated

spatial features.

First, we computed the edit distance between scan paths [22]. Briefly, the edit distance pro-

vides an intuitive measure of the dissimilarity between two strings. It corresponds to the mini-

mal number of “edit” operations—insertions, deletions or substitutions—that are necessary to

transform one string into the other. For each image, the edit distance between the scan paths

of each pair of subjects was calculated and normalized (divided) by the longer scan path length

of the pair; this was done to normalize for differences in scan path length across subjects. A

distribution of normalized edit distances was calculated among the good performers, and

among the poor performers, across images. Median edit distance of each category of perform-

ers was compared against the other, with a Wilcoxon signed rank test. However, note that the

lack of a significant difference would only indicate that good performers and poor performers,

each, followed similarly-consistent strategies. Therefore, to test whether these strategies were

indeed significantly different between good and poor performers, we compared the median

edit distance among the good (or poor) performers (intra-category edit distance) with the

median edit distance across good and poor performers (inter-category edit distance), for all

images, with a one-tailed signed rank test.

Second, we computed the probabilities of making a saccade among specific types of clusters,

which we call “domains”. Clusters obtained for each image were sorted in descending order of

cumulative fixation duration. These were then grouped into four “domains”, based on quar-

tiles of fixation duration, and ordered such that the first domain had the highest cumulative

fixation duration (most fixated domain) and the last domain had the least cumulative fixation

duration (least fixated domain). We then computed the probability of making a saccade from

each domain to the other. We denote these saccade probabilities as: P(ik, jk+1), which repre-

sents the probability of making a saccade from domain i at fixation k to domain j at fixation k
+1. We tested if the saccade probabilities among domains were different between good and

poor performers by using saccade probability matrices as vectorized features in a linear SVM

analysis (other details as described in section on “SVM classification and feature selection based
on gaze metrics”).

Third, we computed the correlation between fixation distributions over images. Each image

was divided into 13x18 tiles, and a two-dimensional histogram of fixations was computed for

each image and participant. Binning at this resolution yielded non-empty bins for at least 15%

of the bins; results reported were robust to finer spatial binning. The vectorized histograms of

fixations were correlated between every pair of performers for each image, and median corre-

lations compared across the two categories of performers, with a Wilcoxon signed rank test.
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As before, we also compared the median fixation correlations among the good (or poor) per-

formers with the median fixation correlations across good and poor performers (intra- versus

inter-category), for all images, with a one-tailed signed rank test.

Fourth, we tested whether good and poor performers fixated on distinct sets of low-level

spatial features in the images. For this, we identified spatial features that explained the greatest

amount of variance in fixated image patches across good and poor performers. Specifically,

image patches of size 112x112 pixels around each fixation point, corresponding to approxi-

mately 4˚ of visual angle were extracted from each image for each participant and converted to

grayscale values using the rgb2gray function in Matlab, which converts RGB images to gray-

scale by eliminating the hue and saturation information while retaining the luminance. Two

sets of fixated image patches was constructed separately for the good and poor performers.

Each of these image patch sets was then subjected to Principal Component Analysis (PCA),

using the pca function in Matlab, to identify low-level features in the image which occurred at

the most common points of fixation across each group of subjects (Fig 3D). We, next, sorted

the PCA feature maps based on the proportion of explained variance, and correlated each pair

of sorted maps across good and poor performers; in the Results, we report average correlation

values across the top 150 principal component maps. We did not attempt an SVM classifica-

tion analysis based on PCA features, because of the high dimensionality of the extracted PC

maps (~104), and the low number of data points in our experiment (~800). We also performed

the same analysis after transforming each image into a grayscale saliency map using the fre-

quency tuned salient region detection algorithm [24]. The same analyses were repeated for

spatial features extracted from good and poor performers’ fixated image patches.

Fifth, we tested if good and poor performers differed in terms of the spatial patterns of their

fixations relative to the change region. For this, we computed the fixation frequency (counts)

and the total fixation duration for each participant, based on the distance relative to the center

of the change location, binned in concentric circular windows of increasing radii, in steps of

50 pixels. Each of these metrics were normalized by the respective parameter for each image

and pooled together, separately for the good and poor performers, and compared between the

two classes of performers with the Kolmogorov-Smirnov test (S4 Fig). Finally, to test if good

and poor performers differed in terms of their latencies to fixate on the change region, we also

compared the time to first fixation on the region of change, or the time from trial initiation to

detect changes (on successful trials) for good and poor performers (Fig 2G and 2H).

Model simulations and choice of parameters

The model was simulated with a sequence of operations, as shown in Fig 4B. The model has

been fully described in the Results. In these simulations, the CVR transformation that mimics

foveal magnification was performed before the saliency map was computed (see next section).

This sequence mimics the order of operations observed in the brain: foveal magnification

occurs at the level of the retina, whereas saliency computation occurs at the level of higher

brain structures like the superior colliculus [66] or the parietal cortex [67]. Saliency maps were

computed using the frequency tuned salient region detection algorithm [24]. Because of this

sequence of operations, we needed to re-compute the saliency map for each image for every

possible location of fixation (at the pixel level): an operation that is computationally unfeasible

on a standard desktop system. To expedite the computation, we represented each image in a

reduced 864x648 pixel space and divided each image into a grid of non-overlapping patches or

regions (72x54; Fig 4B), such that each patch covered 12x12 pixels. For two images of portrait

orientation (Images #10 and #19; in Data Availability link), the same operations were done

except that x- and y- grid resolutions were interchanged. We then pre-computed CVR
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transforms and saliency maps for each of these pre-computed grid centers and performed sim-

ulations based on these region-based representations of the images.

Model parameters used for the simulations are specified in Table 1. Model parameters were

not fit to human behavioral data, for example, using maximum-likelihood estimation. Rather,

we selected model parameters so that they either matched the parameters used in the experi-

ment (e.g. image and blank durations), or matched human metrics. We describe next the spe-

cific justification for choice of each model parameter listed in Table 1.

The time bin (Δt) was specified as 25 ms; larger and smaller values resulted in less or more

frequent evaluations of the evidence (Eq 1) producing correspondingly faster or slower accu-

mulation of the evidence. The image and blank durations (τ) were fixed at 10 time bins (250

ms), matching their durations in the actual experiment. The trial duration was fixed to 2400

bins (60 s), again matching the actual experiment. The temperature (T) parameter was set to

ensure a similar range of saccade amplitude variance in the model, as in the human data. The

decay factor (γ), which determines how quickly accumulated evidence “decays” over time, and

decay scale (β), which governs the spatial extent of evidence accumulation, were set to default

values that enabled the model to match average human performance across all images. Then,

their values were varied over a wide range to test the effect of these parameters on model suc-

cess with change detection. The spatial distribution of the decay parameter at each region was

specified based on a two-dimensional Gaussian function, with its peak at the region of fixation;

therefore, γi at each location is a function of time and depends on the current region being fix-

ated. Noise scale (W), which controls the noise added during the evidence accumulation pro-

cess, and threshold (Fc), which controls the threshold value of evidence needed for reporting a

change (Fig 4D), were set so that their respective values ensured negligibly low false-positive

rates (< 2%), overall. The prior odds ratio (P) and “no change” threshold (Fn) were set to val-

ues that provided an approximate match to the median human fixation durations. Firing rate

bounds (λmin, λmax) for encoding saliency were between 5 and 120 spikes per time bin. This

corresponds to an overall population firing rate range of 0.2–4.8 kHz, which, assuming around

50 units in the neural population encoding each region, works out to a firing rate in the range

of 4–96 Hz per neuron; these numbers mimic the biologically-observed range of firing rates

for SC neurons (~5–100 Hz, White et al. 2017; their Fig 3). The firing rate prior (μf) was set to

3 spikes per bin, and the effect of varying this parameter on performance was also tested (Fig

5C). Finally, we used a third-order Taylor series approximation to the softmax function to

achieve a softer saturation of this function. Note that these model parameter values were cho-

sen based on human gaze metrics, or average task performance, but never based on task per-

formance in individual images, to avoid circularity when correlating model performance with

human performance across images (see Materials and Methods section “Comparison of model
performance with human data”).

Human saccade sequences tend to be biased in terms of the amplitude of individual sac-

cades, and the angles between successive saccades (S7 Fig); these biases likely reflect properties

of the oculomotor system that generates these saccades [33]. Because these saccade properties

are not emergent features of our model, we matched the human saccade turn angle and ampli-

tude distributions in the model. This was done by multiplying the map of evidence accumu-

lated with the human saccade amplitude and turn angle distribution, before imposing the

softmax function for computing saccade probabilities (Fig 4B). The effect of this bias was that

the model generated scan-paths which qualitatively resembled human scan-paths (e.g. Fig 4C).

Again, we sought to match only human saccade statistics in the model, and not task perfor-

mance, when imposing this saccade bias to avoid circularity when computing the correlation

between model and human performance in the change blindness task (see Materials and

Methods section “Comparison of model performance with human data”). We repeated the
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simulations without imposing human saccade biases on the model, and obtained nearly identi-

cal results.

Cartesian variable resolution (CVR) transform. We modeled a key biological feature of

visual representations of images, in terms of differences between foveal and parafoveal represen-

tations. When a particular region is fixated, the representation of the fixated region, which is

mapped onto the fovea, is magnified whereas the representation of the peripheral regions are

correspondingly attenuated (S5 Fig). We modeled this using the Cartesian Variable Resolution

(CVR) transform, which mimics known properties of visual magnification in humans [26].

The enhanced sensory representation of the foveated (fixated) region was modeled accord-

ing to the following mathematical transformation of the image. We considered the foveated

pixel to be the origin, denoted by (x0, y0) in the original image. An arbitrary point in the

image, denoted by (x, y) is at a distance from the origin given by, dx = x−x0 and dy = y−y0. The

following logarithmic transformation was then performed:

dvx ¼ lnðbdxþ 1ÞSfx; dvy ¼ lnðbdyþ 1ÞSfy ð8Þ

where, β is a constant (= 0.05) that determines central magnification, and Sfx and Sfy (= 200)

are scaling factors along x and y directions, respectively; results reported were robust to mod-

est variations of these parameter values. The final coordinates of the CVR transformed image

are given by: x1 = x0+dvx and y1 = y0+dvy.

Computation of the likelihood ratio (Li(t; z))

We provide here a detailed derivation of Eq 1 in the Results, involving computation of the

likelihood ratio Li(t; z) for change versus no change at each region Ai. At each fixation, the

model is faced with evaluating evidence for two hypotheses: change (C) versus no change

(N). Note that the true difference between the firing rates of the generating processes at the

change region is not known to the model, apriori; this corresponds to the fact that, in our

experiment, the observer cannot know the precise magnitude or nature of the change occur-

ring in each change image pair, apriori. We posit that the model expects to observe a firing

rate difference of ±μf between the means of the two Poisson processes associated with the

change region; this represents the apriori expectation of the magnitude of change for human

observers. Here, we model this prior as a singleton value, although it is relatively straightfor-

ward to extend the model to incorporate priors drawn from a specified density function (e.g.

Gaussian).

Let Xi and Yi denote the number of spikes observed in the m and n−p time-bins that the model

fixates on the two images (A or A’), respectively (Fig 4A). Let λi denote the mean firing rate

observed during this fixation, up until the current time bin; for this derivation, we posit that λi is

measured in units of spikes per time bin; measuring λi in units of spikes per second simply

requires multiplication by a scalar factor (Table 1), which does not impact the following deriva-

tion. The model estimates the mean firing rate over the fixation interval as λi = (Xi+Yi)/(m+n−p).

Note that this estimate of the mean firing rate is updated during each fixation across time bins.

For hypothesis C to be true, Xi would be a sample from a Poisson process with mean, Γ1 =

m(λi+μf) or Γ1 = m(λi−μf) and Yi would be a sample from a Poisson process with mean, Γ2 = (n
−p)(λi−μf) or Γ2 = (n−p)(λi+μf), respectively. Similarly, for hypothesis N to be true, Xi would be

a sample from a Poisson process with mean, Γ1 = m(λi) and Yi would be a sample from an

identical Poisson process with mean, Γ2 = (n−p)(λi). For detecting changes, we assume that the

model computes only the difference in the number of spikes, Zi = Yi−Xi, between the two

images, rather than keeping track of the precise number of spikes generated by each image.

The observed difference Zi could, therefore, be positive or negative.
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For hypothesis C (occurrence of change), the likelihood of observing a specific value of the

difference in the number of spikes across the two images Zi = z is given as:

P Zi ¼ zjCð Þ ¼
1

2
ðPðZi ¼ zjXi � rðmðli þ mf ÞÞ;Y

i � rððn � pÞðli � mf ÞÞ

þ PðZi ¼ zjXi � rðmðli � mf ÞÞ;Y
i � rððn � pÞðli þ mf ÞÞÞ ð9Þ

where ρ denotes the Poisson distribution. Here, we have assumed that the prior probabilities

of encountering image A or A’ when the fixation lands in a given region are equal (the 1/2 fac-

tor). Similarly, for hypothesis N (no change), the likelihood of observing a specific difference

in the number of spikes, z, is given as:

PðZi ¼ zjNÞ ¼ PðZi ¼ zjX � rðmliÞ;Y � rððn � pÞliÞ ð10Þ

The likelihood ratio of hypotheses, change versus no change, is computed as:

Li z; tð Þ ¼
PðZiðtÞ ¼ zjCÞ
PðZiðtÞ ¼ zjNÞ

ð11Þ

We next expand these expressions with the analytical form of the Poisson distribution,

P X ¼ k; X � rðlÞð Þ ¼ e� llk
k!

, and marginalize over all values of Xi = x and Yi = x+z. These

calculations involve computing an infinite sum which can be efficiently solved using Bessel

functions. Specifically, the infinite sum in our calculation can be computed using the identity:

S1y¼0
cy

y!ðyþzÞ!

� �
¼

ffiffi
c
p � zI z:2

ffiffi
c
p

ð Þ where I is a modified Bessel function of the first kind.

With some algebra, we can show that:

(i) when Zi
t � 0:

Li Tð Þ ¼
B1S

1

x¼0

ðmðn� pÞðl2
i � m

2
f Þ
xÞ

x!ðxþzÞ!

� �

B2S
1
z¼0
ðmðn� pÞl2Þx

x!ðxþzÞ!

¼
B1c� z1

Izð2c1Þ

B2c� z2 Izð2c2Þ
ð12Þ

where c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðn � pÞðl2

i � m
2
f Þ

q

and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðn � pÞl2

i

q

,

B0
1
¼ 0:5m� z

ðli � mf Þ
� ze� ðmðl1þmf Þþðn� pÞðli � mf ÞÞ

þðli þ mf Þ
� ze� ðmðli � mf Þþðn� pÞðliþmf ÞÞ

" #

and B2 ¼ ðn � pÞzlzi e
� liðmþn� pÞ:

(ii) when Zi
t < 0:

Li Tð Þ ¼
B0

1
S1x¼0

ðmðn� pÞðl2
i � m

2
f Þ
xÞ

x!ðxþzÞ!

� �

B0
2
S1z¼0

ðmðn� pÞl2Þx

x!ðxþzÞ!

¼
B0

1
cz

1
Izð2c1Þ

B0
2
cz2Izð2c2Þ

ð13Þ

where

B0
1
¼ 0:5m� z

ðli þ mf Þ
� ze� ðmðl1þmf Þþðn� pÞðli � mf ÞÞ

þðli � mf Þ
� ze� ðmðli � mf Þþðn� pÞðliþmf ÞÞ

" #

; ð14Þ

B2 ¼ m� zl� zi e� liðmþn� pÞ

and c1 and c2 are the same as before.
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We computed the value of the Bessel function using the Matlab function besseli. When val-

ues of x and z were large or disproportionate, Matlab’s floating point arithmetic could not

compute these expressions correctly; in this case, we employed variable precision arithmetic

(vpa in Matlab). In addition, d for extreme values of x and z we adopted the following

approximations:

i. For sufficiently large values of x: I z; xð Þ � exffiffiffiffiffi
2px
p 1 � 4z2 � 1

8x

� �

ii. For sufficiently large values of z: I z; xð Þ �
x
2ð Þ

z

Gðzþ1Þ

Note that the model makes the following assumptions: (i) the model makes a change versus

no-change decision based on the difference of spike counts (Zt
i ¼ z), rather than by keeping

track of the absolute spike counts produced by each image (see next); (ii) the model estimates

the average firing rate based on the number of spikes produced until that time-bin λi =

(Xi+Yi)/(n−p+m); (iii) the model has a discrete, single valued, prior on the change in firing

rates μf; this prior is different from the actual difference in firing rates across the two images,

which is computed based on the difference in their, respective, salience values during the simu-

lation (see also Fig 5C).

Comparison of model performance with human data

Using the saccade generation model shown in Fig 4B, we simulated the model 100 times using

the same images as employed in the human change blindness experiment (Fig 1A). All stochas-

tic parameters (evidence noise, fixation durations) were resampled with fresh random ‘seeds’

for each iteration of the model. We then computed the accuracy of the model as the proportion

of times the model detected the change—fixation on change region until threshold crossing

(Fig 4D)—versus the proportion of times the model failed to detect the change region. These

proportions of correct detections were then compared for human performance (average across

n = 39 participants) versus model performance (n = 100 iterations), across images, using

robust correlations [68]. For these analyses, we employed the state-of-the-art DeepGaze II net-

work [17] for generating the saliency map.

Next, we performed control analyses to compare the SPRT model with three other change

detection models, each with particular differences in search strategy or stopping rule. First, we

tested a model that failed to integrate evidence effectively by setting γ = 1 in the evidence inte-

gration step (Eq 2). Such a model completely ignores past evidence and makes decisions based

solely on instantaneous posterior odds ratio (Li(t)Pi). Second, we tested a model with an alter-

native stopping rule in which the change was detected based on the derivative of the posterior

odds ratio (difference of log (Li Pi) between two successive timesteps) crossing a threshold. For

these two models, threshold values for terminating the simulation were determined based on

two pilot runs across all 20 images; thresholds were chosen such that the models provided a

negligible proportion of false-alarm (<0.01%) comparable with our experimental data. Third,

we tested a model in which evidence computation and accumulation were intact, but the

model selected the next location of saccade with a random strategy. This was achieved by set-

ting a high value of the temperature parameter (T) in the final softmax function (T = 104),

which resulted in a nearly uniform probability, across the image, of selecting the next fixation

(“random searcher”). For all three models, we identically matched the timing and distribution

of fixation interval durations with our standard SPRT model. The distribution of absolute dif-

ferences in performance between the human data and our model across images, and the corre-

sponding distributions for control models were compared with paired signed rank tests

(Fig 6C).
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Finally, we tested the model’s ability to predict human gaze shift strategies. For this, we

employed the following approach. First, we identified the top 10 fixated clusters in each image.

Next, we constructed a saccade probability matrix between every pair of clusters among these

ten clusters (Fig 7C, rows/columns 1–10) in the human data, by combining fixation data across

all n = 39 participants. The model was then simulated 40 times, and the average probability of

saccades between the same clusters for each image was computed for the model. These 10x10

saccade probability matrices were then linearized and compared between the model and

human data using Pearson’s correlations (Fig 7D, left).

Comparison of model performance with DeepGaze

We also compared the model’s ability to predict human gaze patterns with that of DeepGaze II

[17]. DeepGaze is among the top-ranked algorithms for human gaze prediction, and is based

on a deep learning model for fixation prediction which employs features extracted from the

VGG-19 network, another deep learning neural network trained to identify objects in an

image. For this comparison, the model was simulated with all of the same steps as in Fig 4B,

except that no likelihood ratio was computed, and no evidence accumulated. Rather, saccades

occurred stochastically based on the same softmax rule as employed in our algorithm (Eq 3),

but based on DeepGaze II saliency values alone. Again, saccade probability matrices were com-

pared between the DeepGaze II prediction and human data using Pearson’s correlations (Fig

7D, right).

To enable a fair comparison with DeepGaze we incorporated the following additional fea-

tures in the DeepGaze model simulations. First, inhibition-of-return (IOR) is an emergent fea-

ture of our model (see Results). We, therefore, incorporated IOR in the DeepGaze model as

well [34]. IOR was implemented as a Gaussian patch (G) centered on the current fixation (x, y)

with a standard deviation (σ) of 20 pixels. The amplitude of G was scaled up by a time depen-

dent factor (tanh(0.05 t)), so that the impact of IOR increased progressively over the course of

the trial. IOR values were accumulated in a spatial map with a discount factor of 0.25 across

successive timesteps (IOR(x, y, t) = (0.25 � IOR(x, y, t—1)) + G(x, y; σ)). IOR values were

clipped between 0 and 1, and the complement of IOR map was multiplied with the foveally-

magnified saliency map before computing the next location of fixation. Second, because the

DeepGaze model was not accumulating evidence for change, there was no clear termination

criterion. Therefore, we identically matched the timing and distribution of fixation interval

durations (timesteps for each fixation) with our SPRT model. This was accomplished by initi-

ating and terminating each fixation in the DeepGaze model at the exact same times when these

were initiated or terminated in the SPRT model, respectively. Third, to ensure that both the

model and DeepGaze produced saccades with the same level of stochasticity we identically

matched the temperature parameter in the softmax function (Eq 3) for deciding the next sac-

cade location. Lastly, we also performed comparisons with the human data by limiting the sac-

cade amplitude range for comparison. The SPRT model (and humans) make many short

saccades, whereas DeepGaze primarily makes long saccades (Fig 7B). Therefore, we performed

a control analysis, comparing the human data, SPRT model and DeepGaze considering only

saccades with amplitudes greater than the 10th percentile of those generated by the DeepGaze

model (S8C and S8D Fig).

Supporting information

S1 Fig. Re-analysis of gaze metrics by re-classifying good and poor performers based on a

median split of performance. From top to bottom row: Re-analysis of the data shown in Figs

1 and 2 (main text), except that “good” and “poor” performers were defined based on a median
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split of the data. Other conventions are the same as in the corresponding figure panels in the

main text.

(TIF)

S2 Fig. Gaze metrics predictive of success, distributions of gaze metrics and variance in

success rates across images. A. Pair-wise correlations among the eight gaze metrics used as

features in classification analysis of good versus poor performers (Fig 1C, main text). Gray

squares: non-significant correlations. Colored square: significant correlations at p<0.01 with

Bonferroni correction for multiple comparisons. Abbreviations are as in Fig 1C (main text). B.

Saccade amplitude (left) and fixation duration (right) distributions for representative partici-

pants (ID-s in each subplot title). Red fits: Mixture of Gaussians model. p-value in title of each

subplot indicates significance level for deviation from unimodality per Hartigan’s dip test

(smaller p-values represent greater evidence of bi/multi-modailty). C. Success rates of human

observers on the change blindness trial images (n = 20), sorted by the proportion of hits. Error

bars denote standard error of the mean performance across participants.

(TIF)

S3 Fig. Fixated features for good and poor performers. A. Difference between the average

saccade probability matrices for the good and poor performers (good minus poor). Other con-

ventions are the same as in Fig 3A (main text). Note that these differences are 3 orders of mag-

nitude smaller than the values in Fig 3A (main text). B. Same as in Fig 3D (main text) except

that fixated features were identified following PCA on 112x112 patches extracted from a

saliency map, rather than the grayscale image. The saliency map was generated with the fre-

quency tuned saliency algorithm [24]. Other conventions are the same as in Fig 3D main text.

(TIF)

S4 Fig. Distribution of fixations, relative to change location, for good and poor performers.

A. Distribution of frequency of fixations, binned based on the distance of fixation relative to

the center of the change location, separately for good (red) and poor (blue) performers. B.

Same as in panel A but for the total fixation duration.

(TIF)

S5 Fig. Mimicking foveation in the model. Illustration of foveal magnification with the Carte-

sian Variable Resolution (CVR) transform for a hypothetical fixation (highlighted by the cir-

cle) on one of the images used in the change blindness task (Image #6, S1 Table).

(TIF)

S6 Fig. Dependence of the likelihood ratio (L(t; z)) on mean firing rate and firing rate

prior. A. Likelihood ratio (L(t; z)) as a function of spike count difference between the first and

second image (z, Eq 1; main text) for different values of the mean firing rate, λ = 4 . . . 10

spikes/bin. The number of time bins for which the first and second images were fixated (m

and n−p, respectively) have each been fixed to 5 bins, and the firing rate difference prior, μf

fixed at 3 spikes/bin. Curves of progressively lighter shades: increasing values of the mean fir-

ing rate. B. Same as in A, but for different values of the firing rate difference prior, μf = 1, 3, 5

. . . 13 spikes/bin and mean firing rate λ fixed at 40 spikes/bin. Curves of progressively lighter

shades: increasing values of μf.

(TIF)

S7 Fig. Mimicking Saccade Turn Angle distribution. Polar heat map indicating the distribu-

tion of human saccade amplitudes and turn angles. The arrow indicates the location of the last

saccade. The histogram was computed using data from all (n = 39) participants and all

(n = 20) images. The bias against right angled turns is apparent. The distribution was
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smoothed both along the radial and angular directions, for display purposes only.

(TIF)

S8 Fig. Model saccade probability matrices, and correlations with human data (control

analyses). A-B. Same as in Fig 7C and 7D (main text), except with replacing DeepGaze’s

saliency algorithm with the frequency-tuned salient region detection algorithm. C-D. Same as

in Fig 7C and 7D (main text) except including only saccades whose amplitude was at least as

large (or greater) than the 10th percentile of saccade amplitudes generated by the DeepGaze

model (Fig 7B, main text, dashed vertical line). For C, the saccade probability matrix was nor-

malized by its range for visualization purposes only. Other conventions are the same as in Fig

7C and 7D (main text).

(TIF)

S1 Table. List of images employed in the change blindness task.

(DOCX)
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