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Ceramide Mediates Vascular Dysfunction in Diet-Induced
Obesity by PP2A-Mediated Dephosphorylation of the

eNOS-Akt Complex
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Vascular dysfunction that accompanies obesity and insulin resis-
tance may be mediated by lipid metabolites. We sought to
determine if vascular ceramide leads to arterial dysfunction and
to elucidate the underlying mechanisms. Pharmacological in-
hibition of de novo ceramide synthesis, using the Ser palmitoyl
transferase inhibitor myriocin, and heterozygous deletion of
dihydroceramide desaturase prevented vascular dysfunction
and hypertension in mice after high-fat feeding. These findings
were recapitulated in isolated arteries in vitro, confirming that
ceramide impairs endothelium-dependent vasorelaxation in
a tissue-autonomous manner. Studies in endothelial cells reveal
that de novo ceramide biosynthesis induced protein phospha-
tase 2A (PP2A) association directly with the endothelial nitric
oxide synthase (eNOS)/Akt/Hsp90 complex that was concurrent
with decreased basal and agonist-stimulated eNOS phosphory-
lation. PP2A attenuates eNOS phosphorylation by preventing
phosphorylation of the pool of Akt that colocalizes with eNOS
and by dephosphorylating eNOS. Ceramide decreased the
association between PP2A and the predominantly cytosolic
inhibitor 2 of PP2A. We conclude that ceramide mediates obesity-
related vascular dysfunction by a mechanism that involves PP2A-
mediated disruption of the eNOS/Akt/Hsp90 signaling complex.
These results provide important insight into a pathway that
represents a novel target for reversing obesity-related vascular
dysfunction. Diabetes 61:1848-1859, 2012
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he prevalence of obesity in the U.S. exceeds 30%

and contributes to type 2 diabetes and insulin re-

sistance (1). Cardiovascular complications are the

leading cause of death in patients with diabetes.
Therefore, elucidating mechanisms responsible for vascular
dysfunction in individuals with diet-induced obesity and di-
abetes is of high priority.

Obesity, type 2 diabetes, and metabolic syndrome are as-
sociated with elevated circulating concentrations of free
fatty acids (FFAs) (2). Studies in cultured cells (3,4), iso-
lated arteries (4,5), animal models (4,6), and humans (7)
demonstrate that elevated FFAs impair nitric oxide (NO)
production. NO is ubiquitous, and the bioavailability of this
signaling molecule depends on a delicate balance between
factors responsible for its synthesis and its degradation.
Endothelial cell-derived NO has vasodilatory, anti-
inflammatory, and antiproliferative properties (8-10). Thus,
any mismatch between generation and degradation of
this molecule potentially could precipitate cardiovascular
complications.

When FFA accumulation exceeds adipose storage and
oxidative capacity, they are ectopically deposited into tis-
sues not suited for lipid storage (e.g., skeletal muscle, liver),
leading to accumulation of bioactive lipid metabolites,
which are associated with metabolic dysfunction and car-
diovascular risk. One such metabolite is the sphingolipid
ceramide (11,12). Obesity and lipid exposure promote
sphingolipid accumulation in peripheral tissues of rodents
and humans, and ceramide recently was reported to accu-
mulate in arteries from a rat model of uncontrolled type 2
diabetes (13).

A strong rationale exists to test the hypothesis that vas-
cular ceramide contributes to cardiovascular complications.
In several cell types, ceramide disrupts signaling kinases
that phosphorylate endothelial NO synthase (eNOS) at pos-
itive regulatory sites (14) and potentiates signaling kinases
that phosphorylate eNOS at negative regulatory sites (11,15).
Short-term incubation with synthetic ceramide impairs
endothelium-dependent vasorelaxation (EDR) (16), exag-
gerates vasocontraction of isolated arteries (17), and reduces
the bioavailability of NO in human endothelial cells (18).
In rodent models of lipid oversupply, targeted inhibition of
ceramide biosynthesis via pharmacological or genetic
approaches attenuates metabolic disturbances (13,19-22),
atherosclerotic lesion formation (13,23,24), and endothelium-
dependent dysfunction (13). In the latter study, administration
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of the ceramide synthesis inhibitor myriocin to fat-fed rats
given streptozotocin reduced arterial ceramide content and
partially reversed endothelial dysfunction in parallel with
amelioration of the metabolic milieu (13). While these re-
sults suggest that endogenous ceramide synthesis might
precipitate cardiovascular complications, it is difficult to
discern whether improved arterial function resulted from
lower vascular ceramide accrual or from improvement in the
systemic environment.

We hypothesized that vascular ceramide accumulates
in response to high-fat (HF) feeding and that limiting this
increase would negate arterial dysfunction and hyper-
tension in mice with diet-induced obesity. We show for
the first time that vascular ceramide accrual in obese and
insulin-resistant mice precipitates endothelial dysfunction
and impairs eNOS phosphorylation in a tissue-autonomous
manner. Inhibition of de novo ceramide biosynthesis in
isolated arteries exposed to palmitate recapitulate the
in vivo studies, providing further evidence that ceramide
directly impairs EDR. In bovine aortic endothelial cells
(BAECs), palmitate increased de novo ceramide synthesis,
which reduced agonist-stimulated eNOS phosphoryla-
tion and dimer formation. These changes were not the
result of impaired upstream signaling to eNOS from Akt,
AMP-activated protein kinase (AMPK), or extracellular
signal-related kinase (ERK) 1/2 or to superoxide anion
(02" )-mediated peroxynitrite formation. Rather, ceramide
accumulation induced colocalization of the protein phos-
phatase 2A (PP2A) with eNOS, which reduced eNOS
phosphorylation, prevented its association with Hsp90 and
Akt, and decreased the phosphorylation of the pool of Akt
that associates directly with eNOS. Ceramide might initiate
PP2A colocalization with eNOS by disrupting the in-
teraction between inhibitor 2 of PP2A (I2PP2A) and PP2A.
These results define an important role for endogenous
ceramide accumulation in the pathogenesis of vascular
dysfunction and significantly extend previous knowledge
(14) regarding how ceramide modulates endothelial cell
function.

RESEARCH DESIGN AND METHODS

Animal studies. Experiments were performed using 1) 10-week-old C57Bl/6
mice that consumed standard (CON) chow (Research Diets Inc., New
Brunswick, NJ) containing (kilocalories) 10% fat, 70% carbohydrate, and 20%
protein (D12450B) or HF chow containing (kilocalories) 456% fat, 35% carbo-
hydrate, and 20% protein (D12451) for 12-13 weeks; 2) 12-week-old wild-type
(des1**) and des1*~ mice on the C57BI/6J background; and 3) 10-week-old
des1**and desl1*’~ mice that consumed CON or HF chow for 12-13 weeks.
Metabolic and cardiovascular phenotyping was performed during the final 2-3
weeks of the feeding studies (4,19). Terminal experiments were performed
after mice were anesthetized (2-5% isoflurane) after an overnight fast. The
entire aorta and both iliac and femoral arteries were isolated and used for
immunoblotting and ceramide analyses and to assess vascular function. All
protocols were approved by the institutional animal care and use committee.
Immunoblotting. Arteries were processed for immunoprecipitation and im-
munoblotting as described (4,25,26).

Ceramide. Aortic ceramide content was assessed using a modified diacylglycerol
kinase assay (19,27) or by high-performance liquid chromatography with tandem
mass spectrometry in studies of des1*’~ and des1** mice (28).

Vascular function. Vascular reactivity was assessed in femoral arteries (~150
pm internal diameter) using isometric tension techniques (4,26).

Cell culture studies. BAECs were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% FBS, human epidermal growth factor, and
antibiotics (10,000 units/mL penicillin and 10 pg/mL streptomycin) in a hu-
midified atmosphere (5% CO2/95% O2) at 37°C. When cells were 70-80% con-
fluent, they were passaged and transferred to appropriately sized culture
plates. Palmitate was coupled to fatty acid-free BSA in the ratio of 2 mol/L
palmitate to 1 mol/L BSA (4,19). For most experiments, BAECs were treated
for 3 h with 1) 1% BSA plus 0.2% methanol (vehicle), 2) 1% BSA plus 10 pmol/L
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myriocin, 3) vehicle plus 500 pmol/L palmitate, or 4) myriocin plus palmitate.
For experiments assessing protein phosphorylation, 100 nmol/L insulin or 10
ng/mL vascular endothelial cell growth factor (VEGF), or their vehicle (PBS),
was added for the last 10 min of the 180-min treatment period. Tiron
(1 mmol/L) or 4 nmol/L okadaic acid (OA) was used in some experiments to
inhibit O, ~ or PP2A, respectively. After 3 h, cells were treated as appro-
priate to assess ceramide biosynthesis (19,27) and to perform the following
experiments.

Nitrate plus nitrite production and NOS activity. Nitrate plus nitrite (NOy)
production was assessed using amperometric probes and NOS activity was
measured using a commercially available kit (4,25).

Reactive oxygen species and O, ~ production. Reactive oxygen species (ROS)
were assessed using 2',7" dichlorodihydrofluorescein diacetate (HsDCFDA-AM),
and Oy production was measured using electron spin/paramagnetic resonance
spectroscopy (ESR) and dihydroethidium staining (4).

Nitrotyrosine formation. Nitrotyrosine was assessed via enzyme-linked
immunosorbent assay, Western blot, and immunostaining.

Superoxide dismutase activity. Total superoxide dismutase (SOD) and
SOD2 enzyme activity was measured using a commercially available Kkit.
Short interference RNA generation and transfection. PP2A knockdown
was conducted using short interference (si)RNA as described (14).
Statistics. Data are presented as mean + SEM. Significance was accepted at
P < 0.05. Comparison of one time point among groups was made using a one-
way ANOVA. Comparison of multiple time points among groups was made
using a one-way or two-way repeated-measures ANOVA. Tukey post hoc tests
were performed when significant main effects were obtained.

RESULTS

Inhibiting de novo ceramide accumulation improves
systemic metabolic homeostasis in C57Bl/6 mice with
diet-induced obesity. After 3 months of HF feeding start-
ing at 10 weeks of age, vascular and liver ceramide content
were increased by 73 and 142%, respectively, relative to
animals on a CON diet (Fig. 1A and B). Myriocin inhibits
Ser palmitoyl transferase 1, the rate-limiting enzyme respon-
sible for de novo ceramide synthesis. Concurrent treatment
with myriocin prevented diet-induced ceramide accumula-
tion. HF animals demonstrated increased body and fat mass,
decreased lean mass, impaired glucose and insulin toler-
ance, and elevated circulating triglyceride, leptin, and
catecholamine concentrations (Fig. 1C-I and Supplementary
Fig. 1A-D), which were attenuated by myriocin, confirming
recent reports (13,19,20).

Inhibiting de novo ceramide accumulation normalizes
endothelial dysfunction and systemic hypertension in
C57Bl1/6 mice with diet-induced obesity. Diurnal blood
pressure was elevated in vehicle-treated mice that con-
sumed HF diets (Fig. 2A—C and Supplementary Fig. 2A-D).
EDR was impaired in vehicle-treated HF mice, while
endothelium-independent vasorelaxation (EIR) was sim-
ilar across all treatments (Fig. 2D-F). Developed tension in
response to potassium chloride or phenylephrine was greater
in vessels from vehicle-treated HF mice versus all other
groups (Fig. 2F and G), which is consistent with impaired NO
production. Obesity-related hypertension and vascular dys-
function were prevented by myriocin treatment.

Consistent with our previous investigation (4), basal
eNOS phosphorylation at Ser1177 was reduced in arteries
from vehicle-treated HF mice versus all groups, in the ab-
sence of any defects in Akt, AMPK, or ERK 1/2 phosphor-
ylation (not shown), and was prevented by myriocin
treatment (Fig. 2H). Thus, endogenous vascular ceramide
accumulation likely mediates arterial hypertension and
vascular dysfunction by reducing NO production.
Arterial dysfunction is prevented in fat-fed mice with
targeted disruption of dihydroceramide desaturase.
To this point, our data and those from others (13) cannot
distinguish if the beneficial effect of myriocin was secondary
to reduced vascular ceramide accrual or from improvement
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FIG. 1. Inhibiting de novo ceramide accumulation improves the systemic metabolic environment of C57Bl/6 mice with diet-induced obesity. C57B1/6
mice that consumed CON or HF chow for 3 months were treated concurrently with vehicle (V) or myriocin (M). Vascular (aorta) (A) and liver (B)
ceramide content, body mass (C), body composition (D), gonadal fat pad mass (E ), area under the curve during a glucose tolerance test (GTT) (F)
and insulin tolerance test (G). Fasting (6 h) serum triglycerides (H) and serum leptin (I) concentrations. Fasting (6 h) blood glucose (mg/dL)
before the GTT in panel F was higher in HF-V (122 + 8) vs. CON-V (95 * 7) mice but was similar between HF-M (102 *= 5) and CON-M (96 = 5)
animals. *P < 0.05 CON vs. HF, #P < 0.05 M vs. V. Results represent mean = SEM from 10 CON-V, 13 HF-V, 7 CON-M, and 13 HF-M mice. AU,

arbitrary unit.

in the metabolic milieu. We therefore examined male mice
with heterozygous deletion of one allele of dihydroceramide
desaturase 1 (desl1”") and wild-type littermates (des1*’")
(19) after CON or HF feeding. Desl converts metabolically
inactive dlhydrocera.rmde into active ceramlde Homozygous
null (des1 /") mice fail to thrive, but des1*~ animals have a
normal life span (19). Arterial Ceralmde was increased by HF
feeding in des1** but not des1”~ mice (Fig. 34). HF animals
developed increased body and fat mass, decreased lean
mass, and impaired glucose tolerance, Wthh were more se-
Verely altered in des1*~ versus desl*” mice (Fig. SB and C
and Supplementary Fig. 3A-C). Thus, fat-fed des1*” mice
develop metabolic disturbances but do not accumulate
ceramide in the vasculature. EDR was impaired, and non-
receptor (NR)- and receptor-mediated (not shown) vaso-
contraction was exaggerated in arteries from HF desl**
but not des1*’~ mice (Fig. 3D-G). EIR was similar among
groups (Fig. 3H). Fat feeding reduced basal phosphorylated
(p)-eNOS Serl 177 to a greater extent in arteries from des1**
versus desl*’~ mice (Fig. 3I). Consistent with our earlier
study (4), and in fatfed C57Bl/6 mice shown earlier, HF
feeding did not alter Akt phosphorylation in the vasculature
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of either des1** or des1”~ mice (not shown). Thus, inhibit-
ing ceramide synthesis in vivo prevents vascular dysfunction
despite an abnormal metabolic milieu.
Inhibition of ceramide synthesis prevents palmitate-
induced vascular dysfunction in isolated vessels.
Isolated arteries were incubated for 3 h with palmitate
prebound with albumin to a final concentration of 500
pmol/L palmitate. Palmitate is a prevalent circulating satu-
rated FFA that is the precursor for ceramide biosynthesis
(5,29), and 500 pmol/L mimics circulating pathophysiologi-
cal conditions (5,29). Three hours of palmitate incubation
increased ceramide content in aorta from C57Bl/6 mice by
20%, which was negated by myriocin (Fig. 44). EDR of
arteries from the same mice was impaired by palmitate and
reversed by myriocin (Fig. 4B). There was no decrease in
sodium nitroprusside-mediated vasorelaxation, indicating
an endothelium-specific defect (Fig. 4C). p-eNOS Ser1177 to
total eNOS was reduced in palmitate-exposed aorta, and
this response was prevented by myriocin (Fig. 4G).

Similar experiments were performed in vessels isolated
from des1™* and desl” ™ mice. On CON chow, body com-
position, glucose tolerance, serum insulin, and triglyceride
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FIG. 2. Inhibiting de novo ceramide accumulation in vivo normalizes endothelial dysfunction and hypertension in C57Bl/6 mice with diet-
induced obesity. Systolic (A), mean (B), and diastolic (C) arterial blood pressure during light and dark cycles. Data are averaged from 4- X 24-h

periods for 10 CON-V, 10 HF-V, 9 CON-M, and 9 HF-M mice. D: EDR. E:

EIR. F: NR-mediated vasocontraction. G: Receptor (R)-mediated vaso-

contraction. Data are from two femoral artery segments from 18 CON-V, 23 HF-V, 15 CON-M, and 17 HF-M mice. A-H: *P < 0.05 HF-V vs. all.
G: #P < 0.05 HF-M vs. all. Results represent mean = SEM. H: Representative immunoblot and densitometry of the ratio of p-eNOS at serine (S)

1177 to total eNOS from aorta/iliac arterial homogenates from 8 CON-V,

M, myriocin.

concentrations were normal in des1*’~ mice (Supplementary
Fig. 4A-F). Ceramide accumulation, endothelial dysfunction,
and impaired eNOS phosphorylation were prevented in iso-
lated aorta from desl*’” mice after palmitate incubation
(Fig. 4D-@G). Vascular smooth muscle responses were similar
between groups (Fig. 4F). Thus, ceramide mediates palmitate-
induced vascular dysfunction in vitro.

Ceramide biosynthesis impairs NO generation. To
determine the mechanism by which de novo ceramide
synthesis impairs the phosphorylation of eNOS and NO gen-
eration, BAECs were incubated with 500 pmol/L palmitate
for 3 h. Palmitate exposure increased ceramide biosynthesis
and decreased basal eNOS phosphorylation at Serl177,
eNOS dimer formation, and eNOS enzyme activity (Fig. bA—
C and F-H). All defects were reversed by myriocin. Agonist
(i.e., insulin- and VEGF-) stimulated eNOS activation
also was assessed. Insulin- and/or VEGF-stimulated eNOS
phosphorylation at Ser1177 and Ser617 and NO generation
were impaired by palmitate in a ceramide-dependent manner
(Fig. 5B-D and F, G, and I). Specificity of our amperometric
techniques was demonstrated by showing that insulin- and/or
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13 HF-V, 6 CON-M, and 8 HF-M mice. *P < 0.05 HF-V vs. all. V, vehicle;

A23187-induced increases in NO, production could be in-
hibited by N°-monomethyl-L-arginine (not shown). Increased
p-eNOS Thr495 or a reduced ratio of p-eNOS Serll77 to
Thr495 might render the eNOS enzyme refractory to agonist-
induced stimuli (30). However, we observed no differences
in p-eNOS Thr495 among treatments (Fig. 5F). No treatments
promoted cell death when compared with vehicle treatment
alone (not shown).

Ceramide biosynthesis does not disrupt Akt, AMPK,
or ERK signaling to eNOS. Next we determined if
ceramide-mediated inhibition of eNOS phosphorylation was
secondary to defective upstream kinase signaling as previ-
ously suggested (14,31). In whole cell lysates from BAECs,
palmitate did not impair insulin-stimulated phosphorylation
of Akt at Serd73 or Thr308 or the Akt target, glycogen
synthase kinase 3-8 at Ser9 or ERK 1/2 phosphorylation
(Fig. 6A and B and Supplementary Fig. 5A4). Phosphoryla-
tion of AMPK (Thr172), or its target, acetyl Co-A carboxylase
at Ser79 (Fig. 6C and Supplementary Fig. 5B), were not
affected by any treatment. Thus palmitate-induced reductions
in NO generation are not secondary to impaired upstream
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signaling to eNOS in endothelial cells under these experi-
mental conditions.

Oxidative stress impairs basal but not insulin-
stimulated eNOS phosphorylation in palmitate-treated
BAECs. O, ~ combining with NO to form peroxynitrite can
disrupt eNOS dimer formation (32,33) and thereby reduce
eNOS activity (33-35).We therefore evaluated if palmitate-
induced O, ~ production and peroxynitrite accumulation
impaired basal or agonist-stimulated NO generation in a
ceramide-dependent manner. Palmitate incubation (3 h X
500 pmol/L) increased ROS 3.2 = 0.2 fold (P < 0.05, n = 31)
as measured using dichlorofluorescein diacetate fluores-
cence. These findings were confirmed using ESR (Fig. 6D)
and dihydroethidium staining (Supplementary Fig. 6). Fur-
ther evidence of cellular oxidant stress was that palmitate ex-
posure increased (P < 0.05) SOD-2 gene expression and
SOD activity in a ceramide-dependent manner (not shown).
Mitochondria appear to be the major source of palmitate-
mediated ROS production by BAECs, and activation of
NADPH-oxidase activity likely results from increased mito-
chondrial ROS production (Supplementary Fig. 7TA-F).
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Although 500 pmol/L palmitate evoked cellular oxidant
stress, no evidence for peroxynitrite accumulation as esti-
mated by nitrotyrosine enzyme-linked immunosorbent as-
say (Fig. 6F), Western blot, or immunohistochemistry
(data not shown) could be detected. A 1.5-fold increase (P <
0.05) in nitrotyrosine versus vehicle treatment was observed,
however, when BAECs were incubated with 1,000 wmol/L
palmitate for 3 h, a concentration that generated a greater
increase in O;" ~ (i.e., 1.75-fold vs. vehicle treatment; P <
0.05) in contrast to the 1.2-fold increase in cells exposed to
500 pmol/Li palmitate (Fig. 6D). Therefore, high concen-
trations of palmitate (1,000 wmol/L) are sufficient to increase
estimates of protein nitrosylation in a ceramide-dependent
manner. However, ROS-mediated peroxynitrite accumula-
tion is not the mechanism by which incubation of BAECs in
500 pwmol/L palmitate leads to reductions of p-eNOS, eNOS
dimer formation, or eNOS enzyme activity. No treatments
increased cell death relative to vehicle alone (not shown).

Next we assessed the possibility that ceramide-evoked
Oy~ generation per se might mediate the suppression of
basal and/or agonist-stimulated eNOS phosphorylation
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(i.e., via a peroxynitrite-independent mechanism). BAECs
were incubated with palmitate in the absence and presence
of the intracellular O, scavenger dihydroxybenzene di-
sulfonate (i.e., tiron). Palmitate-induced reductions of basal
eNOS phosphorylation and eNOS dimer formation were
negated when cells were treated with tiron. In contrast,
insulin-induced p-eNOS Ser1177 and eNOS dimer formation
were suppressed in palmitate-treated cells regardless of
whether tiron was present (Fig. 6F and Supplementary
Fig. 84 and B). However, when palmitate-treated cells
were exposed to tiron plus myriocin, insulin-stimulated
p-eNOS Ser1177 was fully restored (Fig. 6F). Collectively, un-
der basal conditions, palmitate impairs eNOS enzyme func-
tion via mechanisms that are O, ~ and ceramide dependent.
Under insulin-stimulated conditions, palmitate impairs eNOS
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enzyme function via mechanisms that are O, independent
and ceramide dependent.

Ceramide biosynthesis increases PP2A association
with eNOS. We next examined the extent to which de-
creased agonist-stimulated eNOS activation in the presence
of palmitate was secondary to increased dephosphorylation.
We focused on PP2A, given earlier reports that ceramide
increases PP2A activity (14,30,36). BAECs were incubated
for 3 h in the absence and presence of palmitate, myriocin,
and 4 nmol/LL OA (the cell-permeable inhibitor of PP2A)
(14,37). Vehicle or insulin was administered to BAECs for
the last 10 min of each treatment period to assess basal and
stimulated p-eNOS Ser1177 and NO production, respec-
tively. We confirmed that palmitate-induced reductions
in basal and insulin-stimulated p-eNOS Ser1177 and NO
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production were prevented by myriocin. It is interesting
that palmitate-induced reductions in basal and insulin-
stimulated p-eNOS Ser1177 and NO production were
prevented by OA (Fig. 7A and B).

To confirm a specific role for PP2A, expression levels of
the catalytic subunit of PP2A in BAECs were reduced by
~T70% using siRNA (Fig. 7C). BAECs expressing control
(i.e., scrambled siRNA) and PP2A siRNA were treated with
palmitate for 3 h before insulin stimulation for the last 10
min. Palmitate did not reduce basal or insulin-stimulated
p-eNOS Ser1177 in PP2A deficient cells (Fig. 7D).

PP2A coimmunoprecipitated with eNOS in the presence
of palmitate in a ceramide-dependent manner (Fig. 7E and
Supplementary Fig. 9A). In cells treated identically, coim-
munoprecipitation of Akt and Hsp90 with eNOS was ne-
gated by palmitate but restored by myriocin (Fig. 7F and G
and Supplementary Fig. 9B). These relatively acute re-
sponses in cells were recapitulated in blood vessels from
fat-fed des1** but not des1*’~ mice. For example, PP2A
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coimmunoprecipitated with eNOS in arteries from fat-fed
des1™* but not des1”™ mice (Fig. 7H).

To test if the association of PP2A with eNOS prevents Akt
from binding to eNOS, BAECs were incubated for 3 h in the
absence and presence of palmitate and OA, after which
cells were exposed to vehicle or insulin for the last 10 min. In
the absence of OA, palmitate increased PP2A association
with eNOS (Fig. 84) and prevented Akt association with
eNOS (Fig. 8B). In the presence of OA and palmitate, PP2A
remained in the eNOS complex (Fig. 84), but the insulin-
stimulated association of Akt and eNOS was restored (Fig. 8B).

Next we determined whether PP2A might prevent
phosphorylation of the pool of Akt that colocalizes with
eNOS upon insulin stimulation. Palmitate prevented the
phosphorylation by insulin of Akt at Ser473 and Thr308
and eNOS at Serl177 in eNOS immunoprecipitates. This
inhibition was reversed by OA (Fig. 8C and D).

The precise mechanism by which ceramide initiates PP2A
colocalization with eNOS is unclear. We explored whether
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palmitate-induced ceramide accumulation reduced the as-
sociation between I2PP2A and PP2A. Immunoprecipitation
experiments confirmed that palmitate reduced the associa-
tion between I2PP2A and PP2A in a ceramide-dependent
manner (Fig. 8E' and Supplementary Fig. 9C).

Collectively, results from these experiments indicate that
ceramide decreases the interaction between I2PP2A and
PP2A, promoting PP2A association with eNOS. When this
occurs, agonist-stimulated eNOS phosphorylation is atten-
uated either as a consequence of decreased phosphoryla-
tion of the pool of Akt that colocalizes with eNOS or by
PP2A directly dephosphorylating eNOS. A synthesis of our
findings is shown in Fig. 9.

DISCUSSION

We show for the first time that endogenous arterial cer-
amide accumulation in fat-fed mice precipitates endo-
thelial dysfunction in a tissue-autonomous manner. These
findings extend our previous study in which we reported
that arterial dysfunction induced by fat feeding was
independent of changes in insulin signaling in the vas-
culature (4). We now demonstrate that these changes can
be recapitulated in isolated vessels and cultured cells by
palmitate exposure and could be prevented by inhibiting
the de novo synthesis of ceramide. In cultured endothelial
cells, palmitate-induced, ceramide-mediated impairment
in eNOS phosphorylation was independent of changes in
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by tiron alone (n = 12-28 per treatment). *P < 0.05 vs. respective veh,
te; myr, myriocin; veh, vehicle; ins, insulin; PEG, polyethylene glycol.

activation of upstream kinases that phosphorylate eNOS or
0O, -mediated peroxynitrite formation. We confirmed that
palmitate and fat feeding activate PP2A to an extent that
impairs eNOS phosphorylation in BAECs (14) and provide
new insight into a novel mechanism by which ceramide-
mediated PP2A activation prevents the phosphorylation
of a pool of Akt that colocalizes with eNOS via Hsp90,
thereby compromising full eNOS phosphorylation.

Prior studies of obese rodents reveal that ceramide in-
hibition could reverse glucose intolerance and delay the
onset of diabetes (13,20-22). Blunting de novo ceramide
synthesis could indirectly ameliorate endothelial dysfunc-
tion in obese mice by reducing the severity of circulating
abnormalities associated with HF feeding, which have
been shown to impair vascular function (reviewed in
Creager et al., Imrie et al., Liischer et al.,, and Williams
et al.) (2,38-40). However, because exogenous synthetic
ceramide impairs endothelium-dependent vasodilation and
exaggerates vasoconstriction (reviewed in Li and in
Alewijnse and Peters) (41,42), we reasoned that limiting
endogenous ceramide biosynthesis might negate vascular
dysfunction via direct mechanisms. Several studies evaluate
the contribution from endogenous ceramide accumulation
to cardiovascular complications associated with lipid over-
supply. For example, Ser palmitoyl transferase 1 inhibition
reduced the severity of aortic lesion formation in apolipopro-
tein E knockout mice that consumed an HF, high-cholesterol
diet (23,24) and attenuated cardiac dysfunction and abnormal
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substrate metabolism in hearts of mice with lipotoxic car-
diomyopathy (43). It was recently reported that vascular
ceramide accumulation, metabolic abnormalities, and en-
dothelial dysfunction were limited in a rat model of severe
hyperglycemia and obesity, after treatment with myriocin
(13). Interpreting the results from that study is difficult
because it is uncertain whether endothelial improve-
ments were secondary to reduced vascular ceramide ac-
crual or to improved systemic metabolism. We provide the
first direct evidence that endothelial dysfunction, hyper-
tension, and reduced arterial eNOS phosphorylation evoked
by HF feeding are mediated to a significant degree by cer-
amide accumulation in the vasculature.

In endothelial cells, we showed that ceramide-induced
inhibition of basal and agonist-stimulated eNOS phosphor-
ylation and NO production was independent of altered
signal transduction to eNOS and O, -mediated peroxy-
nitrite formation. A contribution from O, and ceramide
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was evident under basal conditions, however, as evidenced
by the fact that palmitate-induced reduction in eNOS
phosphorylation and dimer formation could be normal-
ized by either tiron or myriocin. While the mechanism for
Oy~ related inhibition of eNOS phosphorylation under basal
conditions remains to be clarified, we found no evidence
for peroxynitrite formation using multiple independent
assays under conditions in which eNOS phosphorylation and
NO production were clearly impaired.

In light of these findings, and because eNOS phosphory-
lation is regulated by the balance of kinase and phosphatase
activity (37), we evaluated if ceramide-induced activation of
PP2A might be necessary and sufficient to prevent basal and
insulin-stimulated eNOS phosphorylation (44,45). Myriocin
and OA were equally effective in preventing palmitate-
induced inhibition of insulin-stimulated eNOS phosphory-
lation at Ser617 and Ser1177. Furthermore, when PP2A was
silenced in endothelial cells, palmitate failed to impair
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insulin-stimulated eNOS phosphorylation. These data confirm
an earlier investigation that PP2A is essential for palmitate-
induced impairment in eNOS phosphorylation (14).

While results from previous studies suggest that eNOS
phosphorylation might be attenuated secondary to ceramide-
induced, PP2A-mediated dephosphorylation of Akt and/or
AMPXK (reviewed in Holland and Summers) (12), we observed
no reduction in Akt, AMPK, or ERK phosphorylation in
whole cell lysates in the presence of palmitate. We therefore
explored if PP2A might reduce eNOS activation by impairing
the subcellular pool of Akt that colocalizes with and phos-
phorylates eNOS. Earlier studies suggest that under certain
conditions, primarily cytosolic PP2A can translocate to the
membrane, associate directly with eNOS, and dephos-
phorylate eNOS at Serl1177 (46). Coimmunoprecipitation
experiments confirmed that palmitate-induced association
of PP2A with eNOS is ameliorated by myriocin, suggesting
an essential role for ceramide in this interaction. While the
compartmentalization and integration of signal transduc-
tion pathways at the cell membrane is complex, it currently
is understood that Hsp90 might serve as a scaffold protein
linking Akt to eNOS at caveolae (47,48). Indeed, we performed
coimmunoprecipitation experiments and showed that basal
and insulin-stimulated eNOS association with Hsp90 and
Akt was inhibited by palmitate in a ceramide-dependent
manner. These findings initially suggested that PP2A
association with eNOS might impair Akt/Hsp90 binding to
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eNOS. However, we observed that palmitate-mediated in-
hibition of Akt and eNOS association was reversed by OA
even though PP2A remained in the eNOS complex. We
further observed that palmitate prevented insulin-stimulated
Akt and eNOS phosphorylation in the eNOS immuno-
precipitate in the absence but not the presence of OA.
One interpretation of these data is that ceramide-mediated
PP2A activation prevents the phosphorylation of a pool of
Akt that colocalizes with eNOS. The data are also consis-
tent with the possibility that PP2A dephosphorylates eNOS
directly. Collectively, these ceramide-mediated molecular
events limit full eNOS phosphorylation at Ser1177 and
Ser617, impair NO bioavailability, and lead to wvascular
dysfunction.

The mechanisms by which ceramide promotes colocali-
zation of PP2A with eNOS is incompletely understood. In
addition to pharmacological inhibitors of PP2A (e.g., OA),
noncompetitive biological inhibitors of PP2A exist. In-
hibitor 1 of PP2A (I1PP2A) and I2PP2A associate with
PP2A and inhibit its activity. It recently was shown in A549
human lung cancer cells that 2PP2A (but not I1PP2A) is
a major ceramide-binding protein (49). Furthermore, the
authors provided evidence that when ceramide binds to
I2PP2A, the inhibition of I2PP2A on PP2A is relieved. We
observed that palmitate-induced ceramide accumulation
decreased the association between I2ZPP2A and PP2A,
providing initial support for this potential mechanism of

DIABETES, VOL. 61, JULY 2012 1857


http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1399/-/DC1

CERAMIDE EVOKES PP2A DEPHOSPHORYLATION OF eNOS

HF feeding and/or palmitate

i

~NA~~

0]

FIG. 9. Working model. HF feeding leads to arterial ceramide accumu-
lation in vivo. Palmitate incubation elevates ceramide in isolated
arteries and endothelial cells in vitro. Ceramide increases the associ-
ation of PP2A with eNOS and decreases the association between eNOS
and Akt and between eNOS and Hsp90. PP2A promotes the dephosphor-
ylation of Akt that colocalizes with eNOS and/or decreases eNOS phos-
phorylation at Ser1177 and Ser617 directly. This impairs NO bioavailability
and leads to vascular dysfunction.

action in the context of our experimental conditions. Col-
lectively, these results suggest that by disrupting the asso-
ciation with I2PP2A, ceramide will promote the association
of PP2A with eNOS. The presence of PP2A in the Akt/
Hsp90/eNOS complex impairs Akt phosphorylation (likely
by direct dephosphorylation) and decreases eNOS phos-
phorylation by a similar mechanism, or indirectly as a con-
sequence of reduced Akt activation.

Ceramide regulates diverse cellular processes via mech-
anisms that are not completely understood, and its role in
the pathogenesis of cardiovascular disease has not been
fully elucidated (reviewed in Holland and Summers, Chavez
and Summers, and Summers and Nelson) (12,15,50). We
determined its contribution to vascular dysfunction associ-
ated with lipid overload (41,42). Our results are the first to
show that de novo ceramide biosynthesis contributes directly
to vascular dysfunction and hypertension that characterizes
diet-induced obesity. Findings from isolated vessels and en-
dothelial cells indicate that ceramide impairs the associa-
tion of p-Akt with eNOS in a PP2A-dependent manner,
leading to reduced eNOS activation and endothelial dys-
function. These data provide mechanistic insights linking
endogenous vascular ceramide biosynthesis to cardiovascu-
lar defects in a murine model of diet-induced obesity and
type 2 diabetes and present new targets for the treatment of
vascular dysfunction in these prevalent conditions.
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