
Surgical Neurology International • 2020 • 11(374)  |  1

is is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others 
to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
©2020 Published by Scientific Scholar on behalf of Surgical Neurology International

Original Article

Easily created prediction model using deep 
learning software (Prediction One, Sony Network 
Communications Inc.) for subarachnoid hemorrhage 
outcomes from small dataset at admission
Masahito Katsuki, Yukinari Kakizawa, Akihiro Nishikawa, Yasunaga Yamamoto, Toshiya Uchiyama
Department of Neurosurgery, Suwa Red Cross Hospital, Suwa, Nagano, Japan.

E-mail: Masahito Katsuki - ktk1122nigt@gmail.com; *Yukinari Kakizawa - ykakizawajp@yahoo.co.jp; Akihiro Nishikawa - aki.west@gmail.com; 
Yasunaga Yamamoto - yamamotoyasunaga@gmail.com; Toshiya Uchiyama - u_tosh@gmail.com

INTRODUCTION

Subarachnoid hemorrhage (SAH) due to the ruptured cerebral aneurysm is one of the severe 
stroke types, and it has a mortality rate of up to 35%. Furthermore, about one-third of the 
patients remain functionally dependent.[36] A reliable prediction model of the patients’ outcomes 
after SAH is needed for decision making of the treatment strategies (clipping with craniotomy, 

ABSTRACT
Background: Reliable prediction models of subarachnoid hemorrhage (SAH) outcomes are needed for decision-
making of the treatment. SAFIRE score using only four variables is a good prediction scoring system. However, 
making such prediction models needs a large number of samples and time-consuming statistical analysis. Deep 
learning (DL), one of the artificial intelligence, is attractive, but there were no reports on prediction models for 
SAH outcomes using DL. We herein made a prediction model using DL software, Prediction One (Sony Network 
Communications Inc., Tokyo, Japan) and compared it to SAFIRE score.

Methods: We used 153 consecutive aneurysmal SAH patients data in our hospital between 2012 and 2019. 
Modified Rankin Scale (mRS) 0–3 at 6 months was defined as a favorable outcome. We randomly divided them 
into 102 patients training dataset and 51 patients external validation dataset. Prediction one made the prediction 
model using the training dataset with internal cross-validation. We used both the created model and SAFIRE 
score to predict the outcomes using the external validation set. The areas under the curve (AUCs) were compared.

Results: The model made by Prediction One using 28 variables had AUC of 0.848, and its AUC for the validation 
dataset was 0.953 (95%CI 0.900–1.000). AUCs calculated using SAFIRE score were 0.875 for the training dataset 
and 0.960 for the validation dataset, respectively.

Conclusion: We easily and quickly made prediction models using Prediction One, even with a small single-center 
dataset. The accuracy of the model was not so inferior to those of previous statistically calculated prediction 
models.
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endovascular treatment, only cerebral ventricular drainage, 
or conservative therapy) and save the limited medical 
resources. It is also useful for SAH patients and their families 
to decide whether or not to receive surgical treatment.

According to the Japanese Guidelines for the Management of 
Stroke 2015,[46] the surgical indication was determined mainly 
depending on the Hunt and Hess grade,[14] Hunt and Kosnik 
grade,[15] or World Federation of Neurosurgical Societies 
(WFNS) grade.[34] However, not only the neurological 
severity grade but also patients’ age, locations, sizes of the 
aneurysms, and their comorbidities have large effects on 
the outcomes,[25,26,38,40] so we should determine the treatment 
strategy after a comprehensive evaluation.

Previously, many studies tried to make the prediction model 
for SAH outcomes,[1,13,19,20,37,49,50] and their area under the curve 
(AUC) of the receiver operating curve varied from 0.700 to 
0.898. However, the use of these models is a bit difficult for 
clinical application because they need some poorly definable 
variables such as hypertension, SAH thickness, and detailed 
physiologic scores. In 2019, Donkelaar et al. reported SAFIRE 
score[3] for prediction of SAH outcomes using only four items, 
which are easy and relatively objective; age, WFNS grade,[34] 
size of the aneurysm, and Fisher computed tomography (CT) 
scale [Table 1].[5] They used retrospective data of their single-
center cohort of 1215 SAH patients for the training dataset, 
prospective 224 SAH patients for temporary validation, and 
performed external validation using 2143 patients from the 
International Subarachnoid Aneurysm Trial database.[32] 
Then, the SAFIRE scoring system achieved the AUC of 0.90 
for the temporary validation and that of 0.73 for the external 
validation.

Similar to these studies, statistically making a prediction 
model or scoring system need a large number of samples 
over thousands, so these studies tend to be country-initiated 
or academic association-initiated research. However, the 
larger the sample size, the less detailed information is 
available, such as comorbidities, use of antithrombotic drugs, 
or laboratory test data and the more there are missing data. 
Furthermore, the treatment strategies vary from hospital 
to hospital, and patient backgrounds differ depending on 
countries and regions. Therefore, these prediction models 
work as the greatest common denominator worldwide, 
but not necessarily applicable, with high accuracies, to the 
respective hospital.

Recently, artificial intelligence (AI) is attracting. Especially, 
it is a transitional period regarding AI from machine 
learning to deep learning (DL). Machine learning, such as 
random forest, logistic regression, or clustering, is defined as 
“Algorithms that parse data, learn from that data, and then 
apply what they have learned to make informed decisions.” 
On the other hand, DL is considered an evolution of machine 
learning. DL uses a programmable neural network that 

enables machines to make accurate decisions without help 
from humans. To achieve this, DL applications use a layered 
structure of algorithms called an  artificial neural network 
(ANN). The design of ANN is inspired by the biological 
neural network of the human brain, leading to a process 
of learning that’s far more capable than that of standard 
machine learning models.

Machine learning has been used in neurosurgical 
situations,[27,33,39,42,47] but gradually DL is starting to be 
used as well in decision making for spinal canal stenosis,[2] 
predicting outcomes after stroke,[6] detecting seizure in 
intracranial electroencephalography recordings (UPenn and 
Mayo Clinic’s Seizure Detection Challenge),[44,48] pathological 
diagnosis,[29] or radiomics studies of brain tumors.[7,30] 
However, regarding predicting outcomes of SAH, prediction 
models only using random forests, categorized as machine 
learning, were made[39,47] with an accuracy of 70.9% from 
the 147 patients[39] or AUC of 0.837 from the 441 patients,[47] 
and there were no reports on the prediction model for SAH 
outcomes using DL. We hypothesized that we could make a 
good prediction model for our own hospital using DL, even 
with a small dataset. Therefore, we herein produced the 
prediction model using DL software, Prediction One (Sony 

Table 1: SAFIRE score.[3]

Variables Points

Size of the aneurysm (mm)
<10 0
10–19.9 2
≥20 6

Age
≤50 y.o. 0
50–60 y.o. 1
60–70 y.o. 2
≥70 y.o. 5

Fisher grade
1–3 0
4 2

WFNS grade
I 0
II 2
III 3
IV 6
V 9

Total SAFIRE score Risk of mRS 4–6 at 2 months*
0–2 <10%
3–5 10–25%
6–8 25–50%
9–15 50–90%
15–22 >90%

mRS: Modified Rankin Scale, WFNS: World Federation of Neurosurgical 
Societies, y.o.: Years old, *in this study, we did not use this these 
probability but the total SAFIRE score itself and evaluate the association 
of the outcomes and the total SAFIRE score ranging from 0 to 22
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Network Communications Inc., Tokyo, Japan)[41] with our 
SAH dataset and compared the utility of the model made by 
Prediction One to SAFIRE score for clinical application.

MATERIALS AND METHODS

Study population

We retrospectively retrieved data from medical records 
of all the consecutive 153 aneurysmal SAH patients who 
were admitted between 2012 and 2019 and treated at our 
institution. Patients with cardiopulmonary arrest on arrival 
were excluded from the study. The diagnosis of SAH was 
based on the clinical history and the presence of SAH on CT. 
The hospital’s research ethics committee approved this study, 
and we gained written informed consent for this study from 
all of the patients, the legally authorized representative of the 
patients, or next of kin of the deceased patients. All methods 
were carried out in accordance with relevant guidelines and 
regulations (Declaration of Helsinki).

General management of SAH was similar in all cases: 
all patients were first treated with nicardipine and kept 
normovolemic with normal blood pressure (systolic 
blood pressure <140 mmHg). Indication for surgery was 
established according to the Japanese Guidelines for the 
Management of Stroke 2009[45] and 2015.[46] Both versions 
describe samely as follows; patients classified as Grade I-III 
in each grading system[14,15,34] were considered eligible to 
undergo aneurysm treatment, whereas those with Grades 
IV and V were not regarded as suitable for such treatment, 
except for young and middle-aged patients or patients with 
large intra-parenchymal hematoma or hydrocephalus. We 
use WFNS grade on admission, but not Hunt and Hess nor 
Hunt and Kosnik grade. We mainly performed clipping, but 
endovascular coiling was considered when it seemed superior 
to clipping, such as in the posterior circulation aneurysm. 
Patients with severe hydrocephalus and WFNS Grade IV 
or V underwent cerebral ventricular drainage, and clipping 
or coiling was performed when their neurological status 
improved. Other patients who were not suitable for surgical 
treatment were treated conservatively. Patients with SAH due 
to trauma, arteriovenous malformation, or dissection were 
excluded from this study. Clipping or coiling was performed 
within 72 h after onset.

All SAH patients who underwent aneurysm clipping or 
coiling received fasudil, cilostazol, and statin as appropriate 
after the operation. Rehabilitation of 150 days as maximum 
and nutritional support was started as soon as possible 
after the operation, and prophylaxis and treatment 
of complications were also ensured. Intra-arterial infusion of 
fasudil was performed when necessary for the treatment of 
symptomatic vasospasm. In addition, a ventriculoperitoneal 
shunt was performed when hydrocephalus was observed.

Clinical variables

We collected data regarding physiological symptoms at 
admission for patients included in this study, that is, age, 
sex, height, weight, WFNS grade, systolic blood pressure, 
administration of antithrombotic drugs, history of 
smoking and drinking, hypertension, diabetes mellitus, and 
dyslipidemia. We also measured albumin, white blood cell, 
lymphocyte, triglycerides, total cholesterol, high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, 
glucose, hemoglobin A1c, and brain natriuretic peptide levels 
at admission. Albumin, lymphocyte, and total cholesterol 
are known factors for controlling nutritional status score to 
assess the nutritional status of the patients.[17]

We determined the location (anterior cerebral artery, anterior 
communicating artery, internal carotid artery, middle 
cerebral artery, posterior cerebral artery, basilar artery, 
vertebral artery, or undetermined due to severe neurological 
status treated by conservative therapy as well as diffuse SAH 
with multiple aneurysms which we could not be judged as 
ruptured) and size (mm) of the aneurysm, Fisher CT scale,[5] 
temporal muscle thickness (mm), and area (mm2) as an 
indicator of systemic skeletal muscle mass[8-10,22-24,26,43] based 
on the results of the CT or CT angiography at admission. 
We used the Aquilion ONE (Canon Medical Systems 
Corporation, Tochigi, Japan) to take CT and CT angiography 
images of 0.5 × 0.5 × 1.0 mm voxels. The slice thickness was 
reconstructed to 5 mm. The window width was adjusted to 
90 and the window level to 40 for Fisher CT scale evaluation, 
while window width was adjusted to 300 and the window level 
to 20 for temporal muscle measurement. Volume rendered 
images of the CT angiography were made using Ziostation2 
(Ziosoft, Tokyo, Japan). SYNAPSE V 4.1.5 imaging software 
(Fujifilm Medical, Tokyo, Japan) was used for measurement 
of the aneurysm size and Fisher CT scale. Temporal muscle 
area and thickness were also measured using SYNAPSE V 
through the methods described previously.[24,26]

We also investigated the treatment strategy (clipping, 
coiling, or others, including cerebral ventricular drainage 
or conservative therapy). To evaluate the outcomes, mRS 
scores at 6 months after the treatment of all 153 patients 
were collected by either personal outpatient interviews, 
reports from the rehabilitation hospital or home doctor, or 
interviews over the telephone, once the ethical approval was 
obtained for the study. We dichotomized mRS scores into 
favorable (mRS 0–3) or poor (mRS 4–6).

Making prediction model by Prediction One

We used Prediction One software to make the prediction 
model. We divided our 153 patients data randomly into 
102 patients training dataset and 51 patients external 
validation dataset. Prediction One read the 102 patients 
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data and automatically divided them into almost half as 
internal training and cross-validation datasets. Prediction 
One automatically adjusted and optimized the variables in a 
way that is easy to process statistically and mathematically, 
and select appropriate algorithm with ensemble learning. 
The missing values were automatically compensated and 
Prediction One made the best prediction model by ANN 
with internal cross-validation. The details are trade secrets 
and could not be provided.

We let the Prediction One software make 2 prediction models 
using 102 patients training dataset. One was made using 
all 28 variables acquired at admission, and the other used 
only four variables which are used for SAFIRE score;[3] age, 
WFNS grade, size of the aneurysm, and Fisher CT scale. The 
AUC of each model and strong variables were automatically 
calculated. Then, we performed external validation using the 
51 patients datasets and calculated AUC, accuracy, precision, 
recall, and F value, which were used for the evaluation of the 
prediction model made by AI.

Prediction using SAFIRE score

As the third model in this study, we also investigated SAFIRE 
scores[3] and evaluated AUCs using the same 102 patients of 
the training dataset and 51 patients of external validation 
dataset, respectively. However, due to some missing data 
(size of the aneurysm or Fisher CT scale), we calculated the 
SAFIRE score using 95 of the 102 patients and 46 of the 51 
patients datasets, respectively.

SAFIRE score is a simple scoring system predicting the 
probability of the outcomes as mRS 0–3 or 4–6 at 2 months. 
In the original article of the SAFIRE score,[3] SAFIRE score 
was calculated from the regression equation based on the β 
coefficients of the regression analyses using age, WFNS grade, 
size of the aneurysm, and Fisher CT scale. However, it is a 
complicated equation, so they turned it into a simple scoring 
system and confirmed its reliability. After the calculation of 
the sum score, in the original article, the total SAFIRE score 
was categorized into five groups according to the probability 
of the outcomes [Table 1]. We similarly calculated the total 
SAFIRE score from the scoring system, but investigated the 
association between the outcomes at 6 months and the raw 
total SAFIRE score itself ranging from 0 to 22. Its AUC was 
calculated and compared it with those from Prediction One 
models.

Statistical analysis

Results are shown as median (interquartile range). The 
difference between the training dataset and the external 
validation dataset was tested using the Mann–Whitney U 
test, Fisher’s exact test, or Pearson’s Chi-square test. A two-
tailed P < 0.05 was considered statistically significant. We 

calculated AUCs and their P-values using SPSS software 
version 24.0.0 (IBM, New York, USA).

RESULTS

Clinical characteristics

The clinical characteristics of the 153 SAH patients (100 
women and 53 men) are summarized in [Table 2]. The median 
(interquartile range) age was 67 (57–76), WFNS grade 2 
(2–4), aneurysm size 6.0 (4.0–8.0) mm, and Fisher group 3 
(3–3). Clipping was performed for 121 patients, coiling for 
12 patients, and cerebral ventricular drainage or conservative 
therapy was performed for 20 patients. The median mRS was 
2 (0–5) at 6 months and 96 patients (63%) were independent 
in ADLs. There were no significant differences in the variables 
between the training and validation data sets.

Model development and validation

Prediction One produced each prediction model in <1 min. 
The AUCs of each model were described in [Table  3]. The 
model made by Prediction One using 28 variables had AUC 
of 0.848 and F value of 0.723, and its AUC for the validation 
cohort was 0.953 (95%CI 0.900–1.000) with 90% accuracy. 
The model made by Prediction One using four variables 
had AUC of 0.803 and F value 0.704, and its AUC for the 
validation cohort was 0.977 (95%CI 0.938–1.000) with 88% 
accuracy. The accuracy, precision, and recall were 0.745, 
0.630, and 0.850 in the model using all 28 variables, and 
those in the model using the four variables were 0.745, 0.646, 
and 0.775, respectively.

The stronger variables of each model are listed in [Table 4]. 
In the model using the 28 variables, WFNS grade, treatment 
strategy (conservative therapy was related to poor outcome), 
size of the aneurysm, temporal muscle area, weight, height, 
glucose level, systolic blood pressure, triglycerides level, and 
lymphocyte count had large effects on the outcomes. While 
in the model using the four variables, WFNS grade, size of 
the aneurysm, age, and Fisher CT scale were important, in 
order.

Comparison to SAFIRE score

We calculated the SAFIRE score using 95 of the 102 patients 
in the training dataset and 46 of the 51 patients in the 
validation datasets, respectively. The AUCs were 0.875 (95% 
CI 0.807–0.943) and 0.960 (95% CI 0.905–1.000), respectively 
[Table 3].

DISCUSSION

We made prediction models using DL software, Prediction 
One, and we created models with a high prediction rate using 
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Variables Total (n=153) Training dataset 
(n=102)

External validation 
dataset (n=51)

P-value*

Age (years) 67 (57–76) 67 (57–76) 68 (59–76) 0.360
32–50 21 (14%) 17 (17%) 4 (8%)
51–65 53 (35%) 33 (32%) 20 (40%)
66–75 38 (25%) 26 (25%) 12 (23%)
76–85 28 (18%) 20 (20%) 8 (15%)
86–96 13 (8%) 6 (6%) 7 (14%)

Women:Men (%Women) 100:53 (65%) 63:39 (62%) 37:14 (73%) 0.211
Height (cm) (n=143) 155 (150–165) 155 (150–164) (n=96) 155 (150–167) (n=47) 0.938
Weight (kg) (n=142) 52 (45–60) 52 (44–60) (n=95) 52 (47–60) (n=47) 0.857

WFNS grade 2 (2–4) 2 (2–4) 2 (2–4) 0.449
Grade I 29 (19%) 18 (18%) 11 (22%)
Grade II 58 (38%) 37 (36%) 21 (40%)
Grade III 8 (5%) 7 (7%) 1 (2%)
Grade IV 24 (16%) 17 (17%) 7 (14%)
Grade V 34 (22%) 23 (22%) 11 (22%)

Aneurysm location 0.469
ACA 17 (11%) 12 (12%) 5 (10%)
ACoA 36 (24%) 22 (22%) 14 (27%)
ICA 37 (24%) 24 (24%) 13 (25%)
MCA 41 (27%) 30 (28%) 11 (22%)
PCA 4 (3%) 4 (4%) 0
BA 6 (4%) 2 (2%) 4 (8%)
VA 5 (3%) 3 (3%) 2 (4%)
Undetermined† 7 (4%) 5 (5%) 2 (4%)
Aneurysm size (mm) (n=140) 6.0 (4.0–8.0) 6.0 (4.1–8.1) (n=94) 5.5 (3.8–8.0) (n=46) 0.630

Fisher group 3 (3–3) 3 (3–3) 3 (3–3) 0.905
Group 1 2 (1%) 2 (2%) 0
Group 2 18 (12%) 13 (13%) 5 (10%)
Group 3 103 (67%) 65 (63%) 38 (75%)
Group 4 30 (20%) 22 (22%) 8 (15%)

Treatment 0.422
Clipping 121 (79%) 83 (81%) 38 (75%)
Coiling 12 (8%) 6 (8%) 6 (12%)
Others 20 (13%) 13 (11%) 7 (13%)
mRS 6-mo post-op 2 (0–5) 2 (0–5) 2 (0–5) 0.625
mRS 0–3 96 (63%) 62 (61%) 34 (67%)
mRS 4 12 (8%) 9 (9%) 3 (6%)
mRS 5 16 (10%) 12 (11%) 4 (8%)
mRS 6 29 (19%) 19 (19%) 10 (19%)

History
History of smoking (n=140) 43/140 (31%) 31/94 (33%) 12/46 (26%) 0.442
History of drinking (n=136) 26/136 (19%) 18/91 (20%) 8/45 (18%) 0.999
Hypertension (n=142) 79/142 (56%) 51/94 (54%) 28/48 (58%) 0.722
Diabetes mellitus (n=139) 16/139 (12%) 9/93 (10%) 7/ 46 (15%) 0.399
Dyslipidemia (n=141) 21/141 (15%) 12/94 (13%) 9/47 (19%) 0.326
Antithrombotic drugs (n=144) 13/144 (9%) 8/96 (8%) 5/48 (10%) 0.760
Systolic blood pressure on admission 
(mmHg) (n=134)

156 (139–180) 155 (140–180) (n=89) 157 (137–177) (n=45) 0.393

Laboratory data
Total protein (mg/dL) (n=128) 7.2 (6.7–7.5) 7.1 (6.7–7.4) (n=85) 7.3 (6.8–7.6) (n=43) 0.386
Albumin (mg/dL) (n=143) 4.2 (3.9–4.5) 4.2 (3.9–4.5) (n=96) 4.2 (4.0–4.6) (n=47) 0.654
White blood cell (/μL) (n=141) 9250 (7440–12340) 9320 (7485–12250) 

(n=95)
8760 (7365–12375) 

(n=46)
0.464

Table 2: Characteristics of the datasets.

(Contd...)
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a small dataset with several missing data, and it would be 
reliable for the prediction in our own hospital. Furthermore, 
this is the first report on creating a prediction model of SAH 
using DL.

Advantages of DL

DL is now widely used not only in medicine but also in 
economics, sociology, and logistics. DL is used by a variety 
of companies with few variables and data, such as forecasting 
store stocking, predicting insurance policy renewals, and 
predicting stock prices and land values. Although the sample 
size in medical situations may be small compared to them, 
there are many chronological, cross-sectional, and non-
numeric variables, such as chief complaint, medical history, 
family history, blood test data, vital signs, sentences in the 
electronic medical record themselves, and radiological 
imaging data with detailed radiomics, that may be suitable 
for creating predictive models with DL.

Conventional time and cost-consuming statistical analysis 
need variable optimization like a logarithmic transformation 
for making the variables like the normal distribution to 
increase the accuracy of the prediction model. It also 
requires the arbitrary selection of variables based on previous 
studies and multivariate analysis needs 10 folds number of 
samples against the variables.[35] Therefore, there is a risk that 
variables which might be important cannot be included in 
the statistical analysis, or that even the multivariate analysis 
cannot be performed in a small hospital with small data. 
Furthermore, in statistical analysis, when there are missing 
data, we should do multiple imputation or Listwise deletion, 
which also affects accuracy.

However, DL has the potential to overcome these problems. In 
the statistical analysis, we should perform variable optimization 
and sometimes choose variables arbitrarily due to small sample 
size. However, DL can develop useful prediction models without 
those time-consuming or arbitrary procedures because DL 
software automatically does these processes. Furthermore, the 
number of the variables for DL software is not limited, and DL 
sometimes find interesting variables as important that has not 
been taken into account in the previously reported statistical 
models.[30,39] Furthermore, DL software automatically substitutes 
appropriate values instead of the missing ones and calculate the 
best prediction model without our statistical trial and error.

We then review these benefits of DL in our study. 
Conventionally, we could have used only ten variables for 
statistical analysis due to the small sample size of the training 
dataset (n = 102). Furthermore, the dataset contains several 
missing data. However, we could use 28 variables for making 
a prediction model by Prediction One, and make a good 
prediction model from the small dataset. We did not need 
to perform variable optimization nor manipulations for the 
missing values. Furthermore, some of the serological test 
results like glucose level were judged to be important among 
many other previously reported important factors such as 
aneurysm location and Fisher CT scale. Besides, the time 
needed for creating each model was <1 min. Finally, the 
models achieved high accuracy with AUC of 0.848 in the 
training dataset and 0.953 in the validation dataset. Putting 
it bluntly, this means our prediction model, even made from 
the small dataset, can predict the SAH patients’ outcomes 
treated in our hospital with as high accuracy of SAFIRE 
score, which was made from the large cohort study.

Variables Total (n=153) Training dataset 
(n=102)

External validation 
dataset (n=51)

P-value*

Lymphocyte (/μL) (n=141) 1923 (1088–3907) 2270 (1170–4002) 
(n=95)

1839 (952–2851) (n=46) 0.262

Triglycerides (mg/dL) (n=97) 101 (73–146) 110 (72–170) (n=68) 92 (76–117) (n=29) 0.233
Total cholesterol (mg/dL) (n=86) 192 (171–221) 192 (176–220) (n=60) 185 (167–222) (n=26) 0.628
High-density lipoprotein cholesterol (mg/dL) 
(n=71)

60 (50–70) 59 (49–71) (n=47) 62 (55–70) (n=24) 0.593

Low-density lipoprotein cholesterol (mg/dL) 
(n=84)

115 (103–133) 117 (104–132) (n=57) 109 (98–132) (n=27) 0.321

Glucose (mg/dL) (n=111) 158 (134–200) 155 (134–183) (n=72) 170 (134–203) (n=39) 0.513
Hemoglobin A1c (%) (n=90) 5.8 (5.5–6.1) 5.8 (5.5–6.1) (n=59) 5.7 (5.5–6.1) (n=31) 0.865
Brain natriuretic peptide (pg/mL) (n=12) 62.5 (39.9–101.0) 57.9 (32.9–121.1) (n=10) 74.6 (67.0–82.1) (n=2) 0.758
TMT (mm) (n=150) 5.4 (4.2–6.7) 5.3 (4.2–6.8) (n=101) 5.6 (4.5–6.6) (n=49) 0.784
TMA (mm2) (n=148) 249 (149–366) 242 (146–364) (n=99) 235 (155–365) (n=49) 0.712

ACA: Anterior cerebral artery, ACoA: Anterior communicating artery, BA: Basilar artery, ICA: Internal carotid artery, MCA: Middle cerebral artery, mRS 
6-mo post-op: Modified Rankin Scale 6 months after the operation, PCA: Posterior cerebral artery, TMA: Temporal muscle area, TMT: Temporal muscle 
thickness, VA: Vertebral artery, WFNS grade: World Federation of Neurosurgical Societies, *Mann–Whitney U test, Fisher’s exact test, or Pearson’s Chi-
square test was performed, †Severe neurological status treated by conservative therapy as well as diffuse SAH with multiple aneurysms which we could not 
be judged as ruptured

Table 2: (Continued).
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Limitations of DL

First, the adequate sample size is still unknown for DL. Fujita 
et al. reported that there were no differences in the accuracy 
of the predicting independent dressing on month after 
stroke among 80, 100, and 120 patients dataset. However, the 
accuracy was worse under 60 patients dataset.[6] Furthermore, 
an appropriate number of the variables to use to DL is also 
unestablished. In general, the more variables are used for DL, 
the higher the accuracy becomes. However, our model using 
four variables is superior in AUC to that using 28 variables 
in the validation dataset. This is because some variables 
may work as noise or have too many missing values to work 
appropriately. Furthermore, the quality of the data itself 
may be poor, such as items measured manually, qualitative, 
or subjective. Furthermore, we should perform dimension 
reduction for clinical use. For example, our model using 28 
variables had temporal muscle area, weight, glucose, and 
triglyceride levels, as well as lymphocyte count as important 
variables [Table 4]. However, when so many items are shown 
to be important, it is hard to know which ones to rely on. 
They seem like indicators of nutrition or aging, so “age” could 
represent these variables as a unified item. Therefore, we 

need to consider which of the 28 items are really needed and 
to perform dimension reduction.

Second, DL can treat images or sentences, and this is a very 
strong point compared to other AI algorithms, but we did 
not use these advantages. We could have used CT images or 
descriptions themselves in the electronic medical record to 
making prediction models. Besides, the number of variables 
for DL is unlimited so, we could have used more variables 
that are not reported previously such as other laboratory test 
data, chronological changes of vital signs, meteorological 
conditions, and ore calendarial factors. Further study or 
programming should be needed.

Third, the prediction model derived from our own data 
cannot be applied to other institutions, and the training and 
validation dataset must be updated to keep up with advances 
in medical science and changes in surgical techniques. 
Creating an AI-based prediction model that can be used 
universally at any hospital will still require country-initiated 
or academic association-initiated collaborative research at 
many institutions and may require the same amount of effort 
as the traditional statistical model creation.

Fourth, we need to examine the clinical usefulness of the 
prediction model prospectively. For example, by performing 
surgery only to patients with a good prognosis predicted by 
the model, we would evaluate the reduction of the workload 
and stress of the medical staff, and the medical resources and 
costs could be saved or not. Furthermore, we should examine 
the changes of the families’ minds in decision making to 
treat the patients whose outcomes are empirically difficult 
to predict, such as elderly patients with SAH Grade III, after 
showing the result of AI prediction.

Fifth, we used Prediction One software, but there are many 
AI software (frameworks) worldwide, and there are a 
thousand different ways to assemble the ANN (libraries). 
Prediction one is suitable for predicting binomial, ordinal, 
or continuous variables and can treat Japanese sentences 
themselves. Furthermore, when there are missing values, 
it automatically compensates. However, the details of how 
the neural network is assembled and tuned have not been 
released, so we need to think carefully about the accuracy of 

Table  4: Stronger variables of each model made by Prediction 
One.

Variables; order 
of strength

Prediction One using 
28 variables

Prediction One 
using 4 variables

1 WFNS grade WFNS grade
2 Treatment strategy Size of the aneurysm
3 Size of the aneurysm Age
4 Temporal muscle area Fisher CT scale
5 Weight
6 Height
7 Glucose level
8 Systolic blood 

pressure
9 Triglycerides level
10 Lymphocyte count
CT: Computed tomography, WFNS: World Federation of Neurosurgical 
Societies

Table 3: Models for prediction.

Model AUC derived from the 
training cohort (n=102)

F value AUC derived from the validation 
cohort (n=51)

Accuracy for the 
validation cohort (%)

Prediction One using 28 variables 0.848† 0.723† 0.953 (95% CI 0.900–1.000)* 90.2
Prediction One using 4 variables‡ 0.803† 0.704† 0.977 (95% CI 0.938–1.000)* 88.2
SAFIRE score using 4 variables‡ 0.875 (95%CI 0.807–0.943)* 

(n=95)
- 0.960 (95%CI 0.905–1.000)* 

(n=46)
-

AUC: Area under the curve, *P<0.001 for the receiver operating curve calculated by SPSS software, †Automatically calculated by Prediction One, ‡Four 
variables include age, World Federation of Neurosurgical Societies grade, size of the aneurysm, Fisher computed tomography scale
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the models and why the variables were judged as important, 
considering the clinical meaning.

Future outlook

Despite this easiness, advantages, and future potential of 
DL, the majority of medical staff cannot treat DL software. 
Staartjes et al. reported this is because of lack of skilled 
resources (staff, equipment) to develop a model, time 
limitations restricting AI application in clinical practice, 
lack of AI models for the indications of interest, uncertainty 
concerning which processes may benefit most from the 
application of AI algorithms, lack of data to develop a model, 
and lack of personal convincement of the added value of this 
new technology.[42] As simple DL software is being developed, 
there is a need for an active interest in using it for the benefit 
of medical staff and patients. Our study is just one example 
but suggested the utility of DL software. DL-based tailor-
made and efficient medicine, depending on each patient and 
hospital, would be performed as DL software becomes more 
popular.

For example, in Japan, a nation-wide study revealed that 77% 
of the 5344 SAH patients underwent clipping and others 
coiling from 1999 to 2012,[28] but clipping is performed for 
<60% of the SAH patients in the United States.[31] We perform 
clipping as first-choice treatment, but coiling is performed 
in other hospitals.[24] Similarly, postoperative management 
against vasospasm delayed cerebral ischemia as well as 
nutrition therapy and rehabilitation vary depending on each 
hospital’s policy and health-care system worldwide. Although 
there are these differences in the treatment strategies, DL 
software can produce predicting models specific to individual 
centers that would be based on their own unique experience 
in managing SAH patients. Furthermore, with modern 
electronic medical records, the clinical variables and clinical 
outcome data could be automatically fed to the DL software, 
leading to progressive improvement in predictions over time. 
This evolutionary prediction will be a benefit to patients, 
health-care providers, and hospital managers.

Furthermore, the big data have been stored, such as 
coronavirus disease 2019 Public Datasets,[12] Miyagi medical 
and welfare information network,[16] Tohoku Medical 
Megabank,[11,21] Japanese Stroke Databank,[28] or the Japan 
Neurosurgical Database.[18] When these data are open for 
researchers, it will spur competition in the development of 
further prognostic models using such big data, like Kaggle 
competition.[48]

Limitation of this study

We used WFNS grade at admission, but the SAFIRE 
score used the WFNS score assessed after neurological 
resuscitation[3,4] (rWFNS; e.g., cerebral spinal fluid drainage 

for acute hydrocephalus or evacuation of an intracerebral 
hematoma). Furthermore, the SAFIRE score predicts 
2-month outcomes, but our models those 6 months. These 
are differences, so simply comparing their AUCs requires 
caution.

CONCLUSION

We easily and quickly made prediction models using 
Prediction One software. The accuracies of the prediction 
models were not inferior to those of previous statistically 
calculated prediction models. Even with a small single-center 
dataset, containing missing data, prognostic models made 
by DL software can be useful at the institution and may be 
applied to daily clinical practice in the future.
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