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Background Most malignant brain gliomas (MBGs) are associated with dismal outcomes, mainly due to their late
diagnosis. Current diagnostic methods for MBGs are based on imaging and histological examination, which limits
their early detection. Here, we aimed to identify reliable plasma lipid biomarkers for non-invasive diagnosis for
MBGs.

Methods Untargeted lipidomic analysis was firstly performed using a discovery cohort (n=107). The data were proc-
essed by a support vector machine (SVM)-based discriminating model to retrieve a panel of candidate biomarkers.
Then, a targeted quantification method was developed, and the SVM-based diagnostic model was constructed using
a training cohort (n=750) and tested using a test cohort (n=225). Finally, the performance of the diagnostic model
was further evaluated in an independent validation cohort (n=920) enrolled from multiple medical centers.

Findings A panel of 11 plasma lipids was identified as candidate biomarkers with an accuracy of 0.999. The diagnos-
tic model developed achieved a high performance in distinguishing MBGs patients from normal controls with an
area under the receiver-operating characteristic curve (AUC) of 0.9877 and 0.9869 in the training and test cohorts,
respectively. In the validation cohort, the 11 lipid panel still achieved an accuracy of 0.9641 and an AUC of 0.9866.

Interpretation The present study demonstrates the applicability and robustness of utilizing a machine learning
algorithm to analyze lipidomic data for efficient and reliable biomarker screening. The 11 lipid biomarkers show
great potential for the non-invasive diagnosis of MBGs with high throughput.

Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgments section.
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Introduction
Malignant brain gliomas (MBGs) are the most common
primary brain malignancies in adults. Increasing evi-
dences have already suggested that early detection of
cancer can be attributed to better prognosis or even cure
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in some malignancies. Meanwhile, nearly all the
MBGs patients will suffer from recurrence after initial
treatment. Therefore, improvement in accurate detection
and monitoring of recurrence over time would remark-
ably benefit patients. Currently, computed tomography
(CT) and magnetic resonance imaging (MRI) are rou-
tinely utilized for the initial detection and recurrence-
monitoring of MBGs, but the cost, side effect of radiation
and relative inaccessibility dampen their application in
large-scale screening for patients. Besides, concerning
that MBGs reside in brain, tumor biopsy-based strategies,
such as genetic profiling of specimens obtained by fine
needle aspiration biopsy,3 or sequencing of circulating
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Research in context

Evidence before this study

Computed tomography (CT) and magnetic resonance
imaging (MRI) are routinely utilized for detection of
malignant brain gliomas, but the cost, side effect of radia-
tion and relative inaccessibility dampen their application.
Tumor biopsy-based strategies, such as genetic profiling
of specimens obtained by biopsy, or sequencing of circu-
lating tumor DNA (ctDNA) from cerebrospinal fluid, are
too invasive for repeated sampling. Liquid biopsy-based
strategies have also been explored for the diagnosis of
gliomas, such as detecting ctDNA in blood, but the sensi-
tivity is not high enough for clinical practice. A novel
non-invasive strategy based on highly accurate and sen-
sitive biomarkers is still urgently needed.

Added value of this study

In the current study, we proposed a strategy combining
lipidomics and an SVM-based machine learning algo-
rithm to screen plasma biomarkers for malignant brain
gliomas. Lipidomics analysis was firstly performed to
explore lipid expression profile in plasma and then SVM
modeling was performed to retrieve lipid markers.
Finally, we established a targeted liquid chromatogra-
phy-multiple reaction monitoring-mass spectrometry
(LC-MRM-MS) assay method and an SVM-based diag-
nostic model using a panel of 11 lipids. The perfor-
mance of this diagnostic model is evaluated in large
cohorts deriving for different medical centers.

Implications of all the available evidence

Our findings reveal that the combination of lipidomics
and machine learning algorithm is a powerful and effi-
cient strategy for biomarker screening. The marker
panel and diagnostic model we developed in this pres-
ent study showed prospect in future clinical applica-
tions with advantages including non-invasive sample
collection, quick analysis and high accuracy.
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tumor DNA (ctDNA) from cerebrospinal fluid (CSF),4

are too invasive for repeated sampling.
Recently, with the rapid development of second-gen-

eration sequencing and mass spectrometry, liquid
biopsy-based methods have emerged as promising non-
invasive diagnostic modalities for cancer diagnosis. Sev-
eral kinds of biomolecules in blood have been found as
potential biomarkers for cancers, such as ctDNA, RNA,
antigen and proteins,1,5-7 demonstrating the applicability
and potential of liquid biopsy in cancer diagnosis. Similar
strategies have also been explored for the diagnosis of gli-
omas, such as detecting ctDNA, but the sensitivity of
these methods is still not enough and its implementation
into clinical practice remains a significant challenge.8

Therefore, a novel non-invasive strategy based on highly
accurate and sensitive biomarkers is still urgently needed
to facilitate diagnosis of MBGs in a clinical setting.
Lipidomics is a prevailing analytical strategy that targets
the entire lipid species present in a given biological sam-
ple.9 Because of the important functions of lipids in critical
biological processes such as energy metabolism,10 signal
transduction and lipid membrane reconstruction,11 the
study of dysregulated lipids in disease is a promising way
to understand disease pathology or to screen for bio-
markers. In general, the tight junctions between endothe-
lial cells that form the blood brain barrier restrict
penetration of hydrophilic molecules. However, the large
surface area of the lipid membranes of the endothelium
offers an effective diffusive route for lipid-soluble
molecules.12,13 What’s more, several published studies
have reported potential blood lipid biomarkers for brain
related diseases, such as neurodegenerative disease,14 trau-
matic brain injury15 and psychiatry.16 However, there are
few lipidomic studies on brain gliomas and the potential of
lipid markers for diagnosis remains relatively unexplored.

Machine learning (ML) refers to the use of data anal-
ysis to establish effective detection or verification mod-
els, and is an important part of artificial intelligence
(AI).17 As the development of algorithms has advanced
in recent years,18 ML approaches have begun to demon-
strate their promise for broader applications.19,20 Sup-
port vector machines (SVM), as a classic member in
ML, have also shown their advantages in medically
related studies.21-23 In last few decades, the successful
application of ML in clinical diagnosis of novel molecu-
lar markers, genetic alterations and protein changes,
has been reported.24,25 Here in the present study, we
propose a combination of lipidomics and an SVM-based
ML algorithm as a powerful strategy for efficient and
accurate biomarker screening for malignant brain glio-
mas. Based on an initial panel of candidate markers, we
further established a targeted liquid chromatography-
multiple reaction monitoring-mass spectrometry (LC-
MRM-MS) assay method and a diagnostic model for
convenient clinical applications.
Methods

Patients
Four sample cohorts (discovery, training, test and vali-
dation) comprising a total of 2,002 participants includ-
ing MBGs patients (group name MBGs) and healthy
controls (group name NC) were enrolled between June
2018 and September 2019. Baseline characteristics of
the participants are summarized in Table 1. The inclu-
sion criteria for MBGs patients were as follows: 1. with-
out prior antitumor treatments; 2. prior tumor resection
and histological diagnosis with MBGs according to the
2016 World Health Organization Classification of Cen-
tral Nervous System Tumors;26 3. availability of blood
specimens for analyses and 4. completion of voluntary
informed consent to participate in this study. NC
groups were recruited from individuals undergoing
www.thelancet.com Vol 81 Month , 2022



Discovery cohort (n=107) Training cohort (n=750) Test cohort (n=225) Validation cohort (n=920)

Variable Brain
gliomas

Healthy
control

Brain
gliomas

Healthy
control

Brain
gliomas

Healthy
control

Brain
gliomas

Healthy
control

No. of cases 72 35 385 173+192 115 52+58 351 61+224+284

Age (year) 43§13.9 44§15.2 45§13.1 45§12.8 46§13.4 43§12.9 46§13 45§12.9

Sex (male/female) 42/30 20/15 229/156 171/194 73/42 54/56 196/155 283/286

Glioma grade

WHO grade

II

A 15 45 20 76

OA 8 67 15 44

O 0 41 5 22

III

AOA 6 35 12 26

AO 5 27 9 17

AA 2 17 5 27

IV

GBM 36 153 49 139

Table 1: Characteristics of the subjects in each cohort.
Data are presented as the mean § SD. Abbreviations used are: A: astrocytoma; OA: oligoastrocytoma; O: oligodendroglioma; AOA: anaplatic oligoastrocytoma;

AO: anaplatic oligodendroglioma; AA: anaplatic astrocytoma; GBM: glioblastoma.
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annual physical examination from the physical exami-
nation center of hospitals under the following inclusion
criteria: matched with the MBGs groups in terms of age
and gender, and no history of cancer or systemic dis-
eases. For the discovery cohort, plasma samples were
collected at Tiantan Hospital, Beijing, China (MBGs
group, n=72) and Peking University Third Hospital,
Beijing, China (NC group, n=35). The training cohort
of 750 participants was from Tiantan Hospital (MBGs
group, n=385), Haidian Hospital, Beijing, China (NC
group, n=173,) and Peking University Third Hospital
(NC group, n=192). The test cohort of 225 participants
was from Tiantan Hospital (MBGs group, n=115), Hai-
dian Hospital (NC group, n=52) and Peking Univer-
sity Third Hospital (NC group, n=58). The validation
cohort of 920 participants was composed of newly
collected cases from May 2019 to September 2019 at
Tiantan Hospital (MBGs group, n=351; NC group,
n=61), Haidian Hospital (NC group, n=224)
and Peking University Third Hospital (NC group,
n=284).
Plasma collection
For enrolled MBGs patients, 4 mL of arterial or periph-
eral blood was collected in tubes containing EDTA at
the time of surgery. For NC group, peripheral blood was
collected on the morning of the medical examination.
All participants, including patients and healthy controls
had fasted at least 8 hours before blood collection.
Whole blood was centrifuged at 2500 g for 15 min and
aliquots of supernatant (plasma) were transferred into
cryovials and stored at -80°C.
www.thelancet.com Vol 81 Month , 2022
Chemicals
Ammonium acetate was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Formic acid, HPLC grade isopro-
panol (IPA), acetonitrile (ACN) and methanol were pur-
chased from Fisher Scientific (USA). Deionized water
was produced by a Milli-Q system. All standard chemi-
cals were of analytical grade with typical purity of
>99%. Phosphatidylcholine (PC 16:0-18:1, 16:0-18:2,
16:0-20:4, 16:0-22:6, 18:0-18:1, 18:0-18:2 and 18:0-
20:4), lysophosphatidylcholine (LPC 13:0, 16:0 and
18:0) and triglyceride (TG 18:1-18:2-18:3) were pur-
chased from Avanti Polar Lipids (USA).
High-performance liquid chromatography and mass
spectrometry
Lipids were extracted from plasma samples using liq-
uid-liquid extraction. For untargeted lipidomics, 50 ml
of plasma were mixed with 200 ml of chloroform/meth-
anol (2:1, V/V). For targeted quantification, lipids were
extracted from 25 ml of samples with 100 ml of chloro-
form/methanol (2:1, V/V) containing LPC 13:0 and glyc-
eryl trioctanoate (TG 8:0-8:0-8:0) at 10 mg/ml as
internal standards. For untargeted lipidomics, an Ulti-
mate 3000 liquid chromatography coupled with a
Q-Exactive MS was used in data dependent acquisition
mode. Chromatographic separation was performed on a
X-select CSH C18 column (4.6 mm£ 100 mm,
2.5 mm). Two mobile phases were used for gradient elu-
tion: (A) ACN/water (3:2, V/V) and (B) IPA/ACN (9:1,
V/V). Both mobile phase A and B contained 10 mM
ammonium acetate and 0.1% formic acid. The gradient
program was as follows: 0 min - 40% B; 0.5 min - 40%
3
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B; 0.6 min - 50% B; 6.6 min - 60% B; 6.7 min 75% B;
9.7 min � 99% B; 14 min - 99% B; 14.5 min - 40% B;
and 19 min - 40% B. A pooled plasma sample was pre-
pared as QC to assess the stability of the LC-MS instru-
ment and ensure the reliability of the data. A QC
sample was run before and after the sequence and after
every 15 sample runs in the sequence. For targeted
quantification, a Nexera UHPLC system coupled with a
QTRAP 6500 MS was used in multiple reaction moni-
toring (MRM) mode. Chromatographic separation
was performed on a X-select CSH C18 column
(2.1 mm£ 100 mm, 2.5 mm) using the same mobile
phases as for the untargeted lipidomics. Optimized
MRM parameters were included in Table S1.
Lipid identification and quantification
The acquired lipidomic data (.raw) were processed using
MS-DIAL software27 according to the instructions in the
software tutorial. The MS/MS spectra-based lipid identifica-
tion was performed in MS-DIAL by searching the acquired
MS/MS spectra against the software’s internal in silico
MS/MS spectra database (LipidBlast database, version: Lip-
idDBs-VS23-FiehnO). Chemical standards were used for
identity validation for the 11 lipid markers. The acquired
MRM data was processed by MultiQuant software (AB
Sciex), areas of the XICs of targeted lipids were calculated
and normalized with internal standards. Matrix data were
exported as Excel files for the subsequent SVM analysis.
Support vector machine
No processing procedure was performed for missing
values. L2 normalization was used to normalize the
data according to the following equation.

fi ¼
fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 f 2m

q

(where fi denotes the i-th dimension data for each sam-
ple, and M is dimension of the data.)

Given N samples (x1; y1), (x2; y2),(xN; yN), where xi
and yi were the data and label for i-th sample, the SVM
found the “maximum-margin” or hyperplane that could
divide those samples with the following equation.

min
w;b

jjwjj2
2

; s:t: wTxi þ b
� �

yi�1

As shown in above equation, the inferred w could be
regarded as the importance weight for each feature.
Based on w, we selected feature with higher impor-
tance. For the discriminating model constructed using
the lipidomics data, we performed 2000 times of 4-fold
cross-validation on the data from the discovery cohort
and evaluated the classification performance. For the
diagnostic model for MRM data, we constructed the
SVM model using the training cohort, then tested and
evaluated the classification performance using the test
cohort and the validation cohort.
Feature selection
To target selected features with information that is sig-
nificant for classifying the MBGs versus NC, we com-
puted the importance weight for each feature. Data in
positive-ion (ESI+) and negative-ion (ESI-) modes were
analyzed separately. Given all the normalized training
data, denoted as X2R(107£1304(758)), we employed SVM
to infer the weight W2R(1£1304(758)) for all features.
Once the weight W was obtained, we treated the square
value of Wi as the importance weight of the i-th feature.
All features were therefore sorted based on their weight
value. Because a feature with a higher value has a
greater influence, the validation operation was con-
ducted to select Top-K importance features with the
highest classification accuracy. In this work, Top-100
importance features were analyzed to generate predic-
tive models for feature selection which was performed
by selected the top-ranked feature one-by-one for evalua-
tion, e.g., selecting the Top-N features among the N-th
iteration. 500 times 4-fold cross-validations were carried
out. Mean accuracies for each model (n = 100) in feature
selection were calculated after 500 time of iterations.
RNA-seq processing
Three pairs of glioblastoma samples and the corresponding
adjacent normal tissues were taken during brain tumor
resections and immediately frozen with liquid nitrogen.
RNA was extracted using TRIzol. Sequencing libraries
were then established using NEBNext UltraTM RNA
Library Prep Kit for Illumina (NEB, USA), and the library
preparations were sequenced on an Illumina HiseqX10
instrument (Illumina, Inc., San Diego, CA, USA) and 125
bp/150 bp paired-end reads were generated. For data analy-
sis, we used GRCh38 (hg38) as the reference genome.
Hisat2 v2.0.5 was used for genome mapping, and feature-
Counts v1.5.0 was used to count the read numbers of map-
ping. We then calculated the number of Fragments Per
Kilobase of transcript sequence per Millions base pairs
(FPKM) to estimate gene expression levels.
Statistics
MATLAB R2018a and Prism Graphpad v 8.0 software
were used for statistical analysis. For data from the tar-
geted assay, t-SNE analysis was conducted with MAT-
LAB using the tsne function. Principle component
analysis (PCA) and hierarchy cluster analysis were per-
formed using the MetaboAnalyst web service (https://
www.metaboanalyst.ca/). Transcriptomic data were test
for enrichment in curated KEGG pathways of glycero-
phospholipid metabolism (hsa00564) and glycerolipid
metabolism (hsa00561) using GSEA software28 (1000
permutations).
www.thelancet.com Vol 81 Month , 2022
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Ethics
This study was approved by the ethics committee at Bei-
jing Tiantan Hospital (reference number: KY2014-021-
02) as a part of the Neurosurgical Clinical Information
and Biobanking Project (Brain Tumor Section) and con-
formed to the ethical guidelines of the 1975 Declaration
of Helsinki. Written informed consent was obtained
from each participant.

Role of the funding source
The funding sources listed at the end of the manuscript
did not have a role in the study design, sample
collection, data analysis, result interpretation, or
Figure 1. Overall workflow of the study.
Discovery stage: LC-MS based untargeted lipidomics was init

results were processed by an SVM based discriminating model to
selected as a panel of biomarkers for further validation. SVM Mod
MRM-MS based targeted quantification assay method was develop
model was constructed using the training cohort and verified by t
applicability of the diagnostic model was further evaluated by a ne
centers. The systematic bias and batch effects of the workflow were
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manuscript writing. The decision to submit the paper
for publication was made only by the authors listed.
Results

Overview of the study scheme
In the present study we aimed to identify plasma bio-
markers for diagnosis of MBGs. An overview of the
study workflow is presented in Figure 1. LC-DDA-MS
based untargeted lipidomics was initially used for
plasma lipid profiling in a discovery cohort of 107 partic-
ipants (72 MBGs, 35 NC). Lipidomic data were
ially used for plasma lipid profiling in a discovery cohort and
screen for potential markers. The top ranked lipids were then
eling: Independent training and test cohort were enrolled. LC-
ed and used for biomarker analysis. An SVM based diagnostic
he test cohort. Validation stage: The performance and clinical
wly collected validation cohort collected from multiple medical
also evaluated.
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processed by an SVM-based feature selection procedure
to screen for potential markers, and 11 top ranked lipids
were ultimately selected as a panel of diagnostic bio-
markers. Then an LC-MRM-MS-based targeted quantifi-
cation method was constructed for this marker panel,
and used for analysis of the training cohort (n=750, 385
MBGs and 365 NC) and test cohort (n=225, 115 MBGs
and 110 NC). An SVM-based diagnostic model was built
and tested with the results of the training cohort and
the test cohort, respectively. Finally, we prospectively
collected a validation cohort (n=920, 351 MBGs and 569
NC) at multiple medical centers to further evaluate the
performance of the diagnostic model in an actual clini-
cal setting.
Lipidomic results and the discriminating model
For the discovery cohort, a total of 1304 plasma lipids
belonging to 16 lipid species, and 758 plasma lipids
belonging to 27 lipid species were identified at MS2
level in ESI+ and ESI- ion modes, respectively
(Figure S1). First, PCA score plots were used for data
quality evaluation in which QC samples clustered well
in both ESI+ (Figure 2A) and ESI- (Figure 2B) ion
modes. Samples in MBGs and NC groups showed
trends of separation. To further discriminate MBGs
from NC and reveal the most powerful lipid markers,
we employed an SVM-based discriminative model and
feature selection procedure with all detected lipids.
Three quarters of the total samples were randomly cho-
sen as a training test set for modeling while the remain-
ing 1/4 of the samples were used as the test set, and the
procedure was repeated 2000 times to obtain an aver-
age result. After 2000 iterations, the overall presenta-
tion of model parameters of the test set in ESI+
(Figure 2C) and ESI- (Figure 2D) modes are shown in
terms of specificity, sensitivity and accuracy. The mean
accuracy was 0.999 (95% confidence interval (CI),
0.997 to 1.000) with a sensitivity of 0.998 (95% CI,
0.997 to 0.999) and a specificity of 0.999 (95% CI,
0.998 to 1.000) in the data from ESI+ mode (Figure 2C
and Table 2). The mean accuracy was 1.00 (95% CI,
1.00 to 1.00) with a sensitivity of 1.00 (95% CI, 1.00 to
1.00) and a specificity of 1.00 (95% CI, 1.00 to 1.000) in
the data from ESI- mode (Figure 2D and Table 2).
Because the plasma samples in the MBGs group were
collected randomly from either arterial or venous blood
during surgery under anesthetic, we also compared the
lipid profiles between paired arterial blood (collected
during surgery under anesthetic) and venous blood (col-
lected before surgery without anesthetic) samples col-
lected from 31 MBGs patients, to evaluate any
systematic biases caused by disease irrelevant factors.
No significant changes were found between arterial and
venous derived plasma, or between different states of
anesthesia (Figures. S2 and S3).
Feature selection and MRM method development
After the construction of the SVM discriminating
model, we performed feature selection to retrieve candi-
date biomarkers. After 100*500 times of iterations,
mean accuracies on the test set for each model are
shown in Figure 3A (ESI+ mode) and Figure 3B (ESI-
mode). With 8 features, the models achieved accuracies
of more than 99%; consequently, we chose the top 8
features from ESI+ and ESI- modes separately as candi-
date features whose identities were further verified
against commercially available chemical standards
(Figs. S4 and S5). As can be seen from the detailed
information summarized in Table 3, most of the top
ranked features in ESI+ and ESI- modes overlapped,
demonstrating the reliability of the feature selection
procedure. Collectively, 11 non-redundant lipids (LPC
16:0, LPC 18:0, LPC 18:2, PC 16:0-18:1, PC 16:0-18:2,
PC 16:0-20:4, PC 16:0-22:6, PC 18:0-18:1, PC 18:0-18:2,
PC 18:0-22:4 and TG 18:1-18:2-18:3) were chosen as can-
didate markers after combining the top ranked features
from both ESI+ and ESI- modes. Then, an LC-MRM-
MS based assay method was developed in which the
panel of 11 lipids could be analyzed in a 19 min LC-MS
run in an ESI+ ion mode, as the XICs show in
Figure 3C.
Diagnostic model training and test
To better adapt the application of this lipid marker panel
to a clinical setting, we first constructed an SVM based
diagnostic model using the MRM assay result of the
training cohort. As shown in Table 2 and Figure 4A and
B, the model achieved a high discriminating perfor-
mance with an accuracy of 0.9467, a specificity of
0.9534, a sensitivity of 0.9430 and an AUC of 0.9877.
The model scoring result of the training cohort is shown
in Figure 4C in which a score greater than 0 represents
a prediction of cancer. Furthermore, the reliability of
the diagnostic model was tested and verified using the
test cohort, and an accuracy of 0.9244, a specificity of
0.9727, a sensitivity of 0.8783 and an AUC of 0.9869
were achieved (Table 2 and Figure 4D-F). The discrimi-
nating performance of the diagnostic model in the train-
ing and test cohorts demonstrates the reliability of our
lipidomic workflow and feature selection procedure,
and also establishes the applicability of this lipid marker
panel in MBGs diagnosis.
Diagnostic model application and evaluation
To further evaluate the diagnostic performance of
the marker panel in an actual clinical setting, we
tested it on a freshly collected validation cohort con-
taining 920 participants from three medical centers.
As shown in Table 2 and Figure 4G and H, the
model continued to achieve a good discriminating
performance with this new cohort with an accuracy
www.thelancet.com Vol 81 Month , 2022



Figure 2. Overview of the results obtained for the biomarker of discovery stage.
(A-B) PCA score plots of the untargeted lipidomic result in A) positive ion mode (ESI+) and B) negative ion mode (ESI-). Sample

groups are represented by colors: malignant brain gliomas (MBGs, n=72), red; healthy control (NC, n=35), blue; quality control (QC),
green. (C-D) Summary of model parameters in terms of specificity, sensitivity and accuracy for the test set in C) positive ion mode
(ESI+) and D) negative ion mode (ESI-). N=2000 iterations for SVM model construction; each dot represents data for one iteration of
specificity/sensitivity/accuracy in SVM evaluation, and data are presented as means § SD.

Articles
of 0.9467, a specificity of 0.9534, a sensitivity of
0.9430 and an AUC of 0.9877. The model scoring
result of the validation cohort is shown in Figure 4I
in which most samples were assigned to the correct
group. Possible batch effects and systematic bias of
the data were also evaluated. As can be seen in the
heat map (Figure 5A) and t-SNE scatter plot
(Figure 5C), no differences in distribution were
www.thelancet.com Vol 81 Month , 2022
observed with respect to the training, test and valida-
tion cohorts, demonstrating the reproducibility of the
analytical workflow. In terms of medical centers,
even though differences in distribution can be
observed between samples derived from different
medical centers (Figure 5B and D), the MBGs group
could still be readily separated from the NC group
with a high degree of accuracy.
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DDA Dataset

Training set Test set

ESI+ specificity sensitivity accuracy specificity sensitivity accuracy

mean 1.000 1.000 1.000 0.999 0.998 0.999

95% CI down 1.000 1.000 1.000 0.998 0.997 0.997

95% CI up 1.000 1.000 1.000 1.000 0.999 1.000

ESI- specificity sensitivity accuracy specificity sensitivity accuracy

mean 1.000 1.000 1.000 1.000 1.000 1.000

95% CI down 1.000 1.000 1.000 1.000 1.000 1.000

95% CI up 1.000 1.000 1.000 1.000 1.000 1.000

MRM Dataset

Training cohort Test cohort Validation cohort

Accuracy 0.9467 0.9244 0.9641

Specificity 0.9534 0.9727 0.9859

Sensitivity 0.9403 0.8783 0.9288

AUC of ROC 0.9877 0.9869 0.9866

Table 2: Parameters of the SVM models for DDA and MRM datasets.
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RNA-sequencing analysis of MBGs tissue
To investigate the potential mechanism(s) linking the
plasma lipid markers to MBGs, we profiled the RNA
expression levels in samples from MBGs patients as
well as in normal brain tissues, and analyzed the gene
expression levels in two relevant metabolic pathways
(glycerophospholipid metabolism for LPCs and PCs,
and glycerolipid metabolism for TG) using the GSEA
algorithm. As shown in Table S2 and Figure S6, these
two pathways were significantly dysregulated in MBGs
tissues (adjusted P-value < 0.01).
Discussion
In this study, we combined LC-MS based lipidomic
analysis with an SVM-based ML algorithm to screen for
plasma lipid biomarkers for MBGs diagnosis. A panel
of 11 lipids was ultimately identified as biomarkers and
a diagnostic model was built and evaluated with inde-
pendent patient cohorts. Our findings provide a power-
ful and non-invasive diagnostic method for malignant
brain gliomas, and at the same time they provide a study
workflow that combines lipidomics and ML that can be
used to efficiently and reliably screen for biomarkers of
diseases.

Because of its extensive metabolite coverage and
high degree of sensitivity, untargeted metabolomics and
lipidomics have become powerful strategies for plasma
metabolite/lipid profiling, and have been widely used in
biological studies and biomarker screening
research.29,30 In the discovery stage of this study, the
reliability of our lipidomic results was firstly evaluated
by PCA score plots and verified by well clustered QC
samples in both ESI+ and ESI- modes. Even though
obvious trends of separation between MBGs and NC
groups were observed by PCA, the high complexity of
the biomolecular content of plasma made it challenging
to interpret the results as well as retrieving the most sig-
nificant biomarkers from thousands of candidates.
Thus, we further employed an SVM-based discriminat-
ing model to screen the lipidomic results. We chose
SVM model concerning the following reasons:1) SVM is
a robust classifier for two-class classification, especially
for the training dataset consisting of a small sample
size and dimension,31,32 thus it is suitable to our untar-
geted lipidomic data. 2) the weight of feature generated
by SVM model can achieve feature selection, which is
practical for selecting biomarker panels for following
targeted analysis. Compared with the conventional ways
for biomarker searching in metabolomics (such as sta-
tistical P-value, fold change between groups and VIP
values in PLS-DA/OPLS-DA models), the SVM-based
ML algorithm we used can not only rank all the features
according to their relative contribution for discriminat-
ing different groups, but can also provide overall accu-
racy in terms of numbers of selected features, thus
making it practical to achieve a high accuracy with
the least number of biomarkers. What is more, as
reported by Mahadevan and colleagues, SVM is able
to give a better predictive model with a fewer num-
ber of features when compared to PLS-DA.21 Among
the 11 chosen lipid markers, many were detected and
top-ranked in the model of both ESI+ and ESI-
modes, which also demonstrates the reliability of our
lipidomic workflow as well as the SVM-based feature
selection procedure.
www.thelancet.com Vol 81 Month , 2022



Figure 3. Feature selection and MRM method construction for candidate biomarkers.
(A-B) Mean accuracies on the test set for models in A) positive ion mode (ESI+) and B) negative ion mode (ESI-) after

500*100 times iterations (500 iterations for the top-100 feature set). The x-axis represents feature numbers and y-axis represents dis-
criminating accuracy. (C) XICs of the eleven targeted lipids analyzed by the 19 min. LC-MRM-MS assay method. The x-axis represents
the retention time of the liquid chromatography and the y-axis represents the ion intensity detected by the mass spectrometer.
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To validate the panel of markers and ultimately apply
it in a clinical setting, we aimed to develop a high
throughput assay which could accurately quantify the 11
lipid markers in a large sample cohort. Thus, an LC-
MRM-MS based assay was developed with optimized
analytical parameters with the assistance of commercial
chemical standards. All 11 lipid targets were uniformly
analyzed in ESI+ ion mode to take advantage of the
higher signal response for LPCs and PCs. Finally, this
optimized method reliable quantified the markers in
19 min. This MRM-based high throughput assay
method could analyze one sample in about two hours
including sample preparation and data processing time,
and batch processing of samples could further shorten
www.thelancet.com Vol 81 Month , 2022
the average analyzing time for each sample to less than
30 min. This advantage makes it applicable and practi-
cal to be used in clinically related diagnostic applications
involving a large number of samples. With the MRM
assay result of the training cohort, we established the
SVM based diagnostic model and tested it with a test
cohort. To better evaluate the model performance in an
actual clinical setting, we enrolled a newly collected vali-
dation cohort comprised of participants from multiple
medical centers, and results from this analysis provide
further validation of the robustness of this diagnostic
model. We also evaluated the systematic biases and
batch effects relevant to our study workflow. Systematic
bias commonly exists in sample conditions, we
9



Lipid name Detected in
DDA ESI+

Detected in
DDA ESI-

Matched with
MS/MS in database

Validated by
chemical standard

Rank in SVM
model in ESI+

Rank in SVM
model in ESI-

LPC 16:0 ✔ ✔ ✔ ✔ 1 2

LPC 18:0 ✔ ✔ ✔ ✔ 2 1

LPC 18:2 ✔ ✘ ✔ ✘ 6 -

PC 34:1; PC 16:0-18:1 ✔ ✔ ✔ ✔ 4 4

PC 34:2; PC 16:0-18:2 ✔ ✔ ✔ ✔ 15 6

PC 36:4; PC 16:0-20:4 ✔ ✔ ✔ ✔ 14 7

PC 38:6; PC 16:0-22:6 ✔ ✔ ✔ ✔ 5 11

PC 36:1; PC 18:0-18:1 ✘ ✔ ✔ ✔ - 5

PC 36:2; PC 18:0-18:2 ✔ ✘ ✔ ✔ 3 -

PC 38:4; PC 18:0-20:4 ✔ ✔ ✔ ✔ 7 8

TG 18:1-18:2-18:3 ✔ ✘ ✔ ✘ 8 -

Table 3: Information of the 11 lipids markers for malignant brain gliomas.

igure 4. Overview of the results of validation stage.
(A, D, G) ROC curves of the training cohort (A, n=750), test cohort (D, n=225) and validation cohort (G, n=920) processed by the

VM based diagnostic model. The asterisk sign denotes the cutoff (SVM model score = 0). (B, E, H) Precision-Recall curves of the
aining cohort (B), test cohort (E) and validation cohort (H) processed by the SVM based diagnostic model. The asterisk sign
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Figure 5. Overview of the batch effects and systematic bias of the assay method.
(A and C) The heat map of hierarchical clustering analysis (A) and scatter plot of t-SNE analysis (C) of the MRM datasets in terms

of cohorts. Different cohorts were marked by colors (green, training cohort; red, test cohort; blue, validation cohort). (B and D) The
heat map of hierarchical clustering analysis (B) and scatter plot of t-SNE analysis (D) of the MRM datasets in terms of medical centers.
Samples collected at different medical centers were marked by colors (red, malignant brain gliomas samples from Tiantan hospital
(MBGs); green, healthy control samples from Haidian hospital (NC1); blue, healthy control samples from Peking University Third Hos-
pital (NC2); light blue, healthy control samples from Tiantan Hospital (NC3)).
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compared patient plasma samples of different origin
(artery or vein) and anesthesia status, but no differences
were observed. Batch effects are often introduced during
analytical procedures such as lipid extraction and LC-
MS analysis, so we included internal standards for nor-
malization, so that possible batch effects could be
excluded. As shown in Figure 5, no batch effects existed
between the training, test and validation cohorts. Inter-
estingly, we observed some apparent bias between sam-
ples from different medical centers, which may result
from difference in sample collection procedures or stor-
age conditions. This bias could not be completely elimi-
nated in actual practice, but our diagnostic method has
successfully discriminated MBGs groups from NC
groups from three different medical centers with high
accuracy in spite of the existing bias, thus further
denotes the cutoff (SVM model score = 0). (C, F, I) Score distribution
idation cohort (I). The score of each sample was output by the SVM
ors (red for MBGs and blue for NC). Samples with a score greate
samples were presented as circle and incorrectly grouped samples w

www.thelancet.com Vol 81 Month , 2022
demonstrating its applicability. In this study we
excluded patients and healthy controls who had system-
atic diseases such as diabetes, cardiovascular diseases or
metabolic disorders. But patients only with high LDL or
TG etc. were not excluded because these situations are
common in population and clinical practice. To better
exclude the influence of these brain glioma-unrelated
factors, we managed to include large sample cohort,
and to collect samples from different medical centers in
the validation stage. Our result showed good diagnostic
power in the validation cohort, proving the common
brain glioma-unrelated factors could not influence the
performance of the diagnostic model significantly.

An increasing number of studies have employed ML
in medically related applications to take advantage of its
high sensitivity and powerful diagnostic potential.33,34
of the samples in the training cohort (C), test cohort (F) and val-
based diagnostic model. Sample groups were presented by col-
r than 0 were predicted as cancer patients. Correctly grouped
ere presented as cross.
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For example, deep neural networks have been used to
process Raman histology figures for near real-time
intraoperative brain tumor diagnosis.35 With respect to
non-invasive diagnostic tests for tumors, AI has also
shown several major advantages, such as those
described by Jacob and colleagues who employed ML in
a search for a blood DNA marker for early stage lung
cancer detection,24 Gregory and colleagues also applied
AI in their search for microbe-derived DNA fragments
in blood for the detection of several kinds of cancer,25 as
did Nickolas and colleagues who combined ctDNA and
protein markers to better detect cancer.1,5 However, all
of these studies have focused on the analysis of cell-free
DNA or proteins in the blood, and thus far, no studies
have focused on interpreting the linkage between the
blood lipidome and cancer onset using AI techniques,
such as we have performed in the present study. Here,
we implemented a SVM based ML algorithm in two
steps: the first was to establish the discriminating model
for efficient and reliable candidate marker selection
from the untargeted lipidomic data (from the discovery
cohort); the second step was to establish a diagnostic
model to process MRM data (from the training, test and
validation cohorts) for feasible and reliable diagnosis of
MBGs. Our selected lipid marker panel and constructed
diagnostic mode showed excellent discriminating power
for MBGs, and applicability and potential for the strat-
egy of combining lipidomics and AI techniques in bio-
marker development. The developed markers and assay
method may have more potential applications such as
evaluating reduction of tumor load, monitoring progres-
sion or recurrence or predicting prognosis for MBGs
patients. But these potential applications need to be fur-
ther validated by corresponding cohorts before conclu-
sions can be made.

The candidate lipid markers we found belonged to
three lipid species (LPC, PC and TG). In cells, LPC, PC
and TG are involved in pathways of glycerophospholipid
metabolism and glycerolipid metabolism, and our RNA
sequencing results showed that these two pathways
were perturbed in plasma from MBGs patients, suggest-
ing that changes in the plasma levels of these lipids may
reflect a perturbed lipid metabolism in MBGs tissue.
Compared with normal cells, tumor cells usually con-
sume more saturated and monounsaturated LPCs
which are carriers of fatty acids.36 Decreased plasma
LPC levels has been found in various cancers, and shift-
ing LPC from plasma to tumor tissue has been consid-
ered as a way to support sustained tumor
proliferation.37-40 Aberrant PC metabolism and up-reg-
ulated PC levels have also been found in several kinds
of cancer cells, such as epithelial ovarian cancer,41 colo-
rectal cancer42 and lung cancer.43 Lyso-PC acyltransfer-
ased (LPCAT) family members have been reported to be
increased to catalyze the processes from LPCs to PCs in
cancer cells.42 Similarly, our RNA sequencing analyses
showed up-regulated levels of LPCAT1 and LPCAT3 in
MBGs tissue. TG has also been reported to accumulate
in more aggressive lung cancers44 as well as during the
epithelial-to-mesenchymal transition process of prostate
cancer cells.45 Over all, changes in TGs and phospholi-
pids such as PCs and LPCs may result in changes in
cell membrane composition or cellular metabolic status.
This in turn could influence cell proliferation, viability
or development of tumors. The plasma lipid markers
proposed by our current study are dysregulated but the
molecular mechanism(s) responsible for these changes
could not be fully explained just by the RNA sequencing
results because these represent just a “snapshot” of the
metabolic status in MBGs cells. Additional researches
such as transcriptomic, proteomic and metabolomic
analyses of tumor tissues in larger sample size are
needed to uncover the mechanistic basis for these
changes.

The approach described here has several important
limitations. First, given that samples collected from dif-
ferent hospitals may vary in a manner by which they
were collected and/or stored, the validation cohort from
multiple centers would be better choice for biomarker
performance evaluation. Because of the practical chal-
lenges of enrolling MBGs patients in this study, all 851
patients in MBGs groups came from the same medical
center (Tiantan Hospital). However, NC enrolled in this
study came from three medical centers including Tian-
tan Hospital itself, and the result showed that even
though a partial bias exists in samples collected from
different medical centers, our panel of proposed lipid
biomarkers could still perform well enough to discrimi-
nate MBGs patients from NC. The second limitation of
our study relates to the MRM assay method developed
for biomarker analysis of the training, test and valida-
tion cohorts. An assay method able to absolutely quan-
tify the 11 lipids would be the ideal choice because it can
provide concentrations of the plasma biomarkers. How-
ever, no ideal blank matrix (a sample which consists of
all plasma components except only the 11 target lipids
on which we focused) is commercially available. Even
though a kind of simulated blank plasma or charcoal-
treated plasma samples have been used for absolute
quantification of endogenous molecules in biological
samples,46,47 it remains a compromise rather than an
ideal solution. Consequently, in the present study, the
MRM assay workflow we used only employed internal
standards to normalize the technique errors and batch
effects in sample preparations, and no standard curves
were employed in the quantification. Thus, this assay
method can be viewed as a “semi-absolute” quantitative
method. At this stage, we believe that our assay method
could fulfill current needs (biomarker validation and
performance evaluation in large cohorts) in terms of
analytical reliability, stability and repeatability between
batches.
www.thelancet.com Vol 81 Month , 2022
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Conclusions
The present study integrated SVM based ML algorithm
into conventional lipidomic biomarker screening work-
flow, revealing a panel of 11 potential lipid markers for
MBGs. These lipid markers and related algorithm have
shown high accuracy in identifying MBGs blood sam-
ples, demonstrating their high value in disease diagno-
sis. Advantage of this diagnostic strategy includes non-
invasive sample collection, quick analysis and high
accuracy. What is more, our study shows the applicabil-
ity, advantages and broad prospects of a strategy using
ML algorithms and metabolomics in disease related bio-
marker screening.
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