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ABSTRACT Lausannevirus belongs to the family Marseilleviridae within the group of
nucleocytoplasmic large DNA viruses (NCLDVs). These giant viruses exhibit unique
features, including a large genome, ranging from 100 kb to 2.5 Mb and including
from 150 to more than 2,500 genes, as well as the presence of genes coding for
proteins involved in transcription and translation. The large majority of Lausannevi-
rus open reading frames have unknown functions. Interestingly, a bifunctional dihy-
drofolate reductase-thymidylate synthase (DHFR-TS) is encoded in the Lausannevirus
genome. The enzyme plays central roles in DNA precursor biosynthesis. DHFR is the
pharmacological target of antifolates, such as trimethoprim, pyrimethamine, and progua-
nil. First, the functionality of Lausannevirus DHFR-TS was demonstrated by the successful
complementation of a DHFR-deficient Saccharomyces cerevisiae strain with a plasmid ex-
pressing the heterologous gene. Additionally, using this heterologous expression system,
we demonstrated the in vitro susceptibility of Lausannevirus DHFR-TS to proguanil and
its resistance to pyrimethamine and trimethoprim. Proguanil may provide a unique and
useful treatment if Lausannevirus proves to be a human pathogen. To our knowledge,
this is the first time that a DHFR-TS has been described and characterized in an NCLDV.
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The giant virus Lausannevirus is part of the family Marseilleviridae, among the
recently discovered group of nucleocytoplasmic large DNA viruses (NCLDVs). Com-

parative genomic analysis (reciprocal BLASTP and annotation) showed the presence of
a bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS)-encoding gene
among the 450 predicted open reading frames (ORFs) of the 346.75-kb genome of
Lausannevirus. The enzyme is involved in folate metabolism (Fig. 1). Folate is essential
in all living organisms. Some of them, such as microbes and plants, are able to
synthesize folate themselves, while others, such as mammals, require the uptake of
folate from their diet (1, 2). More precisely, DHFR catalyzes the reduction of dihydro-
folate to tetrahydrofolate, a precursor of different cofactors involved in the synthesis of
several essential metabolites, such as the de novo synthesis of purines (3). TS is involved
in de novo thymidylate (dTMP) biosynthesis from tetrahydrofolate. Therefore, DHFR and
TS are essential enzymes for DNA synthesis and are targeted by several antimicrobial
drugs. Both enzymes are expressed ubiquitously in prokaryotic and eukaryotic cells (3,
4). However, they are expressed in protozoa and plants from a single bifunctional gene,
comprising the DHFR domain fused to the TS domain, while in other organisms,
including humans, DHFR and TS are encoded by separate genes (5).

Several studies on DHFR and TS have been conducted in vertebrates, bacteria, and
protozoa (3, 5–7). However, the enzymes have been poorly characterized in viruses. The
presence of DHFR- and TS-encoding genes has been reported in T-even and T5
bacteriophages, as well as in herpesvirus saimiri (HVS) (8), herpesvirus ateles (HVA) (8),
and human herpesvirus 8 (9). Varicella-zoster virus possesses its own TS gene (8).
NCLDVs, such as Marseilleviridae, as well as Mimiviridae and Phycodnaviridae members,
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encode their own DHFR-TS proteins. A DHFR-encoding gene is also present in pan-
doravirus, while DHFR and TS are encoded by two separate genes in some members of
the family Iridoviridae. On the other hand, a study reported that the Herpesviridae
member mouse cytomegalovirus (CMV) does require the activity of the host DHFR in
order to replicate in quiescent cells (10), suggesting that it does not encode its own
DHFR.

Here, we demonstrate the DHFR function of the DHFR-TS protein of Lausannevirus
by complementation of a Saccharomyces cerevisiae DHFR-deficient strain. Since antimi-
crobial agents have been reported to inhibit the DHFR activity of several prokaryotic,
protozoal, and fungal parasites, including Staphylococcus aureus (11), Pneumocystis
carinii (12), Plasmodium falciparum (13, 14), and Cryptosporidium parvum (12), we
additionally evaluate the susceptibility of Lausannevirus DHFR-TS to trimethoprim (TM),
proguanil (PG), and pyrimethamine (PYR).

RESULTS
DHFR and TS share conserved sites among Lausannevirus, prokaryotes, fungi,

and animals. DHFR conservation was assessed among several microorganisms that
have been shown to successfully complement the S. cerevisiae DHFR deletant (12), as
well as among those of Lausannevirus and Marseillevirus (Fig. 2). Lausannevirus and
Marseillevirus DHFR domains exhibited, respectively, 22.2% and 22.8% amino acid
sequence identity with S. cerevisiae DHFR. The complementing DHFRs of P. carinii,
Pneumocystis jirovecii, P. falciparum, C. parvum, Toxoplasma gondii, and Homo sapiens
showed 25.9%, 28.7%, 24.6%, 29.9%, 24.3%, and 27.6% amino acid sequence identity
with S. cerevisiae DHFR, respectively. In summary, all the microorganisms exhibited
relatively low sequence conservation compared to S. cerevisiae DHFR. However, con-
served sites and conserved binding regions were identified. Similarly, the TS part of the
fusion protein also showed conserved active sites, suggesting that the enzyme is likely
active in Lausannevirus (see Fig. S1 in the supplemental material).

Lausannevirus encodes a functional DHFR. Lausannevirus DHFR-TS was success-
fully amplified and sequenced before being cloned into the yeast plasmid p414GPD.

FIG 1 Folate biosynthesis. Shown are the main products (boldface) and enzymes involved in folate metabolism. The
enzymes present only in microbes and plants are shaded in green; the enzymes detected in the Lausannevirus genome
are shaded in violet. (Adapted from Kegg pathway, http://www.genome.jp/dbget-bin/www_bget?map00790.)
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FIG 2 DHFR domain multiple-sequence alignment. The S. cerevisiae DHFR domain was aligned with those
from other organisms. Identical amino acids are indicated by asterisks, strongly conserved amino acids
by double dots, and weakly conserved amino acids by dots. Known NADP binding sites are shaded in
gray. Substrate binding sites are underlined. Both NADP and substrate binding sites are indicated only

(Continued on next page)
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The constructed p414GPD.LauDHFR-TS and the empty p414GPD plasmids were intro-
duced into the haploid S. cerevisiae strain YH1-DHFR::KanMX4, which has its own DHFR
inactivated and is Geneticin resistant. Complemented strains were grown on yeast
extract-peptone-dextrose (YEPD) medium supplemented with Geneticin in the pres-
ence or absence of dTMP. The six clones containing the p414GPD.LauDHFR-TS plasmid
grew on the two media, whereas growth of the four clones harboring the empty p414
plasmid occurred only in the presence of dTMP (TMP) (Fig. 3). This demonstrated that
Lausannevirus DHFR-TS successfully complemented the S. cerevisiae DHFR-deficient
strain.

Lausannevirus DHFR is trimethoprim and pyrimethamine resistant but suscep-
tible to proguanil. The susceptibility of Lausannevirus DHFR-TS to three different
drugs was evaluated using the S. cerevisiae strain YH1-DHFR::KanMX4 complemented
with p414GPD.LauDHFR-TS.

The same strain complemented with its own DHFR was used as a control, while the
H. sapiens DHFR construct was used as a control for antimicrobial human toxicity. As P.
jirovecii DHFR has been suggested to be trimethoprim and pyrimethamine susceptible
(7) while P. falciparum DHFR is susceptible to pyrimethamine, proguanil (14), and
trimethoprim (15), they were used as positive controls (Fig. 4).

The results showed that the S. cerevisiae strain expressing the heterologous Laus-
annevirus DHFR-TS successfully grows in the presence of low (3-�g/ml) and high
(300-�g/ml) concentrations of trimethoprim or pyrimethamine. In contrast, the same
strain showed reduced growth or no growth at all in the presence of proguanil at 60
and 120 �g/ml, respectively, suggesting that Lausannevirus DHFR-TS is susceptible to
proguanil (Fig. 4). Reduced growth of the strain complemented with human DHFR was
observed only at a high concentration of proguanil (120 �g/ml) or pyrimethamine (300
�g/ml).

DISCUSSION

This work showed the successful complementation of the S. cerevisiae DHFR dele-
tant by expression of the Lausannevirus DHFR-TS gene carried on a plasmid, demon-

FIG 2 Legend (Continued)
in species with those annotations in Uniprot or Interpro. Note that the minor differences in the conserved
sites of the DHFR sequences are mainly replacements by amino acids exhibiting similar biochemical
characteristics, such as isoleucine for leucine or threonine for serine. Primary consensus (Prim. cons.)
represents the calculated order of the most frequent amino acids found at each position of the sequence
alignment.

FIG 3 Complementation of S. cerevisiae YH1-DHFR::KanMX4 with the p414GPD.LauDHFR-TS plasmid.
Transformant isolates were grown on rich YEPD medium supplemented with Geneticin in the presence
or absence of dTMP. The plates were incubated at 30°C for 5 days. Only clones containing the
p414GPD.LauDHFR-TS plasmid grew in the absence of TMP.
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strating the functionality of the DHFR motif of the DHFR-TS gene of the virus. This
procedure could improve the understanding of the functions of specific genes belong-
ing to the poorly characterized family Marseilleviridae. Yeast complementation assays
have been widely used to characterize fungal and protozoal enzymes involved in the
folate pathway (12, 16, 17). Hume et al. (18) demonstrated by yeast complementation
that the UL97 protein of human cytomegalovirus (HCMV) is a functional ortholog of
cellular cyclin– cyclin-dependent kinase (CDK) complexes. Our study is one of the first
to characterize a viral protein using this approach.

Double-stranded DNA viruses belonging to the family Herpesviridae have been
shown to encode a DHFR homolog. To our knowledge, this is the first time that the
DHFR activity of a bifunctional DHFR-TS has been characterized in an NCLDV. From an
evolutionary perspective, it is interesting that a bifunctional fusion protein retained its
DHFR activity, and this suggests that other bifunctional fusion proteins encoded by
giant viruses, such as histone-like proteins (19), might also be functional. DHFR is the
only member of the folate biosynthesis pathway found in the Lausannevirus genome,
suggesting that the giant virus may take the dihydrofolate needed for its replication
from its hosts. Consistently, Acanthamoeba castellanii, from which Lausannevirus was
isolated (19), bears coding sequences for the majority of the enzymes involved in folate

FIG 4 Trimethoprim, pyrimethamine, and proguanil susceptibility test. Serial dilution at 1.5 � 107

cells/ml of S. cerevisiae YH1-DHFR::KanMX4 cultures complemented with S. cerevisiae DHFR (ScDHFR),
Lausannevirus DHFR-TS (LauDHFR-TS), P. jirovecii DHFR (PjDHFR), P. falciparum DHFR (PfDHFR), or H.
sapiens DHFR (HsDHFR) were spotted on rich YEPD medium containing 1 mM SIA and various concen-
trations of TM, PYR, or PG. The plates were incubated at 30°C for 3 days.
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biosynthesis (20). In contrast, the Herpesviridae member HCMV was shown to induce
the activation of host DHFR transcription (21), which might help to ensure a sufficient
supply of deoxynucleoside triphosphates (dNTPs), necessary for virus replication.

We demonstrated the in vitro susceptibility of the Lausannevirus DHFR motif of the
DHFR-TS-encoding gene to proguanil and its resistance to pyrimethamine and tri-
methoprim. On the other hand, proguanil inhibited human DHFR only at high concen-
trations. Such a result is promising for the development of treatments targeting the
Lausannevirus DHFR-TS-encoding gene. So far, Lausannevirus and other members of
the family Marseilleviridae have not been proven to be human pathogens. However,
human exposure to these viruses has been demonstrated by several studies (22–27).
Notably, Senegalvirus has been isolated from human stool (27), and Marseillevirus was
detected in lymph nodes of various patients (24–26).

Marseilleviridae DHFR-TS protein showed high sequence conservation. The amino
acid sequence identity with Lausannevirus DHFR-TS (YP_004347389.1) was 62% for
Marseillevirus (YP_003407153.1), Melbournevirus (YP_009094883.1), and Cannes 8 virus
(AGV01804.1) but 80% for Brazilian Marseillevirus (YP_009238985.1) and 76% for golden
mussel Marseillevirus (YP_009310371.1). Thus, proguanil might also be effective on
other members of the Marseilleviridae. It is therefore of major interest to study and
characterize these viruses and potential new drugs. Proguanil might provide a treat-
ment if Lausannevirus and/or other members of the Marseilleviridae prove to be human
pathogens. Nevertheless, additional studies are needed to confirm its effect on the
multiplication of other Marseilleviridae members.

MATERIALS AND METHODS
DHFR sequence alignment. DHFR protein sequences were aligned using ClustalW embedded in

Network Protein Sequence Analysis (NPS@) version 3.0 (28, 29). UniProt (30) and InterPro (31) were used
to find conserved active and binding sites. The homology of all proteins involved in the folate
biosynthesis pathway (Fig. 1) to that of Lausannevirus was investigated by BLASTX (32). Further, the
absence of a specific domain signature of folate biosynthesis in the proteins surrounding DHFR was
verified by Interpro. Amino acid sequence identities were assessed by BLASTP (32). The sequence
accession numbers of the DHFR and DHDF-TS proteins aligned are as follows: S. cerevisiae, NP_014879.1;
Lausannevirus, YP_004347389.1; Marseillevirus, YP_003407153.1; P. carinii, AAA33787.1; P. jirovecii,
AAF14071.1; P. falciparum, XP_001351479.1; C. parvum, AAC47229.1; T. gondii, XP_002367252.1; H.
sapiens, AAA58485.1. For alignment of the DHFR domains, DHFR-TS-encoding genes were truncated at
the following amino acid positions: Lausannevirus, 171; Mareillevirus, 174; C. parvum, 178; P. falciparum,
230; and T. gondii, 251.

Lausannevirus purification and DNA extraction. Lausannevirus was purified as described previ-
ously by Thomas et al. (19). Briefly, Lausannevirus was cocultured with A. castellanii ATCC 30010 in 30 ml
of peptone-yeast extract-glucose (PYG) medium (33) within 75-cm2-surface cell culture flasks (Becton
Dickinson). The flasks were kept at 32°C until complete amoebal lysis was observed (usually between 24
and 48 h); then, cocultures were harvested and centrifuged at 5,000 � g for 15 min. The supernatant was
collected and passed through 5-�m filters to remove residual amoebal cells; then, the filtrate was
centrifuged at 35,000 � g for 1 h, and the pellet was resuspended in 1 ml of DNA-free water.
Lausannevirus DNA was further isolated from 50-�l viral suspensions according to the instructions for the
Wizard SV genomic DNA purification system (Promega), using a 2-h incubation time for digestion and 50
�l of nuclease-free water for elution.

Construction of the p414GPD.LauDHFR-TS plasmid. Lausannevirus DHFR-TS was amplified by
PCR, using the Phusion high-fidelity DNA polymerase (NEB, Allschwil, Switzerland) and the following
primers: DHFR_fw (5=-ATATTGGATCCCTAAATGTCGTTATACTT-3=) and DHFR_rev (5=-CAATAGTCGACTTTT
TTAGACTGCCATAG-3=), creating unique BamHI and SalI restriction sites in the PCR product (underlined
in the primers). The PCR products were purified using the MSC Spin PCRapace kit (Stratec Molecular,
Birkenfeld, Germany). The PCR products and the p414GPD expression vector (ATCC 87356) (34), which
contains an ampicillin resistance (ampR) gene and a tryptophan marker (TRP1), were digested using
BamH1-HF and Sal1-HF (NEB, Ipswich, MA, USA) for 15 min at 37°C. Lausannevirus DHFR-TS was ligated
for 1 h at room temperature to the p414GPD plasmid at a 3:1 (insert/vector) ratio; the T4 DNA ligase and
its buffer were from Promega (Dübendorf, Switzerland). Recombinant plasmids were transformed in
chemically competent Escherichia coli TOP10 (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, 10 �l
of ligation product was added to the bacteria, which were placed for 10 min on ice. Heat shock was
performed at 42°C for 45 s, and the bacteria were then put back on ice. Five hundred microliters of SOC
medium (20 g/liter tryptone, 5 g/liter yeast extract, 4.8 g/liter MgSO4, 3.603 g/liter dextrose, 0.5 g/liter
NaCl, and 0.186 g/liter KCl ) was added to each sample and incubated for 1 h at 37°C with shaking; 200
�l lysogeny broth (LB) medium (1% [wt/vol] Difco tryptone, 0.5% Difco yeast extract, 1% NaCl, 2% Gibco
agar) containing ampicillin (1 �l/ml; AppliChem, St. Louis, MO, USA) was incubated at 37°C overnight. The
constructions were verified by sequencing performed using BigDye Terminator, 30 ng of plasmid DNA,
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and 3.2 pmol of the following primers: DHFR_fw, DHFR_rev, and T7_fw (5=-TAATACGACTCACTATAGGG-
3=). The products were then purified with SigmaSpin postreaction cleanup and sequenced with Sanger
technology. The sequences were visualized with Geneious version R7.1.9 (35).

Complementation of the S. cerevisiae DHFR deletant with the p414GPD.LauDHFR-TS plasmid.
The DHFR-deficient S. cerevisiae strain YH1-DHFR::KanMX4 (MATa or MAT�; ura3Δ0 leu2Δ0 his3Δ1
met15Δ0 lys2Δ0 YOR236w::kanMX4) was obtained by dissection of tetrads of strain Y22492 from the
European Saccharomyces cerevisiae Archive for Functional Analysis (http://www.euroscarf.de) on YEPD
rich medium (1% [wt/vol] Difco yeast extract, 2% Difco peptone, 2% glucose) supplemented with dTMP
at 100 �g/ml (TMP) (Sigma-Aldrich, Buchs, Switzerland). TMP supplements the absence of DHFR and is
required for the growth of S. cerevisiae strain YH1-DHFR::KanMX4. The strain was transformed with the
empty p414GPD plasmid, as well as with the previously constructed p414GPD.LauDHFR-TS plasmid, by
the one-step method described by Chen et al. (36). Briefly, the YH1-DHFR::KanMX4 strain was grown for
3 days at 30°C and 1 day at room temperature in YEPD supplemented with TMP at 100 �g/ml and
Geneticin at 100 �g/ml (Gibco, Thermo Fisher Scientific). Further, the culture was centrifuged for 10 min
at 5,500 rpm, and the pellet was resuspended in 1.3 ml of polyethylene glycol (PEG)-lithium acetate (LiAc)
solution (15 mg/ml dithiothreitol [DTT], 200 mM LiAc, 50% [wt/vol] PEG 8000, and 250 �g/ml salmon
sperm DNA denatured for 5 min at 95°C). Then, the plasmid was added to yeast cells and incubated
for 1 h at 45°C, after which the cells were spun for 5 min at 13,000 rpm and the pellet was
resuspended in 100 �l NaCl (0.9%). The suspension was finally spread on yeast nitrogen base (YNB)
poor medium (0.67% [wt/vol] Difco yeast nitrogen base, 2% glucose, 2% Gibco agar) supplemented
with Complete supplement mixture (CSM) lacking tryptophan (MP Biomedicals), Geneticin, and
dTMP, and the plates were incubated for 5 days at 30°C. To confirm the functional complementation,
colonies were grown on YEPD medium supplemented with Geneticin with or without TMP.

Evaluation of the p414GPD.LauDHFR-TS construct’s susceptibility to antimicrobial agents. The
strain YH1-DHFR::KanMX4 complemented with p414GPD.LauDHFR-TS was grown in liquid YEPD medium
for 2 days at 30°C. Absorbance at 540 nm was measured, and the cultures were diluted in 0.9% NaCl to
obtain 1.5 � 107 cells/ml. Tenfold serial dilutions were assessed before inoculating the cells into solid
YEPD medium supplemented with 1 mM sulfanilamide (SIA). To test antimicrobial agents’ susceptibilities,
the same diluted cultures were inoculated into solid YEPD medium containing 1 mM SIA and supple-
mented with different concentrations (0 �g/ml, 3 �g/ml, or 300 �g/ml) of TM, PG, or PYR. The PG MIC
was further assessed by adding 0 �g/ml, 30 �g/ml, 60 �g/ml, or 120 �g/ml of PG to the medium. The
plates were incubated for 3 days at 30°C. As controls, the same analyses were performed with strain
YH1-DHFR::KanMX4 complemented by constructs carrying the DHFR genes of other organisms. The
constructs used contained the DHFR proteins from Lausannevirus (see above), S. cerevisiae (GR7.ScDHFR),
H. sapiens (GR7.HsDHFR), and P. falciparum (GR7.PfDHFR) (12) (kindly provided by C. Sibley). The plasmid
containing the heterologous DHFR of P. jirovecii (GR7.PjDHFR) (kindly provided by L. Ma) was described
by Ma et al. (12, 37). Each experiment was repeated 3 times.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
AAC.02573-16.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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