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Abstract

Travel across multiple time zones results in desynchronization of environmental time cues and the sleep–wake schedule
from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor
neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including
gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term
cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One
approach to reduce the short-term circadian, sleep–wake, and performance problems is to use mathematical models of the
circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule.
In this paper, the use of mathematical models to design sleep–wake and countermeasure schedules for improved
performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal
placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian
resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate
to large shifts in the sleep–wake schedule. The key schedule design inputs are endogenous circadian period length, desired
sleep–wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule
representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the
amount of time to design an appropriate intervention. The method presented in this paper has direct implications for
designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space,
undersea, or in polar regions.
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Introduction

Endogenous circadian (,24 hour) rhythms are important

physiological regulators of sleep quality and duration, hormone

levels, mood (including alertness), and cognitive neurobehavioral

performance in humans [1]. The significant effect of circadian

timing (phase) on performance has been shown experimentally

(e.g., [2–6] and in epidemiologic studies of accidents [7–17].

Changes in light exposure, sleep-wake patterns, and circadian

rhythms associated with jet lag, space travel, and some work

schedules have profound effects on multiple physiologic systems,

including performance [1,18–23]. The phase and amplitude of

endogenous circadian rhythms, generated by a self-sustained

pacemaker in the hypothalamus, are affected by ocular light

stimuli [24,25]. Therefore light stimuli have been used to shift the

circadian pacemaker to be aligned with a new sleep-wake

schedule, resulting in an increase in subjective alertness and

objective performance at desired times compared with schedules

without properly timed light pulses [2,26].

Ocular light stimuli can accelerate the re-entrainment of the

circadian system with the new sleep-wake schedule [27–33] or

maintain circadian entrainment [34–37]. Many characteristics of

light are important: the wavelength, timing, intensity, and

duration of a light pulse all have non-linear effects on the

magnitude and direction of a circadian phase shift [31,38–43].

Even the intensity of indoor light can have significant impact on

the circadian phase of individuals [44]. In addition, because of

non-linear photic processing by the retina, intermittent light

exposure is disproportionately effective relative to a continuous

light exposure: light stimuli that comprise 23% of the time during

a total stimulus length of 6.5 hours resulted in phase resetting 74%

of that observed after light exposure during the entire 6.5 hours

[31].

This non-linear circadian rhythm response to light stimuli

[41,45–47] means that it is difficult to develop general rules for

designing interventions or countermeasures (CMs) that facilitate

re-entrainment to a shifted sleep-wake cycle. Therefore, a

mathematical model of the effect of light on the circadian

pacemaker is required to accurately predict the non-linear

relationship between light input and the resulting circadian phase

and amplitude. Mathematical models of the circadian pacemaker

and its effects on performance and alertness have been used for at
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least 20 years. The models aim to predict performance for a range

of experimental and operational schedules or applications [48,49].

To distribute and use these models, specialized software has been

developed [48,49], resulting in a wider range of individuals

accessing and using these mathematical models. However,

previous work has used the models only to evaluate the effect of

light and sleep-wake schedules on circadian phase or performance.

There has been very little work done on developing systematic

methods for designing schedules or CMs. Herein, we advance the

functionality of a mathematical model of the effect of light on the

circadian pacemaker and a model of circadian effects on

performance to design CMs that facilitate re-entrainment of the

circadian pacemaker and therefore optimal performance following

a shift in sleep-wake schedule. In this paper, we present a

framework for using mathematical models of the human circadian

pacemaker and performance to automatically design ocular light

stimuli as CMs for a user-defined schedule in which the sleep-wake

or work schedule is not at optimal circadian times. While this

example uses light as the CM, the methods that we have derived

can be used for other CMs, such as pharmaceuticals [1,50], and

for other physiological systems affected by the circadian system

(e.g., endocrine concentrations instead of performance). The

method includes the development of a new mode of schedule

representation that allows for schedule optimization problems to

be quickly specified and solved within an analytical and

computational framework.

Designing a schedule with optimal CMs presents multiple

challenges. (1) Specifying CM location, duration, and intensity can

be a combinatorially difficult problem: as the number of days to

optimize increases, the number of possible CM placements

increases exponentially, making the computation of all possible

schedules intractable for long schedules if the method used

involves systematic search of possible solutions. (2) Each schedule

may have additional scheduling constraints (e.g., specific work

tasks must occur at predetermined times; light CM must occur

during the waking day; sleep episodes must be 8 hours in

duration). (3) Each schedule is evaluated with a non-linear

mathematical model. With a non-linear model, small changes in

the input (schedule design) can result in varying changes in output

(prediction of circadian phase and performance).

One possible approach to framing the CM design problem is to

seek a single solution based on minimizing a specific metric.

Optimization of light input to the circadian pacemaker has been

approached through the calculus of variation [51] and model-

based predictive control [52,53]. Both approaches provide a

technique for determining an analytical solution to the optimiza-

tion problem. Most notably, one group has demonstrated the use

of control theory techniques to evaluate multiple molecular

controls to a circadian clock in a non-linear control framework

[54]. Our approach and subsequent problem definition differs

from a purely optimization approach and emphasizes schedule

design. Rather than seeking a single solution, the methods

presented aim to develop a framework for allowing schedule/

experiment designers to explicitly explore tradeoffs between design

parameters such as light duration and intensity, because they may

be flexible in the operational setting. Hence, our method allows for

multiple solutions to be determined while providing mechanisms

for maintaining scheduling constraints.

The time required to manually manipulate and simulate

schedule variations limits the number of schedules that can be

evaluated. The time spent on schedule design can be attributed to:

(1) entering complicated and long sleep-wake schedules into the

models, and (2) satisfying a dynamic set of scheduling constraints,

such as scheduling specific events relative to each other. Consider

a 24.65 hour ‘‘day’’ as experienced by ground-based employees

working on Mars-related missions, such as the 2008 NASA

Phoenix mission. These 24.65-hr ‘‘days’’ are outside the range of

circadian entrainment for many individuals under low light

intensity levels (,40 lux) and without a light CM [36,55,56]. An

obvious question to ask of the mathematical models is what light

level would be required to maintain entrainment or to ensure high

levels of performance at operationally significant times (e.g.,

during launch or landing). One way to answer this question is to

change the light levels at different times within each wake episode

and rerun the protocol until a result is achieved. This exhaustive

search simulation process (usually involving manually manipulat-

ing schedule parameters) has been used successfully to design

experimental protocols or operational schedules, and has resulted

in insights into the response of the circadian pacemaker to

different stimuli [31,35,57]. However, manual analysis of sched-

ules that include multiple possible changes in scheduled sleep-wake

and multiple possible changes in timing and intensity of light as

done in a study of humans living on a non-24-hour day [57] may

require several weeks. Therefore, manual manipulation of

schedules is not conducive to CM or schedule optimization

projects.

We define the light CM design problem as follows: given an

operational schedule, determine the timing, intensity, and

duration of a CM so that circadian phase is aligned with the

new sleep-wake schedule to optimize sleep, alertness, and

performance, as required. To solve this design problem, we

present a new algorithmic method - the circadian adjustment

method (CAM) - that can be used to quickly and effectively design

light CM for jet lag or shift-work or other shifted sleep schedules

and for extreme environments (e.g., space, aquatic, earth poles)

that include low light levels and non-24-hour cycles. To allow for

families of designs to be generated, CM strength (duration and

intensity) are set according to user design constraints (i.e., available

hardware light intensity, available time for light exposure). The

Author Summary

Traveling across several times zones can cause an
individual to experience ‘‘jet lag,’’ which includes trouble
sleeping at night and trouble remaining awake during the
day. A major cause of these effects is the desynchroniza-
tion between the body’s internal circadian clock and local
environmental cues. A well-known intervention to resyn-
chronize an individual’s clock with the environment is
appropriately timed light exposure. Used as an interven-
tion, properly timed light stimuli can reset an individual’s
internal circadian clock to align with local time, resulting in
more efficient sleep, a decrease in fatigue, and an increase
in cognitive performance. The contrary is also true: poorly
timed light exposure can prolong the resynchronization
process. In this paper, we present a computational method
for automatically determining the proper placement of
these interventional light stimuli. We used this method to
simulate shifting sleep–wake schedules (as seen in jet lag
situations) and design interventions. Essential to our
approach is the use of mathematical models that simulate
the body’s internal circadian clock and its effect on human
performance. Our results include quicker design of
multiple schedule alternatives and predictions of substan-
tial performance improvements relative to no intervention.
Therefore, our methods allow us to use these models not
only to assess schedules but also to interactively design
schedules that will result in improved performance.

Model-Based Schedule Design
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CAM then determines optimal placement given the user-specified

CM strength. Thus, our method allows for both user-specified

parameters (e.g., intensity and duration) and algorithmically

determined parameters (e.g., timing).

To illustrate our algorithm, we design an intervention for a 12-

hour shift in sleep-wake schedule; this phase shift is similar to what

an individual would experience in traveling from, e.g., New York

to Hong Kong. This shifting problem was selected because it is

both theoretically (the maximum that can occur on earth) and

operationally significant. In the operational setting, both absolute

performance and the duration for which performance levels can be

maintained are important. Therefore, the measures of interest

were speed of circadian phase adjustment, quartiles of absolute

performance within each waking day and across days, relative

changes in performance quartiles, and the cumulative probability

distribution of performance.

Methods

Mathematical model
We used a mathematical model of the effect of light on the

circadian pacemaker and a linked mathematical model of the

effects of the circadian system and sleep-wake state on neurobe-

havioral performance and alertness [58,59]. Each component of

these models reflects physiological processes. A schematic of the

models is shown in Figure 1A. The model of the effect of light on

the circadian pacemaker uses modified Van der Pol oscillator

equations, with endogenous circadian period and light intensity as

a function of time as input. The model then predicts circadian

phase and amplitude [58,59]. The model’s phase and amplitude

predictions have been experimentally correlated with established

circadian markers (e.g., [31,40,41,60,61]). Figure 1B illustrates the

general relationship between the timing of a light pulse and the

direction and magnitude of the subsequent phase shift, producing

a ‘‘phase response curve’’ (PRC).

In the linked mathematical model of neurobehavioral perfor-

mance and alertness, the key components are circadian, homeo-

static, and sleep inertia functions. The circadian component is the

component of performance that is modulated by circadian phase

and amplitude; its values are determined from the model of the

effects of light on the human circadian pacemaker. The homeostatic

component models the effect of time asleep or awake on

performance. More specifically, the homeostatic component of

performance specifies the decrease in performance during wake and

the recovery of performance during sleep. Lastly, the sleep inertia

component models the transient low levels of alertness or

performance observed immediately after awakening. Sleep inertia

is the grogginess experienced immediately after awakening.

Performance and alertness values are scaled between 0 and 1, with

1 being the maximum possible performance. The overall structure

of the performance and alertness models are the same, although the

equations are different for each performance or alertness measure

[58]. This work has been validated with data collected in extended

wake and non-24-hour experimental protocols [58,62,63]. For

brevity, only the ‘‘performance’’ model for a serial addition task will

be used in this manuscript. The mathematical models can be

summarized in a functional form as follows:

Mc light,tau½ �~ phase amplitude½ � ð1Þ

MP wake state, circadian phaseð Þ~ PC PH PI½ �~P ð2Þ

P~PCzPHzPI ð3Þ

where Mc represents the circadian model, MP represents the

performance model, PC represents the circadian component of

performance, PH represents the homeostatic component of

performance, PI represents sleep inertia, and P represents

overall performance. Although, the components are described

separately in the equations above, there is a non-linear

interaction between the circadian and homeostatic components

in the current formulation of PH [58]. Note that the functional

form of the circadian and performance models is presented to

facilitate the specification of our algorithm. Our algorithm assumes

that the functional form of the models relates to a set of differential

equations that have been validated with experimental data.

Schedule representation
A protocol is defined as a list of events (e) that occur sequentially

in time. Each event is defined by setting a duration (d), light

intensity (l), and sleep-wake state (s) as shown in Equations 4–6:

e~ d,l,s½ � ð4Þ

where the sleep-wake state (s) is defined to be sleep (s) or wake (w)

such that:

s~s|w ð5Þ

Consequently, a protocol can be defined as a collection of events

or as the time-varying vector of duration, light intensity, or sleep-

wake state (Equation 6):

Se e1,e2, . . . ,enð Þ~S ~dd,~ll,~ss
� �

ð6Þ

The parameterized form of an event is a schedule building block,

which is the schedule primitive used in our representation

(Figure 2). It is specified formally as:

b ~ppb

� �
~S ~dd,~ll,~ss

� �
ð7Þ

where ~ppb is a vector of parameters:

~ppb~ p1,p2, . . . ,pn½ � ð8Þ

We define a schedule B as a list of schedule building blocks:

B ~ppb1
, . . . ,~ppbn

� �
~ b1 ~ppb1

� �
, . . . ,bn ~ppbn

� �h i
ð9Þ

By instantiating (I ) the parameters of a schedule (B), the schedule

can be represented as a collection of time-varying vectors

(Equation 10):

St dt,lt,stð Þ~I B pb1
, . . . ,pbn

� �
, c1, . . . ,cD½ �

� �
ð10Þ

The value of D is the total number of parameters for the entire

schedule, and ci represents the current parameter value. By

convention, we assume the parameters and the constant values are

evaluated from left to right. The schedule representation has been

restricted to a regular grammar [64], which is a simple language

Model-Based Schedule Design
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specification that allows us to specify a simple parser (based on

finite state machines) to evaluate the schedule and to convert the

schedule into a form suitable for simulation and optimization

studies. This schedule building block design allows information

regarding clock time and biological time of day (circadian phase

predictions) to be used in an optimization framework while

maintaining schedule constraints.

Simulating a schedule
We first simulate the circadian phase and amplitude predictions

of that schedule using the mathematical model. We then use these

phase predictions to select optimal regions for placing CMs, using

the circadian and performance model presented above. To

generalize the application of this class of models, we introduce

the following notation for predicting circadian phase given a

mathematical model (L), a schedule (S), and the endogenous

period (t) of the pacemaker (Equation 11):

L S,tð Þ~L b1 ~ppb1

� �
, . . . ,bn ~ppbn

� �h i
,t

� �
ð11Þ

L is the model of the circadian effect of light on the pacemaker,

and the schedule is represented as a list of building blocks (eq. 9).

Each building block bð Þ has a variable list of parameters ~ppb

� �
, as

Figure 1. Schema of the mathematical model and the simulated PRC to light. Panel A. A schematic of the circadian and performance/
alertness mathematical models [58,59]. Both light intensity and endogenous period (‘‘tau’’) are inputs to the circadian model to make predictions of
the phase and amplitude of the circadian pacemaker. The inputs to the neurobehavioral models are the sleep-wake times and the output of the
circadian model. The outputs of the performance models include subjective alertness and objective performance measures. Panel B. Schematic of a
phase response curve (PRC) to light stimuli. Circadian phase in hours (Wi) is displayed on the x-axis. Circadian Phase = 0 corresponds to the time of the
minimum of the core body temperature, an accepted circadian phase marker. The y-axis displays the change in circadian phase (DW) ( = phase after
stimulus minus phase before stimulus (Wi)) following a light countermeasure centered at Wi. The PRC consists of two regions: a phase delay (negative
phase shift) and a phase advance (positive phase shift) region. If a light stimulus occurs in the delay region, the subsequent circadian phase will occur
at a later clock time; the opposite is true for the advance region.
doi:10.1371/journal.pcbi.1000418.g001
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noted above. We use the time of the core body temperature (CBT)

minimum wmð Þ, the circadian marker to which this model has

traditionally been referenced, for the circadian phase marker. The

phase of the CBT minimum can be represented as:

HS L S,tð Þð Þ~ wm

�!
~ wm1

,wm2
, . . . ,wmp

� �
ð12Þ

where HS is a function that extracts the model-predicted circadian

phase minima per 24 hours from the specified schedule Sð Þ and

wm

�!
is a vector of discrete CBT minima. The performance model

can be compactly represented as a function of the schedule Sð Þ
and the prediction of circadian phase L S,tð Þð Þ.

P S,L S,tð Þð Þ~P~ p1, . . . ,ptð Þ ð13Þ

Defining the optimization problem
We first compare the baseline phase angle difference (i.e.,

between predicted wmð Þ and habitual wake wblð Þ) with the

predicted phase angle HS during the shifted sleep episode Ssð Þ.
The shifted sleep episode Ssð Þ is determined by selecting the sleep

events st~sð Þ. The target phase angle HOð Þ is computed by

adding the start of the sleep event st~sð Þ to the length of the sleep

event lsð Þ and subtracting the baseline phase angle wblð Þ:

HO~Ss dt,lt,st~sð Þ
���������!

zls{wbl Vs,s~s ð14Þ

The objective function for this optimization problem is designed to

minimize the absolute value of the difference between the

predicted phase angle HS and the target phase angle HOð Þ.

min
X

HO{HSj j
� �

ð15Þ

The simulated phase, due to the schedule building block

formulation, is a function of the parameters of schedule (S) and

the endogenous period of the pacemaker:

min
X

HO{HS L S,tðð Þj j
� �

ð16Þ

To obtain a closed form of the objective function, Equation 10 is

substituted into Equation 16 to yield:

min
X

HO{H L I B pb1
, . . . ,pbn

� �
, c1, . . . ,cx½ �

� ��
,t

� ����
���

� �
ð17Þ

Equation 17 is a compact form of the schedule optimization

problem and is a function of schedule parameters and the

endogenous period of the circadian pacemaker.

Circadian Adjustment Method (CAM)
The CAM is an iterative technique that uses information about

predicted circadian phase to determine placement of CMs such

that the final result is robust and optimal. The steps involved in

this technique are:

1. Use Equation 12 to simulate the schedule Sð Þ without a

countermeasure to obtain an initial phase estimate and

compute the predicted circadian phase wS

� �
.

wS~H L S,tð Þð Þ ð18Þ

2. Compute the initial placement of the CM wI

� �
as follows. Set

CM placement (nCCMcsl ) such that the end of the CM

precedes the predicted circadian phase by a predetermined

constant Cð Þ to insure the CM is in the appropriate region of

the PRC and simulate the schedule with CMs PCð Þ. Selecting

the constant C to insure convergence is considered in the

Results section.

wI~H L I PC nCCMcsl~wS

� �� �
,t

� �� �
zC ð19Þ

3. Adjust CM placements nCCMcslð Þ such that they precede the

predicted circadian phase marker (from step 2) by C, the

predetermined amount. Adjustment insures that the CM

placement avoids the Type 0 resetting portion of the PRC

[65]. Type 0 resetting is described below.

wS~H L I PC nCCMcsl~wI

� �� �
,t

� �� �
ð20Þ

Figure 2. Examples of ‘Schedule Building Blocks’. Note that the constraint in the ‘‘Constrained Countermeasure’’ is assumed to be a timing-
related constraint and is therefore instantiated in the countermeasure start time and countermeasure length parameters.
doi:10.1371/journal.pcbi.1000418.g002
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4. Substitute wS into wI in step 3 and repeat until the phase

prediction wS

� �
converges or for a fixed number of iterations

chosen by the user. (See results section)

The nature of the CAM is to exploit the physiological effect of

placing a bright light pulse prior to the CBT minimum, which

results in shifting the subsequent CBT minimum to a later clock

time. Traditionally, determining the effect of a light pulse is

accomplished with a PRC (e.g., Figure 1B) in which the relative

phase shift is shown on the ordinate and the timing relative to the

CBT minimum (or other phase angle measure) is displayed on the

abscissa. Rather than look up values on a static PRC, a

mathematical model of the effect of light on the circadian

pacemaker is used here. Through simulating the schedule, the

mathematical models can be used to generate the phase response

based on the lighting conditions.

The mathematical model of the effects of light on the human

circadian pacemaker is capable of simulating the experimentally

observed Type 0 response to light, which includes traversing a

singularity region in phase space, similar to being exactly at the

north or south pole, which has no defined longitude (analogous to

no phase/time). The exclusion of the Type 0 resetting solution is

part of the overall CAM strategy of obtaining a solution for a

single solution space. The exclusion of the Type 0 solution space is

further justified because it is technically difficult to achieve Type 0

resetting, and a phase shift in the wrong direction could easily

occur from a slightly mistimed stimulus in this region. Further

details of the convergence characteristics of the CAM are

presented in a computational proof of convergence in the

Supporting Information (Text S1).

Software
Shifter is a prototype scheduling software constructed to use the

schedule building blocks in conjunction with the CAM to design

and optimize schedules. Its implementation includes the formalism

and nomenclature presented above for models, schedules,

simulation mechanics, and the CAM.

Shifter was implemented in MATLAB version 7.7 (Natick, MA).

Shifter’s graphical user interface was developed with Guide

(MATLAB’s graphical user interface development tool). The

schedule building blocks are implemented as MATLAB functions.

Each building block is designed to be called with a variable

number of parameters. The optimization interface is designed to

use both the CAM and Nelder-Mead (MATLAB’s fminsearch

function) to allow schedules with a variable number of parameters

to be optimized. Additional details of Shifter’s functionality are

presented in the Supporting Information (Text S1, Figure S3,

Figure S4, and Figure S5).

Results

Verification of stability of phase delay region
The Circadian Adjustment Method (CAM) requires stable

phase advance and delay regions. This condition was verified with

phase response contour maps that were created from 3240

simulations using the mathematical model of the effects of light on

the human circadian pacemaker (see Methods) of phase response

protocols with two-way combinations of varying CM duration (1–

12 hr), CM intensity (1,000–10,000 lux), and endogenous circa-

dian period (23.8–24.6 hr) (Figure 3). The phase response protocol

is a standard chronobiology technique for assessing the response of

the circadian system to a scheduled light stimulus [41]. The phase

response protocol contains three sections: 1) The pre-stimulus

section contains an 8-hour sleep episode followed by a wake

episode. The length of the wake episode ranges from 28 hours to

52 hours so that the scheduled CM (see section 2) can be placed at

any phase of the circadian system. 2) The stimulus section contains

an 8-hour sleep episode followed by a 16-hour wake episode. 3)

The post-stimulus section contains an 8-hour sleep episode

followed by a variable length wake episode. The length of the

post-stimulus wake episode is selected to insure that the duration of

the entire phase response protocol is constant. The shift in

circadian phase (reported in Figure 3) is calculated as the

difference in predicted circadian phase in the post- and pre-

stimulus sections. As shown in Figure 3, the phase regions of

maximum delay and advance are relatively constant. The relative

stability of the phase delay region supports the use of a constant

offset (parameter C in Equation 9; See Methods). The plots also

demonstrate that the circadian system has a larger amplitude for

phase delay responses than for phase advance responses to light

stimuli of different durations and intensities.

Defining schedule representation and the CAM
Designing optimal CMs requires a flexible and extendable

method for specifying schedules that includes an analytic link.

The CAM uses ‘‘building blocks’’ (Figure 2) to represent

arbitrary schedule components and relationships between these

components. These schedule building blocks have two key

features: (1) They include a set of parameters that can either

be fixed by the user or defined as a variable for subsequent

analysis, including optimization. Note that the constraint in the

‘‘Constrained Countermeasure’’ is assumed to be a timing-related

constraint and is therefore instantiated in the countermeasure

start time and countermeasure length parameters. (2) They are

constructed in a way that allows parameter values to change

during the optimization process. Thus the schedule building

block formulation allows for explicit (e.g., light CM presented

during the waking day) and implicit constraints (e.g., 8-hour

scheduled sleep episode) to be maintained. For this problem, we

use five different types of schedule building blocks (Figure 2).

Although each building block contains many parameters, only

CM intensity, duration, and placement were considered for this

problem. The mathematical details of this schedule representa-

tion are described in Methods.

We tested optimal control theory, gradient descent methods,

and direct search methods [53,66]. Gradient descent and direct

search methods do not provide robust solutions, due to the

presence of multiple solutions (phase delay, phase-shifting through

the singularity, phase advance) and the nonlinearities of the

mathematical models. We also sought solutions to the boundary

value problem that resulted by applying the calculus of variations

to the mathematical models [51]. The boundary value problem

did not converge to a solution in operationally significant

conditions. Consequently, we sought a solution that had robust

convergence characteristics (targeting a single solution) and did not

require simulating every possible combination of schedule

parameters. We therefore developed the CAM (details in

Methods).

To test the ability of the CAM to converge to a unique result

without user intervention, the method was applied to a range of

CM durations (1, 3, 5, and 7 hours) and intensities (500, 750,

1000, 2500, 5000, and 10,000 lux) for the test protocol (one 24-

hour baseline day followed by a 12-hour phase shift, which

includes a 28-hour wake episode, followed by 12 24-hour days).

Each of the 24 solutions (4 durations66 intensities) converged

within 5–20 iterations.

To evaluate the performance of the CAM, a Nelder-Mead

optimization procedure [67,68] was initialized with the results
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from the CAM and applied to this test problem. The Nelder-Mead

optimization method is a direct search method that has been used

in a variety of optimization problems. For this test problem, the

value of the objective function without a CM was 220.2 hr which

represents the total number of hours the predicted circadian phase

is misaligned from the target circadian phase making the value of

the objective function an index of circadian misalignment that can

be used to compare schedules. Following the optimization of light

CM with the CAM, this was reduced to 50.45 hr; and was further

reduced to 49.90 hr following the Nelder-Mead optimization

procedure (Table 1). Therefore, the CAM, when augmented with

the Nelder-Mead procedure, is a robust and near optimal solution

to this CM design problem.

The CAM used in conjunction with Nelder-Mead can be

viewed as a two-step optimization procedure. The effectiveness of

the CAM is contingent on the proper selection of C in Equation

19. Through simulations (see above) we have determine that a

near optimal region can be obtained by specifying a constant offset

(C in equation 9) from the predicted minimum of CBT. Using the

CAM output as an input to the Nelder-Mead procedure provides a

method to finely tune the placement prediction. Thus, we use an

optimization scheme tailored for our specific problem to find a

Figure 3. Phase response contours from simulations of phase response protocols. The horizontal axis represents the timing of the
countermeasure center (in hours), relative to the time of the predicted core body temperature minimum (Circadian Phase = 0). The vertical axis
represents the specific parameter being studied: duration (Panel A), intensity (Panel B), endogenous circadian period (Panel C). The magnitude of the
phase shift (in hours) is color coded according to the legend. The maximum delay and advance regions are colored dark blue and dark red,
respectively. Panel A. Duration (1 to 12 hr) response contours for light pulses with different intensities (1,000–10,000 lux). Simulations were run with
an endogenous period of 24.2 hr. Panel B. Intensity (1000–10,000 lux) response contours for different light pulse durations (1–12 hr). Simulations
were run with an endogenous period of 24.2 hr. Panel C. Endogenous period (23.8–24.6 hr) response contours for different intensities (1,000–
10,000 lux). Simulations were run with 3-hr light pulse durations.
doi:10.1371/journal.pcbi.1000418.g003

Table 1. Changes in objective function values following optimization procedures.

Objective
Function

Number of
Function Calls

Change in
Objective Function

Absolute Decrease % Decrease

Without a countermeasure 220.2 1 - -

Circadian Adjustment Method (CAM) 50.5 11 169.8 77%

CAM followed by Nelder-Mead 49.9 61 170.30 77%

*lower is better for value of objective function.
doi:10.1371/journal.pcbi.1000418.t001
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near optimal solution and fine tune with a general optimization

scheme. The simulation studies in Figure 3 demonstrate that

increasing light intensity and duration increases the magnitude but

does not change the direction of the phase shift without

substantially changing the location of the optimal timing of the

CM. Additional examples of using light intensity and duration to

design schedules are in the Supporting Information (Text S1,

Figure S1, and Figure S2).

Simulated results
During entrained baseline conditions, simulations predict the

circadian phase zero (time of CBT minimum) to be 2.8 hours prior

to habitual wake time. After the 12-hr phase shift of the sleep-wake

schedule in the test protocol (Figure 4A), there are marked changes

in circadian and performance measures. Without a CM, circadian

phase (in relation to the new schedule) slowly changes, but never

achieves the same timing relationship with the sleep episode as

during baseline conditions (Figure 4-A1). In contrast, simulation of

the schedule with a CM resulted in reestablishment of the

entrained circadian phase relationship following 8 days of the CM

(Figure 4-A2). Predicted performance during each wake episode

has a sharp initial rise (Figure 4-B1 and 4-B2), consistent with the

decay of the sleep inertia component. The ability to maintain

levels of performance .85% of maximum during the waking day

is reduced from 12 hours during baseline to 6.5 hours without a

CM. (Figure 4-B1). In contrast, simulation results of the schedule

with a CM resulted in faster recovery of performance levels within

each day and across successive days (Figure 4-B2). By day 6, the

performance profile across the day is similar to that during

baseline conditions for CM but not for no-CM conditions.

(Figure 4-B2).

Illustrations of the effects of CM strength are included in the

Supporting Information (Text S1 and Figure S1).

Quantifying performance changes
Quartiles of the range of performance values, rather than mean

and standard deviation, were used to evaluate the schedules for

two reasons. First, the performance predictions during the waking

day do not have a statistically normal distribution. Second, the

lower quartile of performance, during a day, was a more sensitive

indicator of entrained circadian phase (Figure 5-A2) and may also

be more operationally relevant. Thus, here we are more

concerned about improving the lowest levels of performance

(which have been attributed to many catastrophic errors [49]) than

the mean level of performance.

During baseline, the performance quartile values (25%, 50%

(median), and 75%) are 0.90, 0.93 and 0.95, respectively. Note the

maximum predicted performance is 0.95 during the baseline day,

which is a consequence of the data scaling procedure specified in

Jewett [62]. The performance quartile values during the 28-hour

extended wake episode (day 2) that accompanies the 12-hour

phase shift are lower than the median performance during the

baseline day (0.58, 0.85, 0.92), and the 0.34 units difference

between the upper and lower quartiles of performance is nearly

seven times that of the baseline day (0.05 units), mostly due to the

dramatic decrease in the lower quartile value. Following the

extended wake episode, there was approximate symmetry of the

upper and lower quartiles around the median. Without a CM,

performance improves slowly over each waking episode for the

next 12 wake episodes after the schedule shift. The time course of

recovery for the performance quartile values is approximately

linear with the number of recovery days (Figure 5-A1). While the

upper quartile and median values reach baseline levels after 12

days, the lower quartile value remains at 86% of baseline and 75%

of maximum performance. Between days 3 and 15, the difference

between the combined upper and lower quartile of performance

over the waking day remains constant at four times the combined

quartile range during the baseline day (Figure 5-A1 and 5-B1).

With a CM, the performance quartile values reach .90% of

baseline values after 8 days and return to baseline levels after 9

days (Figure 5-B2). In addition, the difference between daily upper

and lower quartile ranges decreases linearly for each of the first 6

days following the application of the CM (Figure 5-B1) and then

decreases rapidly to an asymptote.

Empirical cumulative probability function
We also compared the empirical cumulative probability

function of performance during the baseline day and for the

entire protocol for CM and no-CM conditions (Figure 6). This

cumulative probability function demonstrates the percentage of

time that simulated performance is below a chosen value. The

baseline condition had a higher percentage of time at higher

simulated performance levels than the CM and no-CM conditions.

The percentage of the waking day above a simulated performance

level of 0.80 for the baseline, CM and no-CM conditions were

95%, 80% and 60%, respectively.

Discussion

The primary contribution of this work is an efficient and

practical approach to designing re-entrainment schedules that uses

both a novel schedule representation (schedule building blocks)

and a novel algorithm for locating optimal solutions (circadian

adjustment method, CAM). Our algorithm provides advantages

over existing circadian schedule design techniques that evaluate a

large number of schedules (genetic algorithms, enumeration) or

use existing optimization techniques (Nelder-Mead, gradient

descent, optimal control theory). Enumeration of all possible

schedules quickly becomes computationally intractable as the

number of days in the schedule increases. Existing optimization

techniques are generally formulated to extract one solution that

may be unrealistic in the operational setting. Our algorithm has

been designed specifically to allow for multiple solutions to be

determined through the specification of design and optimization

parameters. The schedule design parameters (i.e. light level, light

duration, sleep length) allow for families of schedules to be

considered, which is analogous to facilitating constrained enumer-

ation through the use of schedule building blocks. Consequently, a

key contribution of the method is the integration of the schedule

representation with an optimization approach, which gives the

advantage of evaluating a large number of schedules with

optimization, while reducing the drawbacks when each approach

is used alone.

The CAM is designed to both exploit features of the solution

space and to have good convergence characteristics. In practice,

optimizing Equation 17 directly is challenging due to multiple

solutions to the entrainment problem. The mathematical formu-

lation of the circadian models allows for phase advances, phase

delays, and phase jumps through the singularity region (Type 0

resetting) [65]. Phase jumps through the singularity region have

been shown experimentally and mathematically. However, the

practical difficulty in targeting the singularity regions (to date there

is only one experimental demonstration in humans [65]) may

make the approach operationally impractical. From an operation-

al design perspective, the ability to choose a particular solution has

advantages, since the schedule may contain other phase advance

or delay characteristics. Consequently, a key feature of the CAM is

to select the specific solution region (phase delay or phase advance)
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in which to optimize. The CAM insures that CM starting values

are near the maximum shift of the region, which in turn insures

that computational efforts are not wasted in poor solution spaces.

We have shown that a mathematical model of the effect of light

on circadian phase and the effects of circadian rhythms and length

of time awake on performance can be used to automatically design

light CMs to facilitate re-entrainment after a shift in schedule. Our

work illustrates that the CM design process can be divided into

schedule specification and schedule optimization components. The

schedule specification component allows users to define a

parameterized schedule and arbitrary schedule constraints. The

schedule optimization component optimizes the objective function

Figure 4. Schedule and simulation results of a jet-lag schedule. The schedule includes two baseline days, a 12-hour shift in scheduled sleep
episode, followed by 12 days at the new schedule. Panels A1 and B1 are the simulations without a countermeasure; Panels A2 and B2 are the
simulations with a countermeasure. Panels A1 and A2. Raster plots of the schedule and simulation results: time (midnight to midnight) is represented
horizontally, and each line is a separate day. Black boxes represent the timing of sleep episodes, white boxes represent the timing of wake episodes,
yellow rectangles represent the timing of the bright light countermeasure, blue rectangles represent times of .85% performance, and red vertical
lines represent time of predicted core body temperature minimum (the marker of circadian phase). The target phase used in the objective function is
shown by the light blue vertical line in the shifted sleep. Panels B1 and B2. The performance within each wake episode across all days of the schedule
is shown without (B1) and with (B2) countermeasures; each color represents a different day of the protocol. As circadian phase moves closer to the
target phase, there is a higher level of performance for a longer duration each day. The countermeasure speeds this phase shift and results in faster
improvement in performance, especially after ,6 hours of wake.
doi:10.1371/journal.pcbi.1000418.g004
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constructed from user-specified parameters. The method extracts

operationally relevant information such as the timing of wake

episodes and predicted circadian phase levels from mathematical

simulation that is used to optimize CMs.

The scheduled building block formulation of the CAM is an

iterative procedure whose functional form is motivated by the

lambda calculus [69]. A practical benefit of the lambda calculus

specification is a precise and unambiguous implementation

prescription, through functional programming methods [69], that

outlines the transition of the algorithm to software. It also allows

formal analysis (convergence, running time, memory require-

ments). Moreover, the nomenclature and formalism provide

standard interfaces for which to study different schedules, different

optimization methods, and different models. The formalism and

hence the software implementation are designed to evolve as new

models, methods, and schedules are considered. Thus, a major

goal of the formalism is to provide a mechanism to maximize the

use of existing software implementation and minimize the amount

of software development required for studying different aspects of

schedule design.

Figure 5. Simulated changes in daily performance with and without countermeasure after a jet-lag schedule. The schedule is the same
as in Figure 4. Panels A1 and B1 are the simulations without a countermeasure; Panels A2 and B2 are the simulations with a countermeasure. Panels
A1–A2: The predicted performance upper quartile (green), median (red), and lower (blue) quartile for each wake episode across all days of the
schedule. Panels B1–B2: The scaled upper and lower quartiles across wake episodes of the schedules. For panels B1–B2, the combined upper (green)
and lower (blue) quartile of simulated performance during baseline (wake day episode 1) is scaled to 1.
doi:10.1371/journal.pcbi.1000418.g005
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The iterative procedure converges quickly for a variety of

operationally relevant conditions. The method results in a

substantial reduction of design time compared with manual

analysis, which, in our experience, reduces the design of

intervention schedules from the order of days to minutes. The

convergence and computationally efficient characteristics of our

methods are suitable for interactive design of schedules. Recall that

our test problem was to determine the duration, intensity, and

placement of light that facilitates re-entrainment of the circadian

system. Our system has both user-specified (duration and intensity)

and algorithmic (placement) parameters. The user pre-sets the CM

duration and intensity based on operational constraints. The CAM

then determines the CM placement for optimizing re-entrainment.

Since the algorithm generally convergences in less than two

minutes on a laptop computer, the methods can be used to

interactively design, evaluate, and compare several alternative

designs (e.g., different durations and intensities) in real time [70–

72].

Although we used a simple test example, our methodology

could easily be expanded to include different shifting strategies.

For example, one strategy in the literature is to use light as a CM

to advance the schedule prior to phase delaying [73]. To search for

the appropriate advancing schedule, we would have to change the

instructions in step 3 of the CAM to place the light pulse just after

the CBT minimum, as determined by the PRC to light. Our

method, therefore, is easily adjustable so that studies of schedules

with both advances and delays could be determined and

evaluated.

Whereas in this work light was used as the CM, the

methodological framework was designed to be easily extended to

include different CMs, such as naps, caffeine, or other pharma-

ceutical agents. The only requirement is that a phase response

curve for that CM exists. A planned addition to the work is

computing confidence intervals for the CM placements and

performing a sensitivity analysis on schedule parameters. A general

statistical framework for comparing alternative schedule designs,

determining schedule parameter confidence intervals, and com-

puting parameter sensitivity will also be important.

Implications of results on schedule design
These simulations have multiple implications for schedule

design. (1) Schedules that use CM at the time of greatest effect

result in faster re-entrainment of the circadian system. Under

entrained conditions, CBT minimum (the time of maximum

sensitivity to light stimuli, see Figures 1B and 3) occurs during

sleep, approximately 2 hours before scheduled wake. Therefore,

light exposure as a CM at this circadian-sensitive time can only

occur when sleep timing is shifted. (2) While the magnitude of

phase advances are nearly equal to that of phase delays (Figure 3-

A), the narrow maximum phase advance region may be an

impractical target for operational environments. (3) The difference

between upper and lower quartiles of performance (Figure 5-B)

may be a strong indicator of circadian entrainment. Examining

quartiles of performance may be an appropriate surrogate for

circadian entrainment which is currently not possible to assess in

real time in the operational setting. Analysis of experimental and

Figure 6. The empirical cumulative probability distribution of performance. The distribution is shown for baseline (dot-dashed), and across
the entire protocol with (dashed) and without (solid) a countermeasure.
doi:10.1371/journal.pcbi.1000418.g006
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field data is required to validate this prediction. This method may

also be valuable in determining the number of days a CM is

required. For example in Figure 5, note that, with a CM, on day

11 the difference between upper and lower quartiles returns to the

baseline value. In subsequent days, the difference falls to below

that of baseline. A plausible interpretation of this finding is that

CMs are only required up to day 11. Applying CMs on future days

may not only be unnecessary and costly in time and responses but

may also result in further, undesired, changes in the relationship

between predicted circadian phase and the wake episode (Figure 4-

A2). An example of the effect of inappropriately timed bright light

pulses is in the Supporting Information (Text S1 and Figure S1).

Estimating the light levels is an important aspect of using these

models. We have found that reasonable modeling predictions can

be made with limited information about background light for

indoor and outdoor conditions (Dean, personal communication).

The ability to use averaged light levels is a direct consequence of

the underlying mathematical models and is due to the non-linear

response of the circadian pacemaker to light. Consequently, only

the order of magnitude of the light-level is important for these

simulations [59]. The light preprocessor in our model also acts as a

low pass filter, smoothing (in the time domain) the light

information input to the pacemaker.

In practice, the intrinsic circadian period parameter can be used

to design group and individual interventions, since intrinsic period

length is normally distributed [74]. When the individual circadian

period has been determined experimentally, the measured or

derived (e.g., from other physiologic measures such as the phase

relationship between circadian phase and sleep-wake schedule

[75]) intrinsic period should be used and will result in an

individualized design of light placement.

Several aspects of the schedule design problem warrant further

study: (1) formal methods for embedding schedule constraints, (2)

alternative objective functions, (3) initializing and optimizing

schedule parameters, and (4) statistical methods for comparing and

evaluating schedules. In future work, the current building block

formulation of the CAM will be expanded to incorporate

additional scheduling components and constraints, allowing for a

range of schedule optimization problems to be studied.

Implications of results for other computational problems
The novelty of this work is the coupling of schedule

representation that facilitates both maintaining constraints and

optimization in a modular format. The representation of the

problem within a ‘‘building block’’ (Figure 2) that can be

optimized is the core of the work. We anticipate that these

methods can be generalized for use with other optimization

problems that have inherent constraints (operational and biolog-

ical) and with other optimization methods. Our aim in developing

a specific module for jet lag is to demonstrate the efficacy of our

framework and the computational advance. Our future work will

proceed in two directions. The first is to develop modules (schedule

building blocks and corresponding mathematical models) for

optimizing additional CMs including melatonin [76,77]. Properly

timed melatonin is effective in shifting the circadian system. The

second area of work will be to enhance the schedule building block

formulation to include additional operational-related constraints

and countermeasure design strategies.

Our simulation studies show that, when timed correctly, CM

light intensity and duration affect the magnitude of the shift in

circadian phase (Figure 3). Consequently, the CAM emphasizes

the optimization of pulse placement without regard to pulse

duration or intensity. Bright light strength (duration and intensity)

can then be used as design variables to adjust for differences in

available lighting hardware, conflicts of scheduled bright light

exposure time with other operational activities, and personal

preferences in acceptable bright light strength.

Supporting Information

Text S1 Supplemental Material

Found at: doi:10.1371/journal.pcbi.1000418.s001 (0.06 MB PDF)

Figure S1 Simulations demonstrating the effect of intervention

placement and strength in facilitating adaptation of the body’s

internal circadian clock to a shift in sleep/wake timing.

Found at: doi:10.1371/journal.pcbi.1000418.s002 (0.37 MB TIF)

Figure S2 Simulations of non-24-hour-day schedules.

Found at: doi:10.1371/journal.pcbi.1000418.s003 (0.35 MB TIF)

Figure S3 Shifter screen shot showing a schedule with and

without designed countermeasure.

Found at: doi:10.1371/journal.pcbi.1000418.s004 (1.66 MB TIF)

Figure S4 Examples of user-defined schedules and interventions

generated with Shifter.

Found at: doi:10.1371/journal.pcbi.1000418.s005 (0.68 MB TIF)

Figure S5 Predicted performance summaries generated with

Shifter.

Found at: doi:10.1371/journal.pcbi.1000418.s006 (1.63 MB TIF)
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