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Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children, and embryonal rhabdomyosarcoma is the most typical
type of rhabdomyosarcoma. The heterogeneity, etiology, and origin of embryonal rhabdomyosarcoma remain unknown.
After obtaining the gene expression data of every cell in the tumor tissue by single-cell RNA sequencing, we used the Seurat

package in R studio for quality control, analysis, and exploration of the data. All cells are divided into tumor cells and non-tumor cells,
and we chose tumor cells by marker genes. Then, we repeated the process to cluster the tumor cells and divided the subgroups by
their differentially expressed genes and gene ontology/Kyoto Encyclopedia of Genes and Genomes analysis. Additionally, Monocle 2
was used for pseudo-time analysis to obtain the evolution trajectory of cells in tumor tissues.
Tumor cells were divided into 5 subgroups according to their functions, which were characterized by high proliferation, sensing and

adaptation to oxygen availability, enhanced epigenetic modification, enhanced nucleoside phosphonic acid metabolism, and
ossification. Evolution trajectory of cells in tumor tissues is obtained.
We used pseudo-time analysis to distinguish between mesenchymal stem cells and fibroblasts, proved that embryonal

rhabdomyosarcoma in the pelvic originated from skeletal muscle progenitor cells, showed the evolutionary trajectory of embryonal
rhabdomyosarcoma, and improved the method of evaluating the degree of malignancy of embryonal rhabdomyosarcoma.

Abbreviations: DEGs = differentially expressed genes, EPCs = endothelial progenitor cells, ERM = embryonal
rhabdomyosarcoma, GEMs = gel bead-in-emulsions, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes,
scRNA-seq = single-cell RNA sequencing, SMPCs = skeletal muscle progenitor cells.
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1. Introduction

Rhabdomyosarcoma is the third most prevalent extracranial
solid tumor in childhood (about 6/1,000,000), accounting for
approximately 4.5% of all childhood cancer cases.[1–3]

There are 4 clinical subtypes of rhabdomyosarcoma; among
them, embryonal rhabdomyosarcoma (ERM) is the most
common subtype (about 75%).[4] The origin of ERM is unclear,
but it is currently thought to originate from skeletal muscle
progenitor cells (SMPCs) or endothelial progenitor cells (EPCs),
whichmay be related to the distribution of ERM.[2,3]PAX7 gene
expression is an essential marker of skeletal muscle differentia-
tion,[5] and RAS gene family are abnormally expressed in
ERM.[6] They are of particular significance in the diagnosis of
ERM.
Single-cell RNA sequencing (scRNA-seq) is a type of

sequencing technology that obtains the complete gene expression
information of every cell. This method can fully define the
expression of transcription factors, growth factors, receptors,
solute transporters, and other proteins in every cell, and it has
been used in tumors to study tumor heterogeneity.[7] Compared
with traditional DNA sequencing methods, scRNA-seq avoids
interference from background cells and captures important
information expressed within only a few cells, such as the
mutation status of tumor cells, the epigenetic status, and the
expression level of related proteins.
In this study, we used scRNA-seq to reveal the heterogeneity in

ERM and explore the evolutionary history of ERM.
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2. Methods

2.1. Patient and tumor tissue

This study included a patient with ERM in the pelvic region who
underwent imaging (computed tomography and magnetic
resonance imaging) and immunohistochemistry, and the patient
was a 6-year-old boy with ERM in stage III. This study was
approved by the ethics committee of Fudan University Children’s
Hospital and informed consent was obtained from the
participant’s guardian. All experiments were carried out in
accordance with the relevant guidelines and regulations.
2.2. Single-cell separation

The tumor tissue was cut into small pieces; collagenase IV (Gibco)
and DNase I (Sigma) were added and the mixture was stirred at
37°C for 30min. The samples were filtered through a 70-mM cell
filter; the filtrate was washed in phosphate-buffered saline with
1% bovine serum albumin and 2mM ethylenediaminetetraacetic
acid and centrifuged at 500�g for 8min. The single-cell
suspension was separated by human lymphocyte separation
fluid (CL5020; Cedarlane), and red blood cells and cell debris
were removed according to the manufacturer’s specifications.
The granulosa cells were resuspended in phosphate-buffered
saline with 1% bovine serum albumin, and their activity and size
were evaluated with a Countess II FL instrument (Thermo).
2.3. scRNA-seq library preparation, and RNA-seq

ScRNA-seq libraries were prepared according to the Single Cell
3’Reagent Kit User Guide v2 (10�Genomics).[8] In short, cellular
suspensions were loaded on a Chromium Controller instrument
(10� Genomics) to generate single-cell gel bead-in-emulsions
(GEMs). After the formation of GEMs, the cells were lysed, and
the GEMs were automatically dissolved to release several
barcode sequences. mRNAs were reverse-transcribed to generate
cDNAs with barcode and UMI information, and a cDNA library
was established. The library was then pooled and sequenced on a
NovaSeq 6000 (Illumina) at a depth of approximately 400M per
sample. Raw sequencing data were converted to FASTQ files with
Illumina bcl2fastq (version 2.19.1) and aligned to the human
genome reference sequence (GRCh38). CellRanger (10� Geno-
mics, version 2.1.1) was used to perform data processing to filter
out the barcodes associated with low-quality cell bar codes.[9]
2.4. Seurat analysis and GO/KEGG analysis

Data were imported into R Studio (R 3.6.2), and the Seurat
package (Seurat 3.1.4, https://github.com/satijalab/seurat) was
used to process and analyze the obtained gene expression data.
From quality control, genes expressed in no more than 3 cells
were filtered out, and cells withmore than 500 genes and less than
10% mitochondrial genes were selected. Then, the remaining
data were standardized and normalized. After quality control and
normalization, the nonlinear dimension reduction algorithm
principle component analysis was implemented. Finally, cluster
analysis was used to identify cell subtypes and UniformManifold
Approximation and Projection for visualization of dimension
reduction results. A heatmap of the top 10 genes unique to every
cluster was displayed according to the log2FC values.
FindAllMarkers function was used to export the differentially

expressed genes (DEGs) of every cluster during Seurat analysis.
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After Seurat analysis, we used the clusterProfiler package (https://
bioconductor.org/packages/clusterProfiler) to perform gene on-
tology (GO)/Kyoto Encyclopedia of Genes andGenomes (KEGG)
analysis. First, the bitr function was used to convert the gene ID.
Then, the enrichGO and enrichKEGG functions were used to
perform GO/KEGG enrichment analysis of the DEGs, and GO/
KEGG terms with false discover rate less than 0.01 or 0.05 were
considered significantly enriched. Finally, the enrichplot package
was used to visualize the enrichment results.[10]
2.5. Pseudo-time analysis

We used Monocle 2 (http://cole-trapnell-lab.github.io/monocle-
release) to conduct pseudo-time analysis in the cells. Monocle 2
used an algorithm to learn the changes in gene expression
sequences that each cell must go through as part of a dynamic
biological process (differentiation, for example). The cells were
reduced dimensionality by the DDRTree method, sequenced in
pseudo time, and finally visualized.[11]
2.6. Cluster cell-type annotation

We used the feature plot function to highlight the expression
of known marker genes to identify clusters, and GO/KEGG
analysis was performed on DEGs of every cluster to verify the
correctness of the marker genes we selected. Parts of the cluster
could not find marker genes, GO/KEGG analysis of DEGs in the
clusters.
3. Results

3.1. The cellular composition of ERM tumor tissue
obtained by Seurat analysis

Seurat analysis was performed in all cells in the tumor tissue, and
the heatmap of the top 10 marker genes for every cluster was
shown in Figure 1A. The cellular composition of tumor tissues
was defined by marker genes. The APOC1 gene was activated
when monocytes differentiate into macrophages,[12] so cluster 8
comprised macrophages.CD3 is a co-receptor on the surface of T
cells that is expressed at all stages of T cell development and is a
classic marker of T cells.[13]CD94, a KLRD1 gene encoding
product, acts as a receptor for NK cells and some cytotoxic T cells
to recognize MHC-1 (HLA-E).[14] Therefore, cluster 10 was
composed of T cells (CD3+)[15] and NK cells (CD3�).[16]

CLEC10A is a specific marker of human CD1C+ dendritic
cells,[17] so cluster 13 comprised dendritic cells. CD34, PROM1,
and KDR are common marker genes of EPCs,[18] so cluster 15
comprised EPCs. Cluster 7 can be labeled with CD44 and
COL1A1. CD44 is a marker gene of mesenchymal stem cells
(MSCs) and COL1A1 could be expressed in fibroblasts,[19,20] so
cluster 7 might comprise MSCs or fibroblasts (hereinafter,
undefined cells-1). Cluster 14 could be labeled with CD44,
VCAM1, and TAGLN genes, which are expressed in both MSCs
and fibroblasts so that Cluster14 may also comprise MSCs or
fibroblasts (hereinafter, undefined cells-2).[19–24] In Section 3.3.2,
we knew cluster 7 comprised cancer-associated fibroblasts
(CAFs) and cluster 14 consisted of MSCs. The remaining
undefined cells were tumor cells and could be defined by PAX7,
HRAS, and KRAS genes.[5,6] The plot of ERM tumor tissue
cellular composition was shown in Figure 1B, and feature plots of
the above marker genes were shown in Figure 1C.
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Figure 1. Seurat analysis results of tumor tissue. (A) Heatmap of the top 10 marker genes for every cluster. Yellow indicates high expression of a particular gene,
and purple indicates low expression. (B) Cells are clustered and definitions of cell types are displayed in the uniform manifold approximation and projection (UMAP)
plot. Every cluster is named. (C) Feature plots of marker genes in every cluster.
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3.2. The heterogeneity in ERM tumor cells obtained by
Seurat analysis and GO/KEGG analysis

To investigate the heterogeneity of tumor cells in ERM,
we extracted tumor cells. Then, Seurat analysis and GO/
KEGG analysis was performed for them. The heatmap of the
top 10 marker genes for every cluster was shown in Figure 2A,
and the plot of ERM tumor cell subgroups was shown in
Figure 2B.
The first subgroup of cells (clusters 3, 5, 7, and 8) was highly

proliferative and was labeled with MKI67,[25]TOP2A,[26] and
CDK1 genes.[27] According to GO and KEGG analysis of the
DEGs in every cluster, this group of cells could be further divided
into 2 subgroups. Cluster 3 was in G1 and S stages of mitosis, and
the DEGs were mainly involved in the synthesis of DNA, RNA,
and chromosomes, such as deoxyribonucleoside triphosphate
metabolic process, DNA biosynthetic process, etc. Clusters 5, 7,
and 8 were in G2 and M stages of mitosis, and the DEGs were
mainly involved in the mitotic nuclear division, organelle fission,
chromosome segregation, and sister chromatid segregation.
Although cluster 10 was also highly proliferative, it was different
from clusters 3, 5, 7, and 8. Marker genes for high proliferation
could not define cluster 10, and the GO/KEGG analysis results in
cluster 10 were different from other clusters too. GO/KEGG
analysis showed that cluster 10 genes were mainly involved in the
positive regulation of cell cycle, regulation of mitotic cell cycle
phase transition, and regulation of cell cycle phase transition. The
second subgroup of cells (cluster 2) could sense and adapt to
oxygen availability and promote angiogenesis; this group was
labeled with the VEGFA gene. GO/KEGG analysis showed that
the DEGs in this group were mainly involved in response to
hypoxia, decreased oxygen levels, and HIF-1 signaling pathway.
The metabolism of nucleoside phosphoric acid was enhanced in
the third subgroup of cells (clusters 4 and 9). GO/KEGG analysis
showed that the DEGs were mainly involved in the metabolism of
nucleoside phosphoric acid, ATP metabolic process, and
oxidative phosphorylation. The epigenetic modification was
enhanced in the fourth subgroup of cells (cluster 6). GO and
KEGG analysis showed that the DEGs in this group of cells were
mainly involved in protein modification, RNA splicing, chromo-
some tissue regulation, and other epigenetic modification
processes. The fifth subgroup of cells (clusters 0 and 1) may
have ossification and ossification regulation functions. GO and
KEGG analysis showed that DEGs in cluster 0 were mainly
involved in ossification, and those in cluster 6 were mainly
involved in ossification regulation. The feature plots of the above
marker genes were shown in Figure 2C, and GO analysis results
were shown in Figure S1, Supplemental Digital Content, http://
links.lww.com/MD2/A289.
3.3. Pseudo-time analysis in cells
3.3.1. The evolutionary trajectory of undefined cells. Unde-
fined cells were extracted and regrouped, and Seurat
analysis was performed to divide the cells into 5 clusters
(Fig. 3B). Among these clusters, cluster 4 comprised undefined
cells-2 (TAGLNhi, Fig. 3B), and the remaining clusters comprised
undefined cells-1. The results of the pseudo-time analysis showed
that the left branch was the beginning of the evolutionary
trajectory. Undefined cells-1 were mainly located on the right
side of the evolutionary trajectory and undefined cells-2 were
mainly located on the left side of the evolutionary trajectory
(Fig. 3C).
4

3.3.2. The evolutionary trajectory of tumor cells, EPCs, and
undefined cells. Tumor cells, EPCs, undefined cells were
extracted and regrouped, and Seurat analysis was performed
to divide the cells into 14 clusters (Fig. 4A). Cluster 7 comprised
undefined cells-1 (CD44hiTAGLN-), cluster 12 comprised
undefined cells-2 (TAGLNhi), cluster 13 comprised EPCs
(CD34hi) (Fig. 4A), and the remaining clusters were composed
of tumor cells. Pseudo-time analysis results showed that clusters
7, 12, and 13 were mainly located at different positions of the left
branch of the evolutionary trajectory (Fig. 4B).

4. Discussion

The cellular composition of ERM tumor tissue is complex, and
we have not yet distinguished whether undefined cells are
mesenchymal stem cells or fibroblasts in Section 3.1.
According to minimal criteria for defining MSCs of the

international society for cellular therapy position statement,
MSC must express CD105, CD73, and CD90 surface mole-
cules.[28]CD73 and CD105 are not expressed in undefined cells-
1, so undefined cells-1 are not composed of MSCs but fibroblasts
(Fig. 1C).VEGFA is amember of the PDGF/VEGF growth factor
family that plays an essential role in tumor angiogenesis[29] and is
expressed in undefined cells-1. Angiogenesis can provide oxygen
and other nutrients for tumor invasion.[30] Additionally, the
generation of new blood vessels also provides a pathway for
tumor invasion, along which tumor cells can invade the vascular
system.[31] In summary, undefined cells-1, like fibroblasts,
participates in important aspects of solid tumor biology, such
as tumor invasion, angiogenesis, and metastasis, which can be
identified as CAFs.[32]

As for undefined cells-2, they meet minimal criteria for defining
MSCs (Fig. 1C); thus, it cannot be denied that they are composed
of MSCs. Pseudo-time analysis results (Fig. 3C) show that CAFs
are mainly located at the right side of the evolutionary trajectory
and undefined cells-2 are mainly located on the left side of the
evolutionary trajectory, so undefined cells-2 appear earlier in the
development process and it can be considered that CAFs originate
from undefined cells-2. In this study, CAFs may originate from
MSCs differentiation or activation of resident fibroblasts. If CAFs
arise from activation of resident tissue fibroblasts via signals from
tumor cells, tumor cells should appear earlier in the process of
tumorigenesis and are closer to the starting point of the
evolutionary trajectory.[33] However, CAFs and tumor cells
begin to appear in the same position along the evolutionary
trajectory (Fig. 3C). Therefore, CAFs originate fromMSCs rather
than resident fibroblasts, and undefined cells-2 comprise MSCs.
After identifying the cellular composition of ERM tumor

tissue, we begin to explore the evolutionary history of ERM.
PAX7 andMYF5 (marker genes of satellite myogenic cells and

myoblasts) are expressed in tumor cells, but MYOG, MYOD1,
and TTN (marker genes of myocytes) are rarely expressed in
tumor cells (Fig. 2C).[34] Therefore, ERM is regarded as an
arrested state in normal skeletal muscle development and is hence
considered to originate from SMPCs.[35] However, the feature
plot showed that the PEG3/PW1 gene is expressed in tumor cells
(Fig. 2C). PEG3/PW1 is a marker of a subset of vascular-related
EPCs.[36] Therefore, ERM in the pelvic may also originate from
EPCs. Pseudo-time analysis is performed to explore the origin of
ERM in the pelvic. The results show that cluster 12 comprises
MSCs (TAGLNhi, Fig. 4A) and is mainly located at the left of the
evolutionary trajectory (Fig. 4B), so the left side represents the
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Figure 2. Seurat analysis verify heterogeneity in ERM. (A) Heatmap of the top 10 marker genes for every cluster. (B) Cells are clustered and definitions of cell types
are displayed in the UMAP plot. Every cluster is named. (C) Feature plots of marker genes in every cluster. ERM=embryonal rhabdomyosarcoma.
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Figure 3. Pseudo-time analysis in undefined cells. (A) Evolutionary history of ERM. (B) Clustering cells and definitions of cell types in ERM are displayed in the UMAP
plot. (C) Pseudotime trajectory of undefined cells, and dark blue is the start of pseudo time. ERM=embryonal rhabdomyosarcoma.
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start of the evolutionary trajectory. EPCs are derived fromMSCs
differentiation. If the tumor cells are derived from EPCs, cluster
13 should be located on the evolutionary trajectory between
MSCs and tumor cells. However, cluster 13 is not located at that
location (Fig. 4B). Therefore, ERM originates from SMPCs
rather than EPCs.
In the evolutionary process of ERM,TAGLN gene is expressed

briefly and it is prior to tumor evolution during early skeletal
muscle differentiation (Fig. 4A).[37] It can be used as evidence that
ERM originated from SMPCs too. After that, MSCs are
differentiated into CAFs and tumor cells, and the VEGFA gene
is expressed in CAFs and tumor cells (Fig. 4A). Clusters 0 and 7
exhibit functions of sensing and adapting to oxygen changes and
promoting angiogenesis. They are on the right branch of the
evolutionary trajectory (Fig. 4A). Therefore, combined with the
expression of the VEGFA gene in pseudo-time, we speculated
that the VEGFA gene is the first group of genes expressed during
6

tumorigenesis. At the end of tumor evolution, MKI67, TOP2A,
and CDK1 genes began to express (Fig. 4A). These genes are
expressed in Clusters 2, 5, 8, and 9 and relate to the high
proliferation of tumors, which are manifested in the increase of
tumor malignancy. GO/KEGG analysis showed that cluster 11 is
also highly proliferative, but the position on the evolutionary
trajectory is different from clusters 2, 5, 8, and 9 (Fig. 4B). It may
be related to the different growth rates during tumor growth.
With the evolution of tumor cell subtypes, the differences
between tumor cells and normal cells increase, and the growth
rate of tumors increases. At the cellular level, the number of
highly proliferative tumor cells also increases.[38] Therefore,
clusters 2, 5, 8, and 9 are mainly distributed at the end of the
evolutionary trajectory, cluster 11 is distributed in the entire
evolutionary trajectory. The number of highly proliferative
tumor cells at the end of the evolutionary trajectory is higher than
the tumor cells at the beginning. There are also some tumor cells



Figure 4. Pseudo-time analysis in tumor cells, EPCs, and undefined cells. (A) Clustering cells and definitions of cell types in ERM are displayed in the UMAP plot,
and feature plots of marker genes in every cluster. (B) Pseudotime trajectory of the cells. (C) Trendgrams of highly expressed genes in the cell subtypes during
pseudo time. EPCs=endothelial progenitor cells.
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that are expressed throughout the evolution of the tumor. There
is no marker gene to define the remaining clusters, so GO/KEGG
analysis is used to show the functions of every cluster. The
epigenetic modification of cluster 6 is enhanced, and epigenetic
modifications are altered throughout the whole process of tumor
initiation and progression,[39] so it is distributed throughout the
evolutionary trajectory. The metabolism of nucleoside phospho-
ric acid is enhanced in clusters 4 and 10, and it is distributed at the
middle of the evolutionary trajectory, this event should occur in
the middle of the evolution of tumor cells. The DEGs of clusters
1and 3 are mainly involved in ossification and ossification
regulation. Clusters 1and 3 are distributed throughout the
evolutionary trajectory, but their role in tumor evolution is still
unclear. The existing literature can only prove that ERM has an
osseous component, namely, ossification can occur during the
evolution of ERM.[40] The evolutionary history of ERM is shown
in Figure 3A, and GO analysis results were shown in Figure S1,
Supplemental Digital Content, http://links.lww.com/MD2/A291.
By studying the heterogeneity in ERM, clinical diagnosis and

treatment of ERM will also help. Ki-67, a marker of cell
proliferation encoded by the MKI67 gene, is often used to
evaluate the degree of malignancy ERM. Clinical trials have
shown that the lymphatic spread[41] and prognosis[42] of ERM
are correlated with the Ki-67 index. However, Ki-67 has some
limitations as a marker of cell proliferation. The MKI67 gene is
not expressed in the G1 phase, and in vitro cell culture
experiments showed that Ki-67 is not needed for mammalian
cell proliferation.[43] Our results demonstrate that clusters 3 and
12 are highly proliferative but do not express the MKI67 gene
(Fig. 1C). The question still lies in how to calibrate the Ki-67
proliferation index. Feature plots show that TOP2A and CDK1
genes are expressed in cluster 3 (Fig. 1C), which means that the
classicalKi-67 indexmay be corrected by the expression products
of these 2 genes.
In conclusion, this paper revealed the cellular composition of

ERM tumor tissue, revealed the heterogeneity in ERM, explored
the evolutionary history of ERM, and improved the method of
evaluating the degree of malignancy of ERM.
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