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ABSTRACT: Real-time digital polymerase chain reaction
(qdPCR) coupled with machine learning (ML) methods has
shown the potential to unlock scientific breakthroughs, particularly
in the field of molecular diagnostics for infectious diseases. One
promising application of this emerging field explores single
fluorescent channel PCR multiplex by extracting target-specific
kinetic and thermodynamic information contained in amplification
curves, also known as data-driven multiplexing. However, accurate
target classification is compromised by the presence of undesired
amplification events and not ideal reaction conditions. Therefore,
here, we proposed a novel framework to identify and filter out nonspecific and low-efficient reactions from qdPCR data using outlier
detection algorithms purely based on sigmoidal trends of amplification curves. As a proof-of-concept, this framework is implemented
to improve the classification performance of the recently reported data-driven multiplexing method called amplification curve
analysis (ACA), using available published data where the ACA is demonstrated to screen carbapenemase-producing organisms in
clinical isolates. Furthermore, we developed a novel strategy, named adaptive mapping filter (AMF), to adjust the percentage of
outliers removed according to the number of positive counts in qdPCR. From an overall total of 152,000 amplification events,
116,222 positive amplification reactions were evaluated before and after filtering by comparing against melting peak distribution,
proving that abnormal amplification curves (outliers) are linked to shifted melting distribution or decreased PCR efficiency. The
ACA was applied to assess classification performance before and after AMF, showing an improved sensitivity of 1.2% when using
inliers compared to a decrement of 19.6% when using outliers (p-value < 0.0001), removing 53.5% of all wrong melting curves based
only on the amplification shape. This work explores the correlation between the kinetics of amplification curves and the
thermodynamics of melting curves, and it demonstrates that filtering out nonspecific or low-efficient reactions can significantly
improve the classification accuracy for cutting-edge multiplexing methodologies.

■ INTRODUCTION
This manuscript demonstrates that undesired amplification
reactions from real-time digital PCR (qdPCR) can be detected
and filtered out by only evaluating the sigmoidal shape of an
amplification curve. Here, we propose a novel methodology that
can be used with multiplex PCR assays without the need for
post-amplification analysis, increasing the result’s accuracy and
reliability.1,2

During the last decade, the gold-standard PCR technologies
along with other nucleic acid amplification chemistries have
resulted in key procedures for molecular diagnostics in both
academic and clinical environments.3−7 However, limitations
such as sample availability, trained personnel, and overall
laboratory costs can represent obstacles to the scalability and
adoption of PCR-based approaches.8,9 To overcome these
barriers, multiplexing has been used to unlock the potential of
conventional instruments, increasing the number of targets that
can be detected in a single reaction.10−12 Since the adoption of

multiplexing techniques, researchers and industries have
successfully applied them to different areas such as molecular
diagnostics, RNA signature polymorphism, and quantitative
analysis.13−15 Moreover, in an effort to increase the overall
multiplex PCR capabilities, several studies have recently been
published on the use of machine learning (ML) to identify the
biological nature of an amplification event, improving
throughput, clinical and analytical reliability, and sample
classification accuracy.16,17 As described by Athamanolap et al.
in 2014, ML methods were applied to high-resolution melt
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curves to increase both the tolerance of melting temperature
(Tm) deviation among targets and the reliability of classification
for genetic variants (such as polymorphic genetic loci).18 In
Jacky et al., ML techniques were used to enable high-level
multiplexing using TaqMan probes by leveraging on single-
feature classification (i.e., final fluorescence intensity or FFI) and
PCR platforms with multiple fluorescent channels.19 While data-
driven methods have mostly been employed to improve the
accuracy of target identification, with the aim to increased
multiplexing capability, some groups have also explored such
techniques for outlier removal, both in digital and in bulk PCR.
For instance, Yao et al.20 developed a process-based
classification model to identify false-positive curves in dPCR
(leading to a 64% improvement compared with classical
techniques), and Burdukiewicza et al.21 developed an algorithm
to automatically detect hook effect-like curvatures, allowing for
streamlined quality control in qPCR.

Recently, Moniri et al. in 2020 proposed a new approach
called amplification curve analysis (ACA) for single-channel
multiplexing without explicitly extracting features.22 The ACA
method comprises a supervised ML classifier to analyze kinetic
information encoded in the entire amplification curve by looking
into sigmoidal shapes across different targets.22,23 Furthermore,
using ACA along with melting curve analysis (MCA),24 a new
method called amplification and melting curve analysis
(AMCA) was developed, enabling higher-level multiplexing in
a single channel. While the melting curve is determined by the
thermodynamic properties of the amplicon, mainly related to its
nucleotide sequence, the features of the amplification curve are
also influenced by the concentration of templates and amplicon,
as well as PCR efficiency (and its cycle-to-cycle variation), thus
also providing information on the kinetics of the amplification
reaction. The AMCA couples both ACA and MCA coefficients
from the classifier to improve classification accuracy. This has
been demonstrated through the detection of nine mobilized
colistin resistance genes and clinical isolates containing five
common carbapenemase resistance genes.25,26 Moreover, multi-
plex PCR (coupled with innovative approaches such as ACA or
AMCA) is bringing about a change of paradigm in molecular
diagnostics by enabling faster, more accurate, and higher-
throughput detection of several biomarkers in one reaction. Its
applications are wide ranging, including precision medicine in
cancer, genetic testing, and syndromic testing in clinical

microbiology and infectious diseases, where it enables precise
multitarget identification of multiple pathogens and antimicro-
bial resistance genes.

A barrier to wider adoption of the aforementioned techniques
is that they may be limited by instrumentation specifications
such as thermal profile performance, available optical channels/
filters, and software setup. For example, MCA methodologies
are particularly limited in point-of-care devices, as many do not
have melting curve capabilities. Furthermore, in assays based on
probe-based chemistries (such as TaqMan), where intercalating
dyes are not present, the melting curve cannot be generated. In
these circumstances, the ACA method still stands as a valid
option for multiplexing and therefore it has been the
methodology of choice for the work proposed in this
manuscript. However, across all of these ML-based multiplexing
strategies, the ACA approach can be negatively affected by the
presence of abnormal amplification products due to primer
dimerization, amplification of undesired targets, the miscalibra-
tion of the instrument, and intramolecular secondary structures.
These abnormal behaviors tend to alter the kinetic information
of the sigmoidal curves, causing low efficiency or delaying the
amplification reaction.27−29 As represented in Figure 1, when
considering shapes of amplification curves from a multiplex
assay, similarities among different targets can reduce the
accuracy of the ACA classifier, as the presence of nonspecific
or low-efficient reactions results in blurred boundaries among
clusters. To overcome this problem, we developed an intelligent
algorithm to filter out outliers from multiplex amplification
events. Furthermore, to validate the correctness of outlier
removal, amplification curves (inliers and outliers) are
compared with labeled melting curves (correct and wrong).

In this work, we demonstrated that nonspecific and low-
efficient PCR reactions affect the shape of the amplification
curve and therefore they can be filtered out considering only the
sigmoidal trend. Furthermore, we developed an outlier removal
algorithm called adaptive mapping filter (AMF), which in
combination with the ACA approach was used to improve the
multitarget classification accuracy. This represents a step
forward to incorporate ACA in clinical applications and ensure
that by filtering in correct amplification curves, higher diagnosis
reliability is delivered to the patient. These concepts were
explored using data obtained from qdPCR experiments reported
by Miglietta et al.26 As a case study, three of the “The big 5”

Figure 1. Concept figure. Left: raw amplification curves and their corresponding ACA clusters (represented by principal component analysis or PCA)
include nonspecific and low-efficient reactions (confined in the red-circled region). The presence of outliers blurs the boundaries of the different
clusters, negatively impacting ACA classification accuracy. By applying the proposed filtering framework, kinetic and thermodynamic abnormalities
from amplification events can be captured. Right: outliers are removed from the original data, resulting in more separated clusters and clearer
boundaries. Therefore, ACA classification accuracy is improved.
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carbapenemase genes (blaNDM, blaIMP, and blaOXA‑48) were
considered in this study.

Our vision is that by sharing this new approach we can
significantly improve the quality of data from qdPCR instru-
ments and enhance the sensitivity and accuracy of ML-based
multiplexing methods relying only on amplification curves.
Moreover, extending this framework to other amplification
chemistries and real-time platforms will improve the multi-
plexing capabilities of existing diagnostic workflows and
platforms.

■ EXPERIMENTAL SECTION
In this section, a new framework for outlier removal in qdPCR is
proposed. As depicted in Figure 2, this framework took raw
amplification curve data as the input and applied baseline and
flat/late curve removal in the processing step. Then, each
processed curve was fitted by a sigmoid function and the fitted
parameters, as well as a newly developed feature referred to as
Send, were used as the input for a filtering algorithm, which
identified outliers automatically. Finally, the framework outputs
the amplification curves after filtering, marked as inliers.
Data Input. As a case study, data from Miglietta et al. were

used in this work.26 Data from synthetic DNA (gBlocks gene
fragments, IDT) containing blaNDM (N = 18,480), blaIMP (N =
17,710), and blaOXA‑48 (N = 17,710) gene sequences were used
as the training data set. From the original study, a total of 198
clinical isolates labeled with these three targets were used as the
testing samples to maintain a balanced data set and due to their
high prevalence and clinical significance in U.K. hospitals. Each
sample contained 770 raw curves for a total of 152,460 curves
across all of the samples, within which 116,222 were positive
after the processing step. It is expected that data from clinical
isolates are much noisier and thus contain more outliers than
those from gBlocks.
Data Processing. The first step of the framework is

processing the raw curves using a baseline correction and a
flat/late curve removal to exclude the negative curves of the

unprocessed data from the qdPCR output. The baseline of the
real-time PCR reaction during the initial cycles presents little
change in the fluorescent signal. The low-level signal of the
baseline equates with the background or noise of the reaction.
Therefore, we processed the baseline of each raw curve by
averaging the fluorescent value of the first five cycles and
subtracting it from the time series. Following this, flat/late
curves were removed by applying an upper and lower
fluorescence threshold at the 40th cycle, as suggested by the
manufacturer.30,31

Fitting and Feature Extraction. Following the processing
step, a curve fitting step was introduced to represent the
processed amplification curves with sigmoid parameters, which
were later downselected and used as input features for outlier
removal and classification algorithms. A 5-parameter sigmoid
model,29 which is shown below, was used to fit the amplification
curves

F t F
F

( )
(1 e )t c b db

max
( )/

= +
+

where t is the PCR cycle number, F(t) is the fluorescence at the
tth cycle, Fb is the background fluorescence, Fmax is the maximum
fluorescence, b relates to the slope of the curve, c is the fractional
cycle of the inflection point, and d is the asymmetric parameter.
To solve the nonlinear least-squares optimization problem for
the curve fitting, the trust region reflective (TRF) algorithm with
specific bounds was used.32 Here, we set [10, 0.3, 10, 50, 100]
and [0, −0.1, −10, −50, −10] as the upper and lower bounds for
the search of the 5-parameter set p = [Fmax, Fb, b, c, d],
respectively. The initial parameter set p0 was optimized through
pivot fitting on 5% of the training data. After fitting, each
amplification curve was given as five parameters, which are
condensed representations of curve information. The fitting
quality was assessed using mean-squared error (MSE) and is
reported in Figure S1. All parameters except for d were
considered input features for outlier removal algorithms because
parameter values of outliers may have significant differences

Figure 2. Proposed framework. (a) Framework steps: raw data input, processing, curve fitting, feature extraction, adaptive mapping filtering (AMF),
and filtered curve output. (b) Input or output of each step. From left to right, the input of the framework was raw amplification curves, some of which
are flat or late curves. By applying the processing step, the baselines were removed, and flat/late curves were discarded. Following this, the processed
curves were fitted using a five-parameter sigmoid function, after which each curve was condensed into five features. A new feature Send plus four of the
parameters was used to form a set, which is the input of the filtering step. The d parameter was discarded from the feature set for filtering as it is
unsuitable for the used algorithms. We further developed the AMF with a monotonic decreasing map between positive curve numbers within a panel
and the outlier percentage. The outputs of the framework are the curves after filtering (inliers).
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from those of normal curves. The d parameter shows a bimodal
distribution with two distant peaks, which is unsuitable for the
outlier removal step because many of the outlier algorithms
require a unimodal distribution of features. Therefore, the d
parameter was discarded from the feature set for filtering.

In addition, we further introduced a new feature called the end
slope (Send), with the aim to provide further information about
the amplification curve shape. This was calculated by taking the
average of the first derivatives at the last five cycles of the
amplification curve

eS D N D N D N
1
5

( 4) ( 3) ( ) T
5end = [ ] ···

where

D x
F t

t
( )

d ( )
d

=

e 1 1 1 1 15 = [ ]

and N is the total cycle number.
Using the Send feature, the information in the tail of

amplification curves was extracted, which contributes to
distinguishing inliers and outliers. For example, as illustrated
in the “fitting curves” step of Figure 2b, curves that do not reach
the plateau may have larger end slopes. These curves cannot be
precisely represented by the fitted parameters since the fitting
equation is not capable of capturing this nonplateaued trend.
Therefore, Send would benefit from the result of the outlier
removal by providing additional information to the feature set.
Including Send and discarding d, the final feature set for outlier
removal algorithms is xf = [Fmax, Fb, b, c, Send].
Outlier Removal Algorithms. In this research, seven

outlier removal algorithms were considered, which can be split
into the following categories according to their principal ideas of
filtering: proximity-based, linear, outlier ensembles, and angle-
based algorithms. (i) Proximity-based outlier detection
algorithms rely on using a distance metric (e.g., Euclidean or
Manhattan) to identify outliers. We applied two proximity-
based algorithms, which are local outlier factor (LOF) and
density-based spatial clustering of applications with noise
(DBSCAN).33,34 The LOF algorithm considers the k-nearest
neighbors (KNNs) to every point in the data set and computes a
local outlier factor for each of them. DBSCAN classifies the
points into the core, border, and noise of clusters based on the
number of points (min points) within the radius (epsilon) of the
considered point. (ii) The linear outlier detection methods used
were one-class support vector machine (OC-SVM) and elliptical
envelope.35,36 OC-SVM applies the concept of finding a
hyperplane that separates the inlier points from the origin,
such that the hyperplane is closest to the inlier points as possible.
The elliptical envelope aims to fit the smallest ellipse possible to
the core cluster of data points, with any point outside being
considered outliers. (iii) Outlier ensemble-based detection
methods considered were isolation forest and feature bag-
ging.37,38 Isolation forest uses random forests to recursively
randomly partition data, after which data points with fewer
partitions to isolate are marked as outliers. Feature bagging
considers multiple outlier algorithms and randomly selects a
group of features. From those features, the resulting outlier
scores from each algorithm are merged to find the strongest
outliers. (iv) Angle-based outlier detection considers the angles
made by a point with all other pairs of points in the data set.39

For each point, the variance is calculated from all of the angles

obtained, where for a potential outlier the variance is small since
the point is distant from the main cluster of data.
Adaptive Mapping Filter (AMF). Most of the outlier

detectors explained in the previous section require a hyper-
parameter called “contamination ratio” or “outlier percentage”,
which represents the percentage of outliers to be removed from
the original data. To adaptively set up this hyperparameter, we
developed a mapping strategy that maps the number of positive
reactions per panel in the qdPCR chip (processed curves) to the
contamination ratio used in the outlier removal algorithm.

In digital PCR, as the number of positive curves increases, the
probability of having more than one molecule in a single well
increases, resulting in a shift of reaction state from digital to bulk.
Moreover, as the reaction goes toward the bulk region, a higher
number of positive curves will be present in a panel, which can
result in a lower probability of observing a nonspecific or low-
efficient reaction (outlier) in a well.22,40 Let us suppose that for
each well the probability of observing an outlier is p(Mi), where
Mi is the number of processed curves for the ith sample. Since
p(Mi) are independent and identically distributed (IID) for all of
the wells, the total number of outliers Xi observed in the ith
sample follows the distribution of Xi ∼ B(Mi, p(Mi)). Therefore,
the expected percentage of outliers in the ith sample should be

E X
M

M p M
M

p Moutlier percentage
( ) ( )

( )i

i

i i

i
i= = =

which means that the expected outlier percentage is a monotonic
decreasing function to the number of positive curves. In this
research, we applied a piecewise linear function with empirical
turning points, as illustrated in the filtering step of Figure 2b.

Coupling the adaptive mapping with an outlier removal
algorithm, we developed a novel method called adaptive
mapping filter (AMF), which takes as input the feature set and
output the inliers.
Melting Labeling. An algorithm was developed to

automatically label the melting curves as specific (which we
called “correct”) or nonspecific (referred to as “wrong”) ones. By
using this methodology, the percentage of wrong melting curves
within all of the curves of a sample (wrong melting percentage or
WMP) was calculated, and this WMP further served as a metric
for performance evaluation.

To apply melting labeling, the reference melting peak for each
target needs to be determined. For a target tg∈
[blaNDM,blaIMP,blaOXA‑48], a reference melting peak temperature
Tm

tg was given by calculating the median value of all of the melting
peak temperatures of the gBlock curves with target tg. After that,
the steps below were followed to label every single melting curve
of the clinical data set:

(1) Find the global maximum melting peak’s temperature Tm
g

of the current melting curve.

(2) If
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑT T T,W W

m
g

m
tg

2 m
tg

2
+ , where W is the tolerance

width of the Tm
g distribution, the current curve is labeled

directly as a wrong melting curve. Here, considering our
instrument resolution for melting curve analysis, our W is
equal to ±0.5 °C.

(3) Otherwise, find the local maximum melting peaks’
temperatures on the left and right sides of Tm

g on the
current curve and mark them as Tm

l and Tm
r , respectively.

Note that either Tm
l or Tm

r may not exist. If neither exists,
the current curve will be labeled as a correct melting curve.
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(4) If at least one of Tm
l and Tm

r exists, a set of this (these) local
melting peak(s) will be constructed. For each element Tm

e

in this set, check whether

H H H H H4 4e mean std, mean std[ + ]

where He is the height of the current melting curve at
temperature Tm

e , Hmean and Hstd are the mean and standard
deviation of [H1,Tdm

e H2,Tdm
e ···HM,Tdm

e ], respectively, in which Hn,Tdm
e

means the height of the nth melting curve of the sample at
temperature Tm

e , and M is the total curve number in the sample.
If at least one of the above tests fails, the current curve will be

labeled as a wrong melting curve. Otherwise, it will be marked as
the correct one.

With the above steps, it is ensured that both curves with large
deviations of Tm

g from reference melting peaks and curves with
large nonspecific local melting peaks can be labeled as wrong. In
this way, all of the curves had been marked as either “correct” or
“wrong” and further used to calculate the wrong melting
percentage (WMP)

N

N
WMP 100

wrong

total
= ×

Figure 3. Melting curve analysis on filtering results. (a) Melting performance shown with wrong melting percentage (WMP), Tm, and Hm variances vs
fixed outlier percentage. As the outlier percentage increases, all of the metrics show decreasing trends, which tend to plateau after a certain percentage.
As illustrated by the firm red line, isolation forest performs the best overall for the three metrics. (b) The distribution of melting performance metrics
shows that, after filtering, the WMP becomes significantly smaller, and Tm and Hm have a narrower distribution. (c) An example of blaOXA‑48 clinical
isolate. Each column shows the amplification curve and corresponding melting curve of the correct melting and predicted inliers (N = 731), wrong
melting and predicted outliers (N = 19), correct melting and predicted outliers (N = 12), and wrong melting and predicted inliers (N = 8).

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c01883
Anal. Chem. 2022, 94, 14159−14168

14163

https://pubs.acs.org/doi/10.1021/acs.analchem.2c01883?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c01883?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c01883?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c01883?fig=fig3&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c01883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where Nwrong is the number of wrong melting curves within the
sample, and Ntotal is the total number of curves in the sample.

It is worth mentioning that the proposed algorithm of
automatic melting labeling is not a part of the filtering
framework. The labeling was used to calculate the WMP,
which functioned as a metric for filtering evaluation, where a
lower WMP indicates better filtering performance.
Data Visualization. Visualization is a vital step for

understanding the distribution of a given data set. In this article,
principal component analysis (PCA) with two components was
used to visualize the feature sets of the curves before and after
applying the outlier removal algorithm to scatter plots. Visual
inspection was performed to illustrate how separated the clusters
of different targets were. Following this, several metrics for
measuring the density and degree of separation among those
clusters were used to quantitatively evaluate how well they were
divided.

Specifically, after the PCA of the feature set xf = [Fmax, Fb, b, c,
Send] from the amplification curves of each target, the Silhouette
coefficient for each feature set was calculated.41 The mean value
of these coefficients, known as the mean Silhouette score, was
then used to indicate how well the curves of the same targets are
clustered. A higher Silhouette score implies denser and better-
separated clusters observed. Two additional metrics, the
Calinski−Harabasz score and the Davies−Bouldin score, were
also implemented for clustering evaluation, where a higher
Calinski−Harabasz score or a lower Davies−Bouldin score
relates to larger intercluster distances among targets.42,43

Classification of Amplification Curves: Data-Driven
Multiplexing. The ACA method uses kinetic information
encoded in the amplification curve to classify different nucleic
acid molecules from a PCR test. The performance of the ACA
was assessed using different curve representations (Table S1),
and the five fitted parameters were used in this study. To
illustrate the influence of the AMF on the ACA, a random forest
classifier with 100 trees was applied to the feature set xc =
[Fb, Fmax, b, c, d], which differs from the xf used for outlier
removal algorithms. Here, parameter d was reintroduced
because more curve-related information is needed, provided
that the proposed classifier is relatively less sensitive to the
feature distributions. Send was discarded for classification
because, after outlier removal, abnormal curves with large end
slopes were not present in the data set. For the remaining curves,
Send was extremely close to zero; thus, it was not necessary for
Send to be included again. All of the other features were
normalized with the mean and the variance of the training data
before being input into the classifier.

In this research, after applying data processing and feature
extraction on both training and testing sets, the extracted
features of the training set were used to train a random forest
classifier. This trained classifier was then evaluated on the testing
set with or without adaptive mapping filtering (the progress of
AMF is totally unsupervised, so it can be applied to the testing
data set without the true labels). For the testing set, we utilized
both the inliers and the outliers marked by the aforementioned
AMF algorithm and tested them. As a comparison, two
randomly downselected data sets with the same number of
curves as the inliers and the outliers were also constructed and
tested.
Statistical Analysis. Two-sided Wilcoxon signed-rank tests

were used to determine the statistical significance of the changes
in WMP and melting peak distributions (distributions of the
melting peak temperature, Tm, and height, Hm) before and after

outlier removal. Two-sided Mann−Whitney U rank tests were
used to compare the distributions of Ct, FFI, and maximum
slopes between inlier and outlier amplification curves. Those
three metrics were chosen for their relationship with the
amplification curve efficiency. Many studies suggest that
sigmoidal modeling of the entire amplification curve can be
used to define the rate of PCR efficiency. Therefore, low-
efficient PCR reactions are related to low fluorescent values and
low maximum slope.44,45

Moreover, the significance of the comparison between inliers
and outliers in clustering Silhouette coefficients was determined
by a two-sided Wilcoxon signed-rank test. This test was also used
in the evaluation of the classification performance. A p-value of
0.001 with Bonferroni correction was used as the threshold for
statistical significance.

■ RESULTS AND DISCUSSION
In this study, a new framework is presented to detect outliers
from amplification reactions in qdPCR. The outlier identi-
fication relies on the AMF, which is comprised of an outlier
detection algorithm and a mapping strategy to adapt the
contamination ratio hyperparameter to the positive amplifica-
tion reaction counts (or positive wells) of the qdPCR chip.
Evaluation of Outlier Detection Algorithms. As shown

in Figure 3a, we evaluated the detection performance of seven
outlier removal algorithms on filtering amplification curves
against outlier percentages by using three metrics: (i) wrong
melting percentage (WMP), (ii) melting curve Tm variance, and
(iii) melting curve Hm variance. The changing values of metrics
for different algorithms with fixed outlier percentages from 0.1 to
40% are shown in Figure 3a. After the filtering is applied, the
WMP shows a significant reduction from 1.1% (from the
unfiltered data set) to a maximum of 0.9% after filtering across all
of the algorithms. The graph depicts that outlier percentage and
WMP are inversely proportional, but the trend can vary among
methods. Proximity-based outlier detectors perform worse
overall compared to the rest, so they are unable to achieve a
dramatic decrease in WMP, even with very large contamination
ratios. On the other hand, ensemble-based detectors such as
feature bagging and isolation forest have better performance
with the lowest WMP among all of the outlier percentages. As
shown in the center and right end graphs, the variances of Tm
and Hm have a decreasing trend that can be observed as the
outlier percentage increases, indicating that both of their
distributions are narrowed down. In the Tm variance plot, it is
noticed that DBSCAN achieves better performance at lower
outlier percentages, but this trend reaches a plateau as the outlier
percentage further increases. Once again, ensemble-based
methods have similar behavior for the Tm variance as for the
WMP. For instance, isolation forest outperforms all other
detectors after the outlier percentage reaches 12%. Moreover,
isolation forest and elliptic envelop show the best performance
for Hm variance up to 26% contamination ratio.

In this analysis, WMP was used to show the change of wrong
melting proportion after applying outlier detection algorithms,
indicating the direct effect of the filtering on removing wrong
melting curves. It is important to consider that we do not relate
wrong meltings with wrong target sequences as the true nature
of the amplicons resulting from the PCR reaction can only be
established by sequencing, which is impractical in digital PCR.
The WMP is used to evaluate the shift of melting peak or the
presence of multiple low-intensity peaks, which result from
nonspecific or low-efficiency amplification reactions. This can
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largely affect the ACA classification depending on the presence
of the abovementioned phenomena; therefore, filtering such
events can result in improved target identification. Moreover, a
smaller Tm variance indicates a narrower Tm distribution, which
in combination with the WMP methods shows that curves with
large deviations from the reference Tm

tg are removed by the
filtering algorithm. In molecular biology, those curves may be
generated after nonspecific events such as undesired target
interaction or primer dimerization.46 In addition, melting curves
presenting low −df/dt (or Hm) are associated with low-efficient
amplification reactions. Therefore, the narrowed distribution of
Hm indicates that low-efficient curves, which are present at the
tail of the distributions, are removed.47 All of the algorithms
provide better performance compared to the original benchmark
calculated on the unfiltered data. However, it is noticed that
isolation forest is always among one of the best methods for all of
the metrics and does not show any defects, which is common for
other algorithms (outlier distribution reported in Figure S2). In
the following sections, we use isolation forest to further
demonstrate the proposed framework.
Filtering Performance Analysis of the AMF. In the

following step, AMF was applied to the unfiltered data, and the
distributions of inner-sample WMP, Tm, and Hm variances are
illustrated in Figure 3b. Across these three metrics, significant
shifts of distributions to smaller values are shown after filtering,
supported by all of the p-values < 0.0001. This indicates that the
proposed AMF can significantly remove both nonspecific and

low-efficiency curves only by looking at amplification curves.
This proves our hypothesis that amplification curves contain not
only kinetic but also thermodynamic information as numbers of
outliers correspond to wrong melting curves.

An example of the AMF visual performance on a clinical
isolate containing the carbapenemase gene blaOXA‑48 is
illustrated in Figure 3c. Columns represent both amplification
and melting curves of (i) correct melting and predicted inliers
(N = 731, 94.9%), (ii) wrong melting and predicted outliers (N
= 19, 2.5%), (iii) correct melting and predicted outliers (N = 12,
1.6%), and (iv) wrong melting and predicted inliers (N = 8, 1%).
The first column shows the correctly identified inliers
representing specific products of PCR tests. In the second
column, nonspecific reactions are correctly identified and
labeled as outliers, which emphasizes the effectiveness of the
filtering. We noticed that a small number of specific curves were
predicted as outliers, as shown in the third column of Figure 3c.
This phenomenon does not deny the efficacy of the filter, as
these “incorrectly” removed curves have (i) significantly larger
Ct values, (ii) significantly smaller FFI, (iii) and smaller values of
maximum slope compared to the inliers. Across the entire
clinical isolate data set (N = 116,222), compared to melting
curve analysis, 115,535 were correctly predicted inliers and 791
were correctly predicted outliers. Furthermore, 5,861 were
wrongly classified as outliers, whereas 687 were wrongly
classified as inliers. Further statistical analyses on the entire
data set also endorse these significant differences between inliers

Table 1. Comparison of Ct, FFI, and Maximum Slope between Predicted Inliers and Outliers with Correct Melting Peaksa

Ct(mean ± std) FFI (mean ± std) max slope (mean ± std)

target inliers outliers inliers outliers inliers outliers

blaNDM 21.45 ± 3.28 26.40 ± 6.11 0.67 ± 0.06 0.60 ± 0.12 0.07 ± 0.01 0.06 ± 0.01
blaIMP 30.33 ± 2.23 31.25 ± 3.43 0.44 ± 0.06 0.41 ± 0.07 0.0276 ± 0.003 0.0271 ± 0.01
blaOXA‑48 18.82 ± 3.08 21.03 ± 4.34 0.65 ± 0.08 0.51 ± 0.16 0.05 ± 0.01 0.04 ± 0.02

aFor all of the targets, inliers have significantly smaller Ct and larger FFI and max slope, with all p-values < 0.0001.

Figure 4.Data visualized using two-dimensional (2D) principle component analysis before and after filtering. The processed data plot shows that most
outliers have been removed from the original unfiltered data, and the clusters are more separated with clearer boundaries and fewer overlaps. The
segmented squares on the bottom side of both figures show the areas where cluster overlapping is more evident; thus, they are zoomed. The mean
Silhouette score increases from 0.378 to 0.399 after filtering.
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and outliers for Ct, FFI, and maximum slope values, as illustrated
in Table 1. This indicates that AMF removes certain curves
because they are of low amplification efficiencies even though
they have “correct” melting peaks. A few curves labeled as
“wrong” melting may be predicted as inliers, as shown in the
fourth column of Figure 3c. This can be explained by the
relatively low-temperature resolution of the equipment, which
results in mislabeled wrong melting curves due to the large
quantization noise of Tm

g during temperature measurement. In
fact, by visually inspecting the last column of Figure 3c, it can be
seen that amplification curves are of very similar shapes to
correctly predicted inliers (shown in the first column of Figure
3c). The WMP of the illustrated sample has dropped from 3.51
to 1.08%. Overall speaking, in this demonstrated data set, 1.2%
of wrong meltings were reported before filtering, and after
applying AMF, we reduced the WMP by half to 0.59%.
Feature Set Visualization. To visualize the effect of the

AMF, PCA-based feature visualization before and after filtering
is depicted in Figure 4. On the left of the figure, the unfiltered
data shows larger overlapping within clusters of different targets
and a higher number of outliers compared to the data after
filtering. The segmented squares are used to emphasize the
differences in cluster overlapping before and after the AMF,
where clearer boundaries between blaIMP and both blaOXA‑48 and
blaNDM can be seen. These differences highlight that (i) outliers
can be effectively removed by the AMF and (ii) removing
outliers enhances the separation and reduces the overlap among

different target clusters, which will ease the classification of the
ACA method.

To numerically evaluate the degree of separation across target
clusters, the mean Silhouette score of all of the data points was
calculated before and after filtering, showing an increment from
0.378 to 0.399 (p-value < 0.0001). In addition, the Calinski−
Harabasz score increased from 101,002.729 to 130,134.802, and
the Davies−Bouldin score dropped from 0.886 to 0.839. All of
those results indicate that AMF makes target clusters denser and
better separated.
ACA Classification. After demonstrating that removing

outliers improves the overall distance among clusters, we further
explored its impact on the ACA classification for both inliers and
outliers against randomly downselected data sets with the same
numbers of curves. In Figure 5a, the confusion matrix shows that
the sensitivity for the inliers is 88.96%, which is an increase of
1.13% compared to the randomly downselected ones (Figure
5b). For all of the targets, a significant sensitivity improvement
can be observed of 1.06, 0.95, and 1.39% for blaIMP, blaNDM, and
blaOXA‑48, respectively. Moreover, the overall classification
accuracy was 84.94% for inliers and 83.76% for randomly
downselected curves, showing a 1.18% improvement (p-value <
0.0001), which is in line with the overall WMP before filtering
(WMP = 1.2%). Applying the filter will help increase the overall
performance and specificity of the data set. This supports our
hypothesis that melting information or thermodynamics are
contained in the amplification curve.

Figure 5. Confusion matrices for inlier and outlier classifications. The four confusion matrices are shown for (a) inliers, (b) randomly downselected
data with the same curve numbers as inliers, (c) outliers, and (d) randomly downselected data with the same curve numbers as outliers. The title of
each matrix reports the sensitivity of the model. Moreover, each square of the matrix has the number of predicted curves for the corresponding true
label and the respective sensitivity of the square.
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To show that the removed outliers are less informative for
target recognition and harmful for the overall classification, in
Figure 5c,d, we show the confusion matrices of the classification
using both removed outliers and a randomly downselected data
set with the same size. As expected, the performance for outliers
is significantly worse than the randomly downselected ones, with
only 68.2 and 54.78% sensitivity and accuracy, respectively, for
outliers (p-values < 0.0001). This dramatic sensitivity
decrement of 19.57% strongly suggests that outliers have less
useful information for the classification of the selected targets.

Furthermore, the statistical analysis of the two randomly
downselected data sets shows no significant differences in in-
sample accuracy with a p-value of 0.448, which is in line with the
central limit theorem as they originate from the same
distribution. This is further proof that the efficacy of the
proposed framework is not related to the size of the data.

■ CONCLUSIONS
In this paper, we presented a novel framework to adaptively
remove abnormal curves from PCR amplification reactions. The
method takes the raw input from a qdPCR run and processes it
in three steps: background subtraction, late curve removal, and
sigmoidal fitting. Moreover, a new feature called end slope (Send)
is developed in this study, which, along with sigmoidal
parameters, is used in the adaptive mapping filter (AMF). The
AMF is capable of removing nonspecific and low-efficient
amplification curves, which are labeled as outliers. Melting
curves of the outliers, previously removed, were compared with
those of inliers using both wrong melting percentage (WMP)
and melting peak distributions. Results show that nonspecific
and low-efficient curves can be removed from amplification
reaction by purely considering the sigmoidal trend. Further
validation of the framework performance was conducted by
assessing the classification accuracy and sensitivity of the ACA
classifier on both inliers and outliers. This reinforces our
hypothesis that removing abnormalities of amplification
reaction in real-time PCR instruments would benefit data-
driven multiplexing by removing undesired information.

In this research, we used data from qdPCR published in our
previous work to demonstrate the effectiveness of the proposed
framework, but its generality has not been tested in other
settings. Future work will focus on evaluating this methodology
on real-time data originating from various qPCR instruments,
from different chemistries (such as isothermal amplification),
and from point-of-care devices. Digital PCR allows us to
generate amplification curves at low concentrations of samples,
enabling the use of the developed framework. However, future
work will focus on the application of this novel method in bulk
reactions. Moreover, in the event of secondary amplification, the
curve may show a second increasing phase with a large FFI and
deviated shape from the sigmoid. However, as shown in Figure
2b, fitting step, the approximate shape of the distorted curve can
still be depicted by the 5-parameter model, with still relatively
small fitting error. After fitting, certain parameter values of the
secondary amplification events will be different and distant from
normal reactions and these events can be identified easily by the
outlier detector. Regarding the presence of multiple targets in a
single well, we expect to have a normal sigmoidal trend;
therefore, the fitting error (MSE) will be low without affecting
the AMF progress. However, the ACA classification of such an
event may be challenging. In our previous work, we
demonstrated that the presence of double targets can be
resolved using the AMCA approach,25 and other solutions such

as FFI modulation by changing the probe concentration in
TaqMan assay19 may also help tackle this issue. Finally, the
upcoming work will focus on introducing advanced machine
learning techniques to enhance the classification efficacy of the
ACA classifier and then on making this approach more reliable
for use in clinical diagnostics.

In conclusion, this study reveals the interconnection between
the kinetics of the amplification curve and the thermodynamics
of the melting curves. For the first time, a framework is
introduced, which is capable of removing abnormalities in
kinetic and thermodynamic information by purely screening
amplification curves.
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